
LDIF -
Linked Data Integration Framework

Andreas Schultz1, Andrea Matteini2, Robert Isele1, Christian Bizer1, and
Christian Becker2

1. Web-based Systems Group, Freie Universität Berlin, Germany
a.schultz@fu-berlin.de, mail@robertisele.com, chris@bizer.de

2. MediaEvent Services GmbH & Co. KG, Germany
a.matteini@mes-info.de, c.becker@mes-info.de

Abstract. The LDIF - Linked Data Integration Framework can be used
within Linked Data applications to translate heterogeneous data from the
Web of Linked Data into a clean local target representation while keeping
track of data provenance. LDIF provides an expressive mapping language
for translating data from the various vocabularies that are used on the
Web into a consistent, local target vocabulary. LDIF includes an identity
resolution component which discovers URI aliases in the input data and
replaces them with a single target URI based on user-provided matching
heuristics. For provenance tracking, the LDIF framework employs the
Named Graphs data model. This paper describes the architecture of the
LDIF framework and presents a performance evaluation of a life science
use case.

Keywords: Linked Data, Data Integration, Data Translation, Identity
Resolution

1 Motivation

The Web of Linked Data grows rapidly but the development of Linked Data
applications is still cumbersome due to the heterogeneity of the Web of Linked
Data [1]. Two major roadblocks for Linked Data applications are vocabulary
heterogeneity and URI aliases. A fair portion of the Linked Data sources reuse
terms from widely-deployed vocabularies to describe common types of entities
such as people, organizations, publications and products. For more specialized,
domain-specific entities, such as genes, pathways, descriptions of subway lines,
statistical and scientific data, no wide-spread vocabulary agreement has evolved
yet. Data sources in these domains thus use proprietary terms [2]. A second
problem are identity links. Some data sources set owl:sameAs links pointing at
data about the same entity in other data sources. Many other data sources do
not [2].

In contrast to the heterogeneity of the Web, it is beneficial in the application
context to have all data describing one class of entities being represented using

2 Schultz, Matteini, Isele, Bizer, Becker

the same vocabulary. Instead of being confronted with URI aliases which refer to
data that might or might not describe the same entity, Linked Data applications
would prefer all triples describing the same entity to have the same subject
URI as this eases many application tasks including querying, aggregation and
visualization.

In order to ease using Web data in the application context, it is thus ad-
visable to translate data to a single target vocabulary (vocabulary mapping)
and to replace URI aliases with a single target URI on the client side (identity
resolution), before doing any more sophisticated processing.

There are various open source tools available that help application developers
with either data translation or identity resolution. But to date, there are hardly
any integrated frameworks available that cover both tasks. With LDIF, we try
to fill this gap and provide an open-source Linked Data integration framework
that provides for data translation and identity resolution while keeping track of
data provenance.

Figure 1 shows the schematic architecture of a Linked Data application that
implements the crawling/data warehousing pattern [1]. The figure highlights the
steps of the data integration process that are currently supported by LDIF.

LDIF

Application Layer

Data Access,

Integration and

Storage Layer

Web of Data

Publication Layer

Integrated

Web Data

Web Data

Access

Module

Vocabulary

Mapping

Module

Identity

Resolution

Module

Application Code

SPARQL or RDF API

RDF/

XML

Database A Database B

LD Wrapper LD Wrapper

HTTP

HTTP HTTP

CMS

RDFa

HTTP

Quality

Evaluation

Module

Fig. 1. Role of LDIF within the architecture of a Linked Data application.

The LDIF framework is implemented in Scala and can be downloaded from
the project website1 under the terms of the Apache Software License. In the
following, we explain the architecture of the LDIF framework and present a
performance evaluation along the example of a life science use case.

