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Abstract. We extend performance measures commonly used in seman-
tic web applications to be capable of handling multi-graded relevance
data. Most of today's recommender social web applications o�er the
possibility to rate objects with di�erent levels of relevance. Nevertheless
most performance measures in Information Retrieval and recommender
systems are based on the assumption that retrieved objects (e. g. entities
or documents) are either relevant or irrelevant. Hence, thresholds have to
be applied to convert multi-graded relevance labels to binary relevance
labels. With regard to the necessity of evaluating information retrieval
strategies on multi-graded data, we propose an extended version of the
performance measure average precision that pays attention to levels of
relevance without applying thresholds, but keeping and respecting the
detailed relevance information. Furthermore we propose an improvement
to the NDCG measure avoiding problems caused by di�erent scales in
di�erent datasets.

1 Introduction

Semantic information retrieval systems as well as recommender systems provide
documents or entities computed to be relevant according a user pro�le or an
explicit user query. Potentially relevant entities (e. g. users, items, or documents)
are generally ranked by the assumed relevance, simplifying user's navigation
through presented results. Performance measures evaluate computed rankings
based on user-given feedback and thus allow comparing di�erent �ltering or
recommendation strategies [9].

The most frequently used performance measures in semantic web applica-
tions are the Precision (P = number of relevant items in the result set

total number of items in the result set
) and the Mean

Average Precision (MAP) designed to compute the Average Precision over sorted
result lists (�rankings�). The main advantage of these measures is that they are
simple and very commonly used. The main disadvantage of these measures is,
that they only take into account binary relevance ratings and are not able to
cope with multi-graded relevance assignments.

One well accepted performance measure designed for handling multi-
graded relevance assignments is the Normalized Discounted Cumulative Gain
(NDCG) [3,8]. From one position in the result list to another the NDCG focuses
on the gain of information. Because the information gain of items in the result list
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on the same level of relevance is constant, it is possible to swap the positions of
items belonging to the same relevance level without changing the performance
measure. The advantage of NDCG is that it applies an information-theoretic
model for considering multiple relevance levels. Unfortunately, the NDCG mea-
sure values depend on the number of reference relevance values of the dataset.
Thus, NDCG values computed for di�erent datasets cannot be directly be com-
pared with each other.

An alternative point of view to multi-graded relevance was used in the TREC-
8 competition [2]. Instead of multiple relevance levels, probabilities for measuring
the relevance of entities were used. As performance measure the Mean Scaled
Utility (SCU) was suggested. Since the SCU is very sensitive to the applied
scaling model and the properties of the queries, the SCU measure should not be
used for comparing di�erent datasets [2].

Due to the fact, that binary relevance performance measures precision and
mean average precision are commonly used, a promising approach is to extend
these binary measures to be capable of handling multi-graded relevance assign-
ments. Kekäläinen et al. [5] discuss the possibility to evaluate retrieval strategies
�on each level of relevance separately� and then ��nd out whether one IR method
is better than another at a particular level of relevance�. Additionally it is pro-
posed to weight di�erent levels of relevance according to their gain of importance.
Kekäläinen et al suggest a generalized precision and recall, which contributes to
the level of relevance importance, but does not consider the position of an item
in the retrieved result list.

In our work we extend the measures Precision and MAP to be capable of
handling multiple relevance levels. The idea of looking at the performance of
each level of relevance separately is carried on. An extension of MAP is pro-
posed where strategies can be evaluated with user given feedback independent
from the number of used relevance levels. We refer to this extension of MAP as
µMAP. Additionally, we introduce an adaptation of the NDCG measure taking
into account the number of relevance levels present in the respective reference
datasets.

The paper is structured as follows: In the next section we explain the dataset
used for benchmarking our work. We explain the performance measure Average
Precision and show how data has to be transformed in order to compute the
Average Precision. In Section 3 we propose an extension to Average Precision
allowing us to handle multi-graded relevance assignment without changing the
original ratings. After introducing our approach we evaluate the proposed mea-
sures for several Retrieval algorithms and di�erent datasets (Section 4). Finally
we discuss the advantages and disadvantages of the new measures and give an
outlook to future work.

