Hidden Ontologies — How Mobile Computing
Affects the Conceptualization of Geographic
Space

Jim Thatcher!, Christoph Miilligann?, Wei Luo', Sen Xu', Elaine Guidero',
Alexander Savelyev!, and Krzysztof Janowicz?

! Pennsylvania State University, USA
{jethatcher|wul132|sux100|guidero}@psu.edu
2 Institute for Geoinformatics, University of Miinster, Germany
cmuelligann@uni-muenster.de
3 University of California, Santa Barbara, USA
jano@geog.ucsb.edu

Abstract. All software engineering starts with assumptions about the
intended purpose, basic functionality, potential users, and their require-
ments. Developers agree on a shared terminology and workflow, for in-
stance using UML. In fact, they agree on ontological commitments — on
an application dependent model of the world. Such commitments, how-
ever, are most often driven by business needs and are based on the re-
strictions of the used platform, e.g., smartphones. What most developers
overlook is that (due to the ubiquity of mobile devices and apps) their on-
tological decisions also affect how users conceptualize geographic space.
The role of ontologies in software engineering has been acknowledged
and studied before. In this work, based on a Volunteered Geographic
Services application for Android smartphones, we discuss how specific
design choices affect the user’s behavior and knowledge. We present first
ideas on how such choices can be documented and made explicit.

1 Introduction

In computer science, the term cognitive engineering summarizes those ap-
proaches to Human-Computer-Interaction (HCI) that take cognitive processes
as blue-prints to improve the usability of software interfaces and mimic human
reasoning to ease information retrieval. The increasing ubiquity of computer
technology and the Internet led to new research pointing out that HCI is not
a one-way street. Cognitive science has studied the influence of tools on human
behavior and the conceptualization of our environment well before the rise of the
Internet. Recently, human geographers discussed the relation between software
code, the conceptualization of space, and capitalism; Kluitenberg argues that
traditional space is being overlaid by electronic networks such as those for mo-
bile telephones and other wireless media [1, p. 8]. With the increasing popularity
of Location-Based Services (LBS), the question of how mobile computing influ-
ences the conceptualization of geographic space becomes more urgent. Software

is created for a certain, often monetary, purpose. How do design decisions taken
by engineers impact the user’s behavior, can we assist developers in understand-
ing the impact of their work and reduce some of the implications?

We accepts that all ontological claims involve a closing off, i.e., at once a nec-
essary and problematic condition of knowledge [1, p.717]. While this view holds
for the philosophical definition of ontology, a claim of how the world ’really is’,
this statement argues it holds equally as true for the computer science definition.
Ontologies, the possible range of meanings offered by an encoded field [1, p.709],
are a necessary component of any programmatic application; however, these pro-
grammatic relations are hidden from the end-user. The accompany limitations
of epistemology what it is possible to know also remain hidden with these 'hid-
den ontologies’. In this statement of interest, and based on a mobile computing
course at Penn State in 2011, we would like to open the discussion of how to
understand, quantify, and reduce the impact of such hidden ontologies on the
user’s conceptualization of geographic space. We try to combine arguments from
GIScience with a human geography and ethnography perspective.

2 The Volunteered Geographic Services Use Case

The potential of Volunteered Geographic Information (VGI) have been widely
discussed since Goodchild coined the term in 2007 [2]. Platforms such as Open-
StreetMap (OSM)! or Wikimapia? provide means of publishing and requesting
geographic data for everyone. That data may not always meet the standards of
authority-driven information systems, but it is in many cases more up-to-date,
localized, and in some cases even more exhaustive.

We believe that Volunteered Geographic Services (VGS) are a next step.
Looking at the massive feedback of, for example, OSM, it appears reasonable to
give volunteers a possibility to offer and request not only geographic information
but also services. A geographic service in our terminology is strongly associated
with a particular location and performed by human users, and is therefore dis-
tinct from the more general service notion on the Web. In that sense it can be
treated like any other VGI: it is located in space and time, and for the most
part has some attributive data. However, the importance of those properties
is different in VGS. Volunteered Geographic Information may have a creation
date and a creator, but a user is only interested in location and feature type.
In VGS, on the contrary, creation time and creator are of major importance
due to concerns about the validity and reliability of the service offer or request.
VGS platforms may have different shaping depending on their application, for
instance, emergency or carpools. Volunteered Geographic Services may range
from simple requests about driving conditions during the winter to emergency
scenarios such as rescuing people. Users can request a service using a smartphone
App, while other users may offer support.

! http://www.openstreetmap.org/
% http://wikimapia.org/

M@ 3:14em

B Ml & 3:100m | Tl & 3:13em TR & 3:130m

Your offer title

need a rid
%S eed a ride

§
S,
A 7,
5

W
(a) (b) (©)

Sign in

Fig. 1. Activity screens of the PSUmobile VGS App.