1 http://www4.wiwiss.fu-berlin.de/bizer/ldif/

LDIF - Linked Data Integration Framework 3

2 Architecture

The LDIF framework consists of a runtime environment and a set of pluggable
modules. The runtime environment manages the data flows between the modules.
The pluggable modules are organized as data access components, data transfor-
mation components and data output components. So far, we have implemented
the following modules:

2.1 Data Access: N-Quads Loader

The current version of LDIF expects input data to be represented as Named
Graphs and be stored in N-Quads format. The graph URI is used for provenance
tracking. Provenance meta-information describing the graphs can be provided
as part of the input data within a specific provenance graph. The name of this
provenance graph can be set in the LDIF configuration file. LDIF does not make
any assumptions about the provenance vocabulary that is used to describe the
graphs, meaning that you can use your provenance vocabulary of choice.

2.2 Transformation: R2R Data Translation

LDIF employs the R2R Framework [3] to translate Web data that is repre-
sented using terms from different vocabularies into a single target vocabulary.
Vocabulary mappings are expressed using the R2R Mapping Language. The lan-
guage provides for simple transformations as well as for more complex structural
transformations (1-to-n and n-to-1) and property value transformations such as
normalizing different units of measurement or complex string manipulations. So-
called modifiers make it possible to change the language tag or data type of a
literal or the RDF node type (URI ↔ literal). The syntax of the R2R Map-
ping Language is very similar to the SPARQL query language, which eases the
learning curve. The expressivity of the language enabled us to deal with all re-
quirements that we have encountered so far when translating Linked Data from
the Web into a target representation [3].

2.3 Transformation: Silk Identity Resolution

LDIF employs the Silk Link Discovery Framework [4] to find different URIs
which identify the same real-world entity. Silk is a flexible identity resolution
framework that allows the user to specify identity resolution heuristics using the
declarative Silk - Link Specification Language (Silk-LSL). In order to specify the
condition which must hold true for two entities to be considered a duplicate,
the user may apply different similarity metrics, such as string, date or URI
comparison methods, to multiple property values of an entity or related entities.
The Link Specification Language provides a variety of data transformations to
normalize the data prior to comparing it. The resulting similarity scores can be
combined and weighted using various similarity aggregation functions.

4 Schultz, Matteini, Isele, Bizer, Becker

Silk uses a novel blocking approach which removes definite non-duplicates
early in the matching process, thereby significantly increasing its efficiency. For
each set of duplicates which have been identified by Silk, LDIF replaces all
URI aliases with a single target URI within the output data. In addition, it
adds owl:sameAs links pointing at the original URIs, which makes it possible
for applications to refer back to the original data sources on the Web. If the
LDIF input data already contains owl:sameAs links, the referenced URIs are
normalized accordingly.

2.4 Data Output: N-Quads Writer

The N-Quads writer dumps the final output of the integration work flow into a
single N-Quads file. This file contains the translated versions of all graphs from
the input graph set as well as the contents of the provenance graph.

2.5 Runtime Environment

The runtime environment manages the data flow between the modules and the
caching of the intermediate results. In order to parallelize processing, data is
partitioned into entities prior to supplying it to a transformation module. An
entity represents a Web resource together with all data that is required by a
transformation module to process this resource. Entities consist of one or more
graph paths and include a provenance URI for each node. Each transformation
module specifies which paths should be included into the entities it processes.
By splitting the data set into fine-grained entities, LDIF is able to parallelize
the workload on machines with multiple cores. In the next release, it will allow
the workload to be parallelized on multiple machines using Hadoop.

3 Performance Evaluation

We evaluated the performance of LDIF using two life science data sets: KEGG
GENES2, a collection of gene catalogs generated from publicly available re-
sources, and UniProt3, a data set containing protein sequence, genes and func-
tions.

We defined R2R mappings for translating genes, diseases and pathways from
KEGG GENES and genes from UniProt into a proprietary target vocabulary4.
The mappings employ complex structural transformations. The prevalent value
transformations rely on regular expressions, e.g. for extracting an integer value
from a URI, and modify the target data types. We defined Silk linkage rules for
identifying equivalent genes in both datasets. For the benchmark, we generated
subsets of both data sources together amounting to 25 million, 50 million, and

2 http://www.genome.jp/kegg/genes.html
3 http://www.uniprot.org/
4 http://www4.wiwiss.fu-berlin.de/bizer/ldif/resources/Wiki.owl

LDIF - Linked Data Integration Framework 5

100 million quads. The R2R mappings, Silk linkage rules as well as the evaluation
data sets can be downloaded from the LDIF website.

