
Supporting Scientific Collaboration Through
Class-Based Object Versioning

Johnson Mwebaze12, Danny Boxhoorn2, and Edwin Valentijn2

1 Makerere University, P.O. Box 7062, Kampala, Uganda
2 University of Groningen, Landleven 12, 9700 AV Groningen, The Netherlands,

Abstract. Reuse of scientific data is central to much of science. Al-
though data produced by individual researchers and groups is made
publicly available, effective sharing is often prevented by lack of com-
mon resource discovery mechanisms and by format interoperability is-
sues. Unlike commercial databases that operate fixed programmes (e.g.
mortgage plan) and variable data (e.g. interest), in a scientific environ-
ment the reverse applies and the methods to process the data changes
while the original data items themselves stay unchanged. Scientists of-
ten build on existing work and try different techniques for processing
datasets, necessitating changing methods. In this paper, we provide a
class-based object versioning framework that supports dynamic changes
to pipelines while managing dependencies. The framework addresses the
management of arbitrary changes made to scripts during a data flow and
the association of these changes to data created.

Keywords: data lineage, provenance, scientific computing, code-sharing,
data reuse

1 Introduction

During a scientific data analysis work cycle not all intermediate or working ver-
sions/variations of scripts become part of the software repository and therefore
not all versions/variations of classes during the scientific analysis process will
necessarily be released and made part of the software repository. The way peo-
ple use versioning systems is by committing changes from time to time when they
feel that they have completed a feature, but what happens between two com-
mits is a mystery. For example, a user could make a change to a script, process
and store a result A, makes another change, processes and stores the result A′.
Both A and A′ are committed into a centralized database but we do not know
the difference between A and A′. The user could possibly commit his code after
making and processing several other results. We can only make some hypothesis
about the difference between A and A′ by considering the two successive states
of the script at hand, which could lead to a false negatives.

A scientist faces two principal obstacles when working with data: firstly, un-
derstanding the origins of data (i.e., data provenance [4], and secondly, under-
standing the differences between two data items (i.e., object versioning). Prove-
nance systems [4] [6] do trace lineage by capturing and storing a complete trace



of a data flow. However changes made to the scripts are usually ignored. At a
coarse level, provenance systems refer to ’a procedure x’ was run on ’data

y’ [7] but at the lowest, scientists are also interested in knowing what changes
in ’procedure x’ made data to appear the way it is. Capturing provenance is
also possible when all users sign up to a systematic approach of processing and
storage. However this is not often the case. For example, Astro-WISE (AWE) [2]
provides scientists with an AWE environment and allows users to have their own
code. Users can modify code in their repository to evaluate their specific ques-
tions about the datasets, change/apply their own algorithms on datasets and
derive results following their insights. For each object processed using AWE we
are able to keep truck of all dependencies, and processing parameters. However,
tracing what users are doing with the code in their own repositories and how this
code is affecting published data is still a challenge. Knowing the changes done
to script and the data created, is of utmost importance especially in scientific
collaboration which allows scientists to collectively reuse data, modify and adapt
scripts developed by their peers to process data while publishing the results to
a centralized data store.

Most scientific environments depend on the versioning capabilities available
in versioning systems (e.g.CVS, SVN)to keep a log on how SC has changed over
time. However, these tools are limited in their ability to detect differences in
programs because they provide purely textual differences [8]. The level granu-
larity of all of the commonly used versioning systems are file and/or program
based and to some extent lines. While files/programs are too coarse-grained for
detailed analysis, lines seem to be too fine-grained. The versioning information
considered by these tools is the number of files, directories (and other depen-
dencies) and their relationships, as well as lines added, deleted or modified for
each commit(version). This might be helpful to a software developer, but not
a scientist who is trying to understand the differences in his data to establish
relevant links between data and changes in the program elements.

The Class-Based Object Versioning (COVA) we propose here will version
data/source code (SC), in much finer-grained ways. The versioning will be based
on program entities (like classes, methods, attributes) and class hierarchies rela-
tionships while linking this information to the data objects. This information will
be made persistent in the database which can then be queried directly, without
needing costly parsing steps. Scientists can then focus on more precise relation-
ships and exploit the relationships to evaluate the variations of the lines of code
(e.g., of a single method) and how the variation affects the data. We would like
at the lowest level to link the changes made to program entities that do change
results of a class to the data objects created. If two data objects were created by
different variations (versions) of the same class, the difference between the two
objects can be explained.