The VGS application developed by the PSUmobile group contains two main
components: The server component and the client component.

The VGS server component is an implements a generic framework for han-
dling Volunteered Geographic Services data and can be used for different client
applications. It is developed based on Linked Data principles and consists of a
triple store, a Linked Data engine responsible for RDF model handling, and a
standardized client-server interface. The PostGIS database, Jena API, and the
Tomcat platform were used to implement the server. Standardization of client-
server communications is achieved by using a VGS ontology which models user
interaction in the VGS domain. Basic classes for such interaction include ser-
vice offers and requests (subclasses of the Action class), and are related through
properties such as leadingOffer /leadingRequest and targetOffer/targetRequests.
Leading is used in analogy to the "like"-functionality of social-bookmarking web-
sites (e.g., "I also need a ride"), and target signifies the response of an offer to
a request (e.g., "I will give you a ride"). In addition, actions have a spatial and
temporal signature, a user ID, and a generic message field. The resulting frame-
work is platform-independent, scalable, and remissive of changes to the original
Linked Data Model. For instance, an emergency application might introduce an
urgency scale as a subclass of Message or an expiration time as a subclass of
Timestamp, while still using the VGS generic framework.

The VGS mobile App supports two main tasks: send a request for help, and
offer help to a request. Upon opening the application, the user sees the home
screen (Figure 1a). From the home screen the two functions diverge. To send a
request, the user can press the Create Request button in the lower right hand
corner (a blue circle with a plus sign). To offer help, the user presses a request
bubble on the map to view the request, and from there, has the ability to decline
the request, indicate need for the same service, or offer help to that request.

After pressing the Create Request button, the user is taken to the Send Re-
quest form (Figure 1b). It offers three fields: request title, request description,
and the user’s name. The request description field features a freeform text entry
limited to 140 characters, and supports hashtag entry (preceding a keyword with

a #). Pressing the Go! button sends the request to the server with the follow-
ing information: request text, user name, timestamp, and geographic location (
acquired via GPS or 3G/WiFi). This simple two screen navigation supports the
rapid publication of requests and offers.

By pressing a request bubble in the map view (see Figure la), the user is
brought to the View Request screen (Figure 1c). This screen contains informa-
tion about the requested service. Below the request information, there are two
buttons: a Facebook-style like button (the "thumbs-up" hand symbol) and an
offer button (the shovel symbol). The like button allows people to confirm or
"second" the request — a way of legitimizing the request through repeated con-
firmation. Pressing the offer button takes the user to a Send Offer form (Figure
1d). This form contains fields for the offer title, offer description, and offerer’s
name. It has two buttons, a sign in button (with the same functionality as on the
Send Request form), and an I can! button that sends the offer to the server with
the following information: user-entered information from the form, timestamp,
location, and sign-in information (if available).

The home screen also contains query filters to restrict the displayed requests
and offers by space, time, or hashtags. Filtering by space is accomplished through
zooming and panning the map; the application will only display the most recent n
requests in the space defined by the map display (currently n—10 is predefined).
The map display serves as a bounding box. The temporal filters are visible at
the top: Last 10 (left arrow), Refresh (circle), and Next 10 (left arrow). Last
10 displays the ten previously sent requests, and Next 10 displays the ten more
recently sent requests. The Refresh button displays the ten most recent requests.
Finally, users can filter by selecting a tag from the drop-down list.

3 Hidden Ontologies in the VGS Use Case

During the creation of the VGS application, the process by which decisions were
made was recorded and studied; using a qualitative, ethnographic approach, the
team examined how and why decisions were made. One member of the client
team undertook a participant observation study. Participating actively in the
client design as well as taking exhaustive notes at all meetings, this methodology
follows from the work of science studies ethnographers such as Latour or Traweek
[3] [4]- The decisions made during the development of the VGS application have
direct epistemic ramifications for the end-user as they influenced and shaped
the means by which a user comes to know space through the VGS application.
The following vignettes describe two out of several design decisions and highlight
their implications.

Vignette 1: request types and the Mathew Effect During an early meeting of
the VGS project client-side team, members suggested that when submitting a
request for help, the user be presented with a list of four or five types of request
(e.g., medical emergency, flood, fire, snow, personal safety). On the request sub-
mission form, the user could select a request type from a list auto-populated by
the most common types of request over a defined period of time and space. The

design team reasoned that during an emergency many users would be in need of
the same type of service. By automatically prompting the user with a series of
pre-formatted request types, the application would save valuable time. However,
The project lead strongly disliked the idea, citing the Mathew Effect. He rea-
soned that if the VGS application suggests popular topics. After consideration,
the team dropped request types from the user interface design. This decision
required a redesign of the request submission form in the Ul and the removal of
the request type element from the underlying VGS ontology. Left unanswered
is whether or not the Mathew Effect would have outweighed the advantages of
having the most popular types of request automatically available for selection.
We do not know if such a design would save valuable time or instead skew app
usage toward conformity rather than utility. What can be said is that the user
does not have the ability to see the most common types of request. This sug-
gests that a single ontological decision (whether there are types of services) has
epistemic ramifications upon what the end-user can know.