2 Settings and Methods

For evaluating the performance of a computed item list, a reference ranking is
needed (or the items must be rated allowing us to derive a reference ranking). The
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reference ranking is expert de�ned or provided by the user. It can be retrieved
explicitly or implicitly [4]. Very popular is the 5-star rating allowing the user to
rate entities or items on a scale from 0 to 4, meaning �ve levels of relevance.

For analyzing and comparing the properties the proposed evaluation mea-
sures, we deploy an arti�cial data set and a real-world dataset, providing three
relevance levels. We assume that the reference item ratings stand for ratings
coming from human experts and that the test rankings stand for the item list
coming from di�erent prediction strategies. We discuss several di�erent types of
reference ratings: In each evaluation setting the optimal item list based on the
reference ratings should achieve the performance value 1.0.

2.1 Arti�cial Dataset

We create an arti�cial dataset and analyze how changes in the dataset in�uence
the measured result quality. For this purpose, we compute the performance of
100 di�erent test item lists for each given reference ranking considering di�erent
performance measures.

Test Ratings We create items list (�test rankings�) by pair-wise swapping the
item of an optimal item list (�reference ranking�), see Fig. 1. Swapping means
that two rated items in the ranking change their positions. The best test ranking
is the one for that no items have been swapped. The performance of the obtained
item list decreases with increasing number of swapped item pairs.

The analyzed 100 test rankings di�er in the number of the swapped pairs: In
the �rst test ranking (0) we do not swap any item pair, in the last test ranking
(99) we randomly swap 99 item pairs. How much the performance decreases per
swap depends on the relevance levels' distance of the swapped items. Hence, an
evaluation run for each number of switches includes 100 test ranking evaluations
to average the results.

Uniformly Distributed Reference Ratings There are four di�erent kinds of
reference rankings which di�er in the number of relevance levels. Each reference

reference ranking

example test rankings

1 switch

2 switches

5 switches

Fig. 1. The �gure visualizes the creation of test rankings. Starting with the reference
ranking (used for the evaluation) randomly selected item pairs are swapping. The
created test rankings di�er in the number of swapped pairs.
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ranking contains 100 elements which are uniformly distributed among 2, 10, 20,
or 50 levels of relevance (see Fig. 2).

Non-Uniformly Distributed Reference Ratings In contrast to the refer-
ence rankings used in the previous paragraph, we consider reference rankings
consisting of non-uniformly rated items making use of 2, 10, 20, or 50 levels of
relevance (see Fig. 3). In other words, the probabilities (that a relevance level
is used in the reference ranking) di�er randomly between the relevance levels.
Moreover, some relevance levels may not be used. Hence, this dataset is more
realistic, because users do not assign relevance scores uniformly.

2.2 OHSUMED Dataset

The OHSUMED dataset provided by the Hersh team at Oregon Health Sciences
University [1] consists of medical journal articles from the period of 1987�1991
rated by human experts, on a scale of three levels of relevance. Our evaluation
is based on the OHSUMED dataset provided in LETOR [6]. The items (�docu-
ments�) are rated on a scale of 0, 1, and 2, meaning not relevant, possibly relevant
and de�nitely relevant. As in the Non-Uniformly Distributed Reference Ratings
the given relevance scores are not uniformly distributed.

1 2 3 4 5 6 49 50

1 2 3 20

1 2 10

1 2

2 levels of
relevance

10 levels of
relevance

20 levels of
relevance

50 levels of
relevance

Fig. 2. The Figure visualizes datasets having an almost similar number of items as-
signed to every relevance level (�uniform distribution of used relevance levels�). The
number of relevance levels varies in the shown datasets (2, 10, 20, 50).

1 2

1 2 3 10

1 3 4 2017

1 2 4 5 6 48 5047

2 levels of
relevance

10 levels of
relevance

20 levels of
relevance

50 levels of
relevance

Fig. 3. The Figure shows datasets featuring a high variance in the number of items
assigned to a relevance level (�non-uniform distribution of used relevance levels�). There
are relevance levels having no items assigned.