We ran the performance tests on a machine with an Intel i7 950, 3.07GHz (4
cores) processor and 24GB of memory out of which we assigned 20GB to LDIF.

Table 1 summarizes the LDIF runtimes for the different data set sizes. The
overall runtime is split according to the different processing steps of the integra-
tion process.

Table 1. Runtimes of the integration process for different input data set sizes.

25M 50M 100M

Load and build entites for R2R 128.1 sec 297.2 sec 1059.7 sec
R2R data translation 169.9 sec 515.0 sec 1109.2 sec
Build entities for Silk 15.3 sec 36.8 sec 107.4 sec

Silk Identity Resolution 103.0 sec 568.5 sec 2954.9 sec
Final URI rewriting 8.1 sec 27.0 sec 65.0 sec

Overall execution time 7.0 min 24.0 min 88.3 min

Table 2 provides statistics about the data integration process. The original
number of input quads decreases in the process as LDIF was configured to dis-
cards input quads which are irrelevant for the defined mappings, and therefore
can not be translated into the target vocabulary. The number decreases again
after the actual translation, as the input data uses more verbose vocabularies
and as multiple quads from the input data are thus combined into single quads
in the target vocabulary.

Table 2. Data integration statistics for different input data set sizes.

25M 50M 100M

Number of input quads 25,000,000 50,000,000 100,000,000
Number of quads after irrelevance filter 13,576,394 25,397,310 44,249,757

Number of quads after mapping 4,419,410 11,398,236 24,972,112
Number of pairs of equivalent entities resolved 24,782 113,245 213,062

4 Related Work

We are aware of two other Linked Data integration frameworks that also pro-
vide for data translation and identity resolution: The ALOE - Assisted Linked
Data Consumption framework5 developed at the Universität Leipzig and the

5 http://aksw.org/projects/aloe

6 Schultz, Matteini, Isele, Bizer, Becker

Information Workbench6 [5] developed by fluid Operations. Compared to both
frameworks, LDIF provides more expressive languages for data translation and
identity resolution as well as an end-to-end concept for provenance tracking.
Additionally, both other frameworks have not published performance numbers
for use cases involving larger amounts of triples yet.

5 Outlook

Over the next months, we will extend LDIF along the following lines:

1. Implementing a Hadoop version of the runtime environment in order to be
able to distribute processes and data over a cluster of machines and thereby
allowing to scale to really large amounts of input data.

2. Adding Web data access modules (Linked Data crawler, SPARQL endpoint
reader) as well as a scheduling component which provides for regularly up-
dating the local input data cache.

3. Adding a data quality evaluation and data fusion module which allows Web
data to be filtered according to different data quality assessment policies
and provides for fusing Web data according to different conflict resolution
methods.

6 Acknowledgments

This work was supported in part by Vulcan Inc. as part of its Project Halo
(www.projecthalo.com) and by the EU FP7 project LOD2 - Creating Knowledge
out of Interlinked Data (http://lod2.eu/, Ref. No. 257943).

References

1. Heath, T., Bizer C.: Linked Data: Evolving the Web into a Global Data Space. Syn-
thesis Lectures on the Semantic Web: Theory and Technology, Morgan & Claypool
Publishers, ISBN 978160845431, 2011.

2. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD Cloud.
http://www4.wiwiss.fu-berlin.de/lodcloud/state/, August 2011.

3. Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Mappings
on the Web. 1st International Workshop on Consuming Linked Data (COLD 2010),
Shanghai, November 2010.

4. Isele, R., Jentzsch, A., Bizer, B.: Silk Server - Adding missing Links while consuming
Linked Data. 1st International Workshop on Consuming Linked Data (COLD 2010),
Shanghai, November 2010.

5. Haase, P., Schmidt, M., Schwarte, A.: The Information Workbench as a Self-Service
Platform for Linked Data Applications. 2nd International Workshop on Consuming
Linked Data (COLD 2011), Bonn, Oktober 2011.

6 http://www.fluidops.com/information-workbench/