Vignette 2: random or recent? When the user starts the application, the
phone opens to the home screen (figure 1a) which includes a Google Maps view
set by default to zoom level 18. The application sends a request to the server
to populate the map of the home screen with service requests. The client and
server team discussed which requests the server should send to the client upon
application initialization. The head of the client team suggested that the appli-
cation present the user with ten requests taken from nearby the user’s location.
These requests would be either the most recent requests sent to the server, or a
random choice of requests.

First, the limit of the bounding box presents a default scale at which the user
is presented the task of either requesting or offering services. It is up to the user
to change the zoom-level to see more requests. If the user does not zoom out or
navigate around the greater map area, she may assume that the area covered
by the initial map view entirely contains all the requests currently needing a
response. This leads to the possibility where a user responds to a trivial request
rather than a more urgent request that falls, for example, immediately outside
the initial bounding box. This case is not meant to be presented as the norm,
but to highlight that necessary default settings affect how the app is used and
what users know about their surrounding space.

Second, both the number of requests returned, and whether these requests
are displayed because they were recent enough in the request queue, or as a re-
sult of a random selection, influences how the user experiences space. The sheer
number of requests displayed could easily influence the perceived severity of need
surrounding the user. Displaying a set number, whatever that number may be,
creates the same initial user experience for a severe crisis as for a set of requests
for car rides on a rainy day. The choice between random and time-centric displays
also influences how the social space of giving and receiving services is created:
during a crisis when many requests are made within the same geographic area
requests not rapidly matched with services would begin to disappear from the
user’s view, although they would remain in the queue. A high volume of requests

in a given area would force a perpetual present in which all but the most imme-
diate requests were forgotten. Randomly selecting displayed requests presents
other problems as more serious requests could easily be erased for far more triv-
ial situations. Having users rank severity of requests, a potential workaround for
this problem which was discussed early on in client team meetings, introduces in
the possibility of false inflation of request severity in order to keep own request
visible on the map.

4 Making Hidden Ontologies Explicit

While ontology-driven software engineering is offering first tools to create code
out of ontologies, the question of how to make design decisions explicit and un-
derstand their impact is still an open issue. As illustrated before, each single
line of code carries potential ontological commitments, but most of them have
no significant influence on the user experience. Which methods can be used to
distinguish minor from major decisions, foresee their impact, and provide soft-
ware engineers with tools to quantify their effect? In the following, we highlight
two potential methodologies: an algorithmic and an ethnographic approach and
discuss their benefits and limitations.

In previous work, we discussed the problem of assessing the fitness for purpose
of an ontology [5]. Domain experts that provide the knowledge to be formalized
and the later users have a limited background in knowledge representation and
may not understand the logical implications of the used axiomatization. The
ontology engineers, in turn, have a limited understanding of the domain. We
proposed to use similarity reasoning and implemented a software component to
compare the developed ontology to the initial conceptualization of the domain
experts and users [5]. We believe that such an approach could be used to study
the impact of design decisions as well. The SIM-DL similarity server allows users
to rank concepts, such as geographic feature types, by similarity and compare
the results to an ontology; where a high correlation indicates conceptual com-
patibility between the user’s conceptualization and the ontology. Concept VISTA
would be another promising tool following a similar approach to semantic ne-
gotiation [6]. However, both require formal concept definitions, i.e., the hidden
ontologies have to be made explicit beforehand. So far, it is not clear whether
all design decisions can be modeled using knowledge representation languages
such as the Web Ontology Language OWL and how to combine them with pro-
cess and component-oriented modeling paradigms used in software engineering.
While software engineers may specify some of the core concepts within an on-
tology, it is unlikely that they will formalize most of their design decisions.

Semantic interoperability is a loaded and difficult to define term that lies at
the heart of attempts to understand the embedded meaning of data [7]. Kuhn, for
instance, defines semantic interoperability as less a research topic than technical
goal |7, p. 2|. He admits that interoperability must deal with meaning negoti-
ation and other ways of dealing with organization and social contexts, but this
remains an automated process [7, p. 2]. New algorithms, that measure concep-

tual distance (as discussed above), allow the classification and understanding of
meaning, but, at heart, they remain algorithms — meaning is a technical goal |7,
p. 15]. Smith and Mark suggest the related concept of similarity as a relation be-
tween instances defined by cases where even the slightest further deviation from
the norm would imply that they are mo longer instances of the given concept;
once more, meaning is measured and quantified, concepts become little more
than topological notion[s| [8, p. 316].