57



Test Ratings The OHSUMED dataset in LETOR provides 106 queries and 25
strategies assigning relevance scores to each item in result set for a respective
query. Due to the fact that some the provided strategies show a very similar
behavior, we limit the number of evaluated strategies to eight (OHSUMED id 1,
5, 9, 11, 15, 19, 21, 22) enabling a better visualization of the evaluation results.

User-Given Ratings The OHSUMED dataset provides expert-labeled data
based on a three level scale. Because there is no real distance between not rele-
vant, possibly relevant and de�nitely relevant, we assume 1 as distance of succes-
sive levels of relevance as the assigned scores 0, 1, and 2 in the dataset imply.

Approximated Virtual-User Ratings The OHSUMED dataset provides
three relevance levels. Because �ne-grained ratings enable a more precise eval-
uation, authors believe that soon there will be datasets available with higher
number of relevance levels. Until these datasets are available a trick is applied,
replacing user's ratings with relevance scores calculated by computer-controlled
strategies. The computer calculated relevance scores are treated as �user-given�
reference ratings. In our evaluation we selected the OHSUMED strategies TF
of the title (resulting in 9 di�erent relevance levels) and TF-IDF of the title (re-
sulting in 158 di�erent relevance levels) as �virtual� reference users. Both rating
strategies show a very strong correlation; the Pearson's correlation coe�cient
of the relevance assessments is 0.96. The availability of more than three rele-
vance levels in the reference ranking allows us to evaluate ranking strategies with
multi-graded relevance assignments. The two strategies treated as reference rat-
ing strategies are also considered in the evaluation. Thus, these strategies should
reach an evaluation value of 1.

2.3 Performance Measures

There are several performance measures commonly used in information retrieval
and recommender systems, such as precision, Area Under an ROC curve or rank
of the �rst relevant document (mean reciprocal rank). Additionally, the mean of
each performance measure over all queries can be computed to overcome the
unstable character of some performance measures.

In this section we focus on the popular performance measures Average Preci-
sion (AP) [10] and Normalized Discounted Cumulative Gain (NDCG) [3]). Unlike
AP, NDCG can handle di�erent numbers of relevance levels, due to the fact that
NDCG de�nes the information gain based on the relevance score assigned to a
document.

Average Precision The average precision of an sorted item (�document�) list
for a query q is de�ned as

APq =

∑N
p=1 P@p · relq(p)

Rq
(1)

58



where N denotes the number of the items in the evaluated list, P@p the precision
at position p, and Rq the number of relevant items with respect to q. relq(p) is
a binary function describing if the element at position p is relevant (1) or not
(0). A higher AP value means that more relevant items are in the heading of the
result list. Given a set of queries, the mean over the AP of all queries is referred
to as MAP.

When there are more than two relevance levels, these levels have to be as-
signed to either 0 or 1. A threshold must be applied, separating the relevant
items from the irrelevant items. For later use, we denote AP t

q as the AP with
threshold t applied. AP t

q is calculated by

AP t
q =

∑N
p=1 P@p · reltq(p)

Rt
q

with reltq(p) =

{
1, relq(p) ≥ t

0, relq(p) < t
(2)

where Rt
q de�nes the number of results so that reltq(p) is 1.

Normalized Discounted Cumulative Gain For a query q, the normalized
discounted cumulative gain at position n is computed

NDCG@n(q) = Nq
nDCG = Nq

n

n∑
i=1

2gainq(i) − 1

log(i+ 1)
(3)

where gainq(i) denotes the gain of the document at position i of the (sorted)
result list. Nn is a normalization constant, scaling the optimal DCG@n to 1. The
optimal DCG@n can be retrieved by calculating the DCG@n with the correctly
sorted item list.

3 Extending Performance Measures

The need to apply thresholds makes the measures AP and MAP not applicable
for multi-graded relevance data. NDCG supports multi-graded relevance data,
but the sensitivity to the choice of relevance levels prevents the comparison
of NDCG values computed based on di�erent datasets. Hence, for a detailed
evaluation based on datasets having multiple relevance levels, both MAP and
NDCG have to be adapted.

3.1 Extending Average Precision

In the most commonly used evaluation scenarios, the relevance of items is a
binary function (returning �relevant� or �irrelevant�). If the reference dataset
provides more than two relevance levels, a threshold is applied which separates
the documents into a set of relevant items and a set of irrelevant items. The ex-
ample in Table 1 illustrates how levels of relevance a�ect the calculation of the
measure AP The example shows a sorted list of items (A ... H). The relevance of
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Table 1. The Table shows an example of calculating the average precision for a given
item list (each item is rated base on scale of 5 relevance levels). Dependent on the
applied threshold t, items are handled as relevant (+) or irrelevant (�). Thus the
computed AP depends on the threshold t.

i A B C D E F G H
rel(i) 1 0 3 3 2 0 1 4 AP
t = 5 � � � � � � � � 0.000
t = 4 � � � � � � � + 0.125
t = 3 � � + + � � � + 0.403
t = 2 � � + + + � � + 0.483
t = 1 + � + + + � + + 0.780
t = 0 + + + + + + + + 1.000

mean 0.465
mean of 5>t>0 0.448

each item is denoted on a scale from 0 to 4 (5 relevance levels). For calculating
the precision, a threshold t must be applied, to separate �relevant� from �irrel-
evant� items. The threshold t = 0 implies that all documents are relevant. We
refer to this threshold as the irrelevant threshold. In contrast to t = 0, apply-
ing the threshold t = 5 leads to no relevant documents. Table 1 illustrates that
the threshold t strongly a�ects the computed AP. To cope with this problem,
we propose calculating the performance on each relevance level, and then com-
puting the mean. This ensures that higher relevance levels are considered more
frequently than lower relevance levels. The example visualized in Table 1 shows
that item H having a relevance score of 4 is considered relevant more often than
all other items.

We refer to this approach as µAP, and µMAP if the mean of µAP for several
result lists is calculated. For handling the case that the not all relevance levels
are used in every result list and that the �distance� between successive relevance
levels is not constant, µAP has to be normalized.

µAPq =
1∑

t∈L d
t

∑
t∈L

(
AP t

q · dt
)

(4)

where AP t
q denotes the average precision using the threshold t, and L a set of

all relevance levels (meaning all thresholds) used in the reference ranking. dt

denotes the distance between the relevance level ti and ti−1 if i > 1 (and t if
i = 0). The following example demonstrates the approach: Given a set dataset
based on three relevance levels (0.0, 0.3, 1.0), the threshold t = 0.3 leads to the
AP t = 0.3− 0.0 = 0.3. The threshold t = 1.0 leads to AP t = 1.0− 0.3 = 0.7.

3.2 The Normalized Discounted Cumulative Normalized Gain

In contrast to MAP, NDCG is designed for handling multiple relevance levels.
Unfortunately NDCG does not consider the scale used for the relevance scores.
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Table 2. The Table shows how the mapping of relevance scores to relevance levels
in�uences the NDCG measure. In the �rst example the gain represents an equal match
from ratings to relevance levels, in the second example the relevance level is twice the
value of the rating, and in the third example the gain of both previous examples is
normalized.

i A B C D E F G H
rel(i) 1 0 3 3 2 0 1 4 mean

example one: gain 1 0 3 3 2 0 1 4
gain equals rel(i) gainopt 4 3 3 2 1 1 0 0

dcg 3.32 3.32 14.95 24.96 28.82 28.82 29.93 45.65
dcgopt 49.83 64.50 76.13 80.42 81.70 82.89 82.89 82.89
ndcg 0.07 0.05 0.20 0.31 0.35 0.35 0.36 0.55 0.28

example two: gain 2 0 6 6 4 0 2 8
gain equals rel(i) · 2 gainopt 8 6 6 4 2 2 0 0

dcg 9.97 9.97 114 204 224 224 227 494
dcgopt 847 979 1083 1105 1109 1112 1112 1112
ndcg 0.01 0.01 0.11 0.19 0.20 0.20 0.20 0.44 0.17

example three: gain 0.25 0 0.75 0.75 0.5 0 0.25 1
gain is normalized gainopt 1 0.75 0.75 0.5 0.25 0.25 0 0
with ngain (Equ. 5) dcg 0.63 0.63 1.76 2.74 3.27 3.27 3.48 4.53

dcgopt 3.32 4.75 5.88 6.48 6.72 6.94 6.94 6.94
ndcg 0.19 0.13 0.30 0.42 0.49 0.47 0.50 0.65 0.39