Other research has followed similar approaches such as semantic proximity or
semantic networks [9, 10], but underlying each is an algorithmic approach united
by the assumption that semantic interoperability can be automated, and that
there is power through the algorithm [10,9,11]. While this is a an interesting
long-term goal, and research continues in this direction, it is not mere conceptual
difference that determines which design decisions are taken and which are not.
At the end, programmers are human beings motivated and influenced by their
social contexts [12].

As the vignettes illustrate, these decisions are neither good or bad, effective
or limiting; they are socially contextual agreements with potential repercussions
for the production of and experience in space. From an ethnographic point of
view, they cannot be avoided, nor can they be immediately quantified and mea-
sured. Participant observation and the interviewing of designers and end-users,
thus linking their experiences together, may help to uncover hidden ontologies.
Interviews are only possible after design decisions are made and so must be cou-
pled with participant observation of the ethnographer within the design team.
It is also unclear how after the fact interviews help during software engineering.
Critical geographers have argued that only through empirical, ethnographic in-
vestigation may power be decoupled from the algorithm and placed within its
socially contingent context. However, from a GIScience perspective, the term
power of algorithm lacks formal definition and when taken to an extreme sug-
gests a fear of technology.

5 Summary and Outlook

In this statement of interest, we argued that Location-based Services and mobile
computing impact how we conceptualize geographic space. While this is not a
new insight, we provide a use case that highlights the impact of even simple
design decision. These design decisions cannot be avoided during software en-
gineering but must be made in order for code to function. Zook and Graham
noted with regards to Google Maps search results that choice of phrasing and
classification can affect visibility and subsequently alter understandings of local
geographies [14, p. 473]. How can we make design decisions and their impact on
the user explicit?

To open the discussion, we have highlighted two potential approaches, one
from GIScience and one from ethnography, to help making hidden ontologies
explicit. Interestingly, while ethnographers may reject purely algorithmic ap-
proaches due to their rush to quantify, GIscientists may reject interview-driven

approaches based on the lack of formality. A combination of GIScience methods
and Political Geography would be most promising as it would support an inter-
subjective quantification without the need to express all involved steps using
formal representation languages.

Acknowledgments

The VGS application and server have been developed in a PSUMobile course
in 2011 by eleven graduate and undergraduate students from different fields of
geography and GIScience at the Pennsylvania State University. While the course
started as a technical introduction to Android programming, the students were
interested in the cultural implications of LBS as well. All source code is available
as free and open source software at http://vgs.svn.sourceforge.net /viewve/vgs/.

References

1. Kluitenberg, E.: The network of waves: Living and acting in a hybrid space. Open
11(6) (2006) 6-16

2. Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJournal
69(4) (2007) 211221

3. Latour, B.: Science in Action: How to Follow Scientists and Engineers Through
Society. Harvard University Press, Cambridge, MA (1988)

4. Traweek, S.: Beamtimes and Lifetimes: The World of High Energy Physicists.
Harvard University Press, Cambridge, MA (1992)

5. Janowicz, K., Maué, P., Wilkes, M., Schade, S., Scherer, F., Braun, M., Dupke, S.,
Kuhn, W.: Similarity as a quality indicator in ontology engineering. In Eschen-
bach, C., Griininger, M., eds.: 5th International Conference on Formal Ontology
in Information Systems. Volume 183., IOS Press (October 2008) 92-105

6. Gahegan, M., Agrawal, R., Jaiswal, A.R., Luo, J., Soon, K.H.: A platform for
visualizing and experimenting with measures of semantic similarity in ontologies
and concept maps. Transactions in GIS 12(6) (2008) 713-732

7. Kuhn, W.: Geospatial semantics: Why, of what, and how? Journal on Data Se-
mantics Spring 2005 (Special Issue on Semantic-based Geographical Information
Systems, LNCS 3534) (2005) 1-24

8. Smith, B., Mark, D.: Ontology and geographic kinds. In: Spatial Data Handling
Conference. (1998)

9. Schuurman, N., Leszcynski, A.: Ontology-based metadata. Transactions in GIS
10 (2006) 709-726

10. Schuurman, N.: Social perspectives on semantic interoperability: Constraints on a
geographical knowledge from a data perspective. Cartographica 47 (2005) 4761

11. Uprichard, E., R.B., Parker, S.: Geodemographic code and the production of space.
Environment and Planning A 41(12) (2009) 2823 — 2835

12. Thrift, N., French, S.: The Automatic Production of Space. In: Knowing Capital-
ism. Sage, London, UK (2005)

13. Geertz, C.: The Interpretation of Cultures: Selected Essays. Volume 41. Basic
Books, New York, NY (1973)

14. Zook, M., Graham, M.: Mapping digiplace: geocoded internet data and the repre-
sentation of place. Environment and Planning B 34 (2006) 466-482