Thus, computed NDCG values highly depend on the number of relevance lev-
els making it impossible to compare NDCG values between di�erent datasets.
Table 2 illustrates this problem.In the �rst example the NDCG is calculated as
usual. In the second example, the number of relevance levels is doubled, but the
number of assigned scores as well as the number of used levels of relevance is
equal to the �rst example. This doubling leads to a smaller NDCG compared to
the �rst example, even though no rated element became more or less relevant
to another element. In the third example, the gain of example one is normalized
and the NDCG is calculated. It can be seen that the normalization solves the
inconsistency. A normalization of the gain overcomes the problem of incompa-
rable performance values for data with relevance assignments within a di�erent
number of relevance levels. We de�ne the Normalized Discounted Cumulative
Normalized Gain (NDCNG) at position n as follows:

NDCNG@n(q) = Nq
n

n∑
i=1

2ngainq(i) − 1

log(i+ 1)
, ngainq(i) =


gainq(i)

mq
,mq > 0

0 ,mq ≤ 0

(5)

where mq is the highest reachable gain for the query q (�normalization term�).
If there is no relevant item, mq is set to 0 assuming that irrelevant items are
rated with 0. All rating are ≥ 0; relevant items have relevance scores > 0. If
these assumptions do not apply, the relevance scores must be shifted so that the
irrelevant level is mapped to the relevance score 0.
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4 Evaluation

Evaluation based on the Arti�cial Dataset We evaluated the proposed
performance measures on the arti�cial dataset introduced in Section 2.1. Fig. 4
shows the mean of 100 evaluation runs with uniformly distributed relevance
scores. From left to right the number of false pair-wise item preferences increases,
and hence the measured performance decreases.
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Fig. 4. The evaluation (average over 100 test runs) with the arti�cial dataset based on
uniformly distributed reference ratings shows that in contrast to NDCG, the measures
µMAP and NDCNG do not depend on the number of relevance levels.

Fig. 4 shows that in contrast to NDCG, the measures µMAP and NDCNG do
not depend on the number of relevance levels. µMAP and the NDCNG calculate
the same performance values for similar test rankings. The proposed perfor-
mance measures explicitly consider the number of relevance levels. This is very
important since the common way of applying a threshold to a binary-relevance-
based performance measure often leads to a constant performance for item lists
di�ering in the order of items assigned to di�erent relevance levels.

The second evaluation focuses on the analysis how unused relevance levels in-
�uence the performance measures. This evaluation is based on the non-uniformly
distributed arti�cial dataset introduced in Section 2.1. Fig. 5 shows that neither
µMAP nor NDCNG are a�ected by the number of items per rank or by the
number unused relevance levels.
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Fig. 5. The evaluation (average over 100 test runs) with the arti�cial dataset based
on a non-uniformly distributed reference ratings shows that NDCG highly depends on
the number of relevance levels whereas µMAP and NDCNG do not.
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Evaluation based on the OHSUMED Dataset The OHSUMED dataset
(introduced in Sec. 2.2) uses three di�erent relevance levels. Fig. 6 visualizes
the measured performance of selected retrieval strategies using µMAP, the mean
NDCG and the mean NDCNG. Since the OHSUMED dataset uses two relevance
levels, the µMAP is the mean of the MAP computed applying the thresholds
t = 1 and t = 2.

A virtual user which is in fact strategy 1 (TF of title) provides the relevance
assessments for the evaluation presented in Fig. 7. Strategy 1 assigns ordinal
scores to 9 di�erent levels of relevance. On this data, µMAP is the mean of 8
di�erent MAP values.

The measured results show, that the measure µMAP evaluates the retrieval
strategy 1 (as expected) with a performance value of 1.0, so does the mean
NDCG and the mean NDCNG. All the considered evaluation measures agree that
the retrieval strategy 9 is most similar to strategy 1, which makes sense, since
strategy 9 is computed based on the TF-IDF of title and strategy 1 is computed
based on TF of title. The main di�erence between both retrieval strategies is
the number of used relevance levels: Strategy 1 assigns ordinal relevance scores
(using 9 di�erent relevance levels); strategy 9 assigns real values (resulting in
158 relevance levels). The distance between these relevance levels varies a lot.

When applying strategy 9 as reference rating strategy, the need for taking
into account the distance between the relevance levels (Equ. 4) can be seen.
Several very high relevance scores are used only once; lower relevance scores
are used much more frequently. Fig. 8 shows the advantages of the NDCNG
compared to �standard� NDCG. The comparison of the mean NDCG in Fig. 7
with the mean NDCG in Fig. 8 reveals that the NDCG is a�ected by the number
of relevance levels. Since the strategies 1 and 9 show a very similar performances
in both �gures, the other strategies are evaluated with disproportionate lower
performance values in Fig. 8 although both reference rating strategies assign
similar relevance ratings. The µMAP and the proposed mean NDCNG values
do not di�er much in both evaluations due to the fact the these measures are
almost independent from the number of relevance levels.

5 Conclusion and Discussion

In this paper we introduced the performance measure µAP that is capable to
handle more than two levels of relevance. The main advantages of the approach
is that it extends the commonly used performance measures precision and Mean
Average Precision. µAP is fully compatible with the �traditional� measures, since
it delivers the same performance values if only two reference relevance levels exist
in the dataset. The properties of the proposed measures have been analyzed on
di�erent datasets. The experimental results show that the proposed measures
satisfy the de�ned requirements and enable the comparison of semantic �ltering
strategies based on datasets with multi-graded relevance levels. Since µAP is
based on well-accepted measures, only a minor adaptation of theses measures is
required.
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Fig. 6. Performance of selected strategies (OHSUMED id 1, 5, 9, 11, 15, 19, 21, 22).
On the left side the mean average precision for each threshold t and on the right side,
µMAP, the mean NDCG, and the mean NDCNG value are presented.
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Fig. 7. Performance of selected strategies (OHSUMED id 1, 5, 9, 11, 15, 19, 21, 22),
taking strategy TF of title (OHSUMED id 1, 9 levels of relevance) as approximated
virtual user.
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Fig. 8. Performance of selected strategies (OHSUMED id 1,5,9,11,15,19,21,22), taking
strategy TF-IDF of title (OHSUMED id 9, 158 levels of relevance) as approximated
virtual user.
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Additionally, we showed in this paper that the NDCG measure is sensitive
to the number of relevance levels in a dataset making it impossible to compare
the performance values computed for datasets with a di�erent number of rele-
vance levels. To overcome this problem, we suggest an additional normalization
ensuring that the number of relevance levels in the dataset does not in�uence
the computed performance values. Our evaluation shows that NDCNG assigns
similar performance values to recommender strategies that are almost similar
except that di�erent numbers of relevance levels are used. In the analysis, we
demonstrated that high gain values (caused by a high number of relevance levels)
lead to incommensurately low NDCG values. Since typically the number of rele-
vance levels di�ers between the data sets the NDCG values cannot be compared
among di�erent data sets. Thus, the gain values per level of relevance must be
limited. An additional normalization solves this problem.

Future Work As future work, we plan to use the measures µAP and ND-
CNG for evaluating recommender algorithms on additional datasets with multi-
graded relevance assessments. We will focus on movie datasets such as EACH-
MOVIE [7] (having user ratings on a discrete scale from zero to �ve), and movie
ratings from the Internet Movie Database (IMDB)1 (having user ratings on a
scale from one to ten).
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