The rest of the paper is organized as follows; We present the underlying
design objectives of COVA in Section 2. In Section 3, we show the relevance of
this work to Linked Science. In Section 4 we present the framework for change
detection. Object linking and version management is presented in Section 5.



We evaluate this work in Section 6. We review related work and conclude in
Section 7.

2 Class-Based Object Versioning (COVA)

We want to enable scientists to iterate quickly on data processing and analysis
tasks while associating changes made to SC to the data created. To do so, we
include a COVA mechanism in AWE environment to automatically detect and
analyze SC and manage dependencies between code edits and saved results. A
code edit can be lexical, syntactical or semantic. For this work we only consider
changes that would change the results of a class. The requirement is that, given
a class with same input data and arguments, the class should always return the
same derived object. Source edits that change spacing, comments, and other
minor cosmetic tweaks that do not alter a function’s behavior are ignored. This
technique works as follows:

The scientist runs a script in AWE environment. If this is the first time this
script has been run, a request to save the computed results to the database, will
automatically create a code object. A code object(CO) is persistent object that
stores information extracted from SC. e.g., classes, methods, class attributed
and variables, class dependency relationships, in a database while linking the
complete SC file with this information. The persistent CO will have a version
number which is used to reference the CO to the derived object.

During subsequent runs of the same script (possibly after some edits), AWE
compares the current script with the SC file linked to the persistent CO to
detect changes. This comparison is only done when a user requests to commit
the results.

If changes are detected AWE automatically creates a new version of the CO
and creates dependencies between the CO, the created data objects and the SC
edits.

2.1 Version Creation and Versioning Units (VUs)

An important aspect of the COVA is how to select the elements that shall be
compared. These elements are the VUs that form the basis of comparison. We
define a VU as an element associated to versioning information. A new version
of the element is created when any part of it is modified.

For object-oriented systems, the state of an object depends not only on its
own data attributes but also on the objects it refers to. A class that may use ser-
vices of other classes to create an object. In such cases, a class will have elements
to be versioned which are distributed through different files. A class-hierarchy
graph is a straight forward relationship between classes. Class-hierarchy changes
may affect calls to methods in any classes in the hierarchy. A straight forward ap-
proach for selecting VUs, is to consider all program entities in a class-hierarchy.
For example, a class may be considered as an atomic version unit and also its
methods, and attributes as other VUs. A change in any of the VU would create
a new version of a class or a new version of a related class that uses the changed
VU.



A version attached to an object must provide a snapshot of the VUs at the
time of processing. Each VU may have its own version but the aggregation of
these VUs (the class) may have another version i.e., a version number attached to
an object should have the state of all classes, methods and attributes that were
used at the time of making the object. For example, a Python class is composed
of methods and attributes (locally defined in the class and inherited). In this
scenario, a class is as VU and any of its methods and attributes are as also VUs.
If one attribute/method or an inherited class is changed, a new version of the
class is also created, because the class has been indirectly changed. Therefore
the object processed with this changed class will have a new version, even when
the most specific class may not have changed.

This versioning scheme we propose allows future queries over a specific ver-
sions of an object, which will provide a complete reconstruction of the all the
classes that were used to derive the specific version of the object. There are
various kinds of versioning problems in software, all of which pertain to com-
patibility between objects created and the classes used to access the objects.
Differing versions of the classes may or may not be able to handle each oth-
ers’ data storage formats. A class’s methods and fields may not maintain the
same meaning as the class evolves, this means existing programs may break in
places where those methods and fields are used. Therefore programs that load
executable code at runtime must be able to identify the correct version of the
class. Serialized Python object streams do not contain bytecodes, they contain
the information necessary to reconstruct an object assuming you have the class
files available to build the object. This means that all objects, class/module de-
pendencies must all be coordinated to ensure that the executables are built from
the correct versions of the source files.

3 Linked Data, Code and Results(Science)

This work exploits object linking to enable discovery of data by following links
between data items, facilitate code/data reuse, and in effect reduce redundancy
by reprocessing only data products that have not been processed before.

Quality control is typically one of the challenges in the chain of processing
from raw data of the “sensor networks” to scientific papers. It requires an en-
vironment in which all non-manual qualification is automated and the scientist
can graphically inspect where needed by easily going back and forth through
the data and metadata of the whole processing chain for large numbers of data
products. At the same time, the human and financial resources often dictate that
not only the large survey teams are spread over many institutes in many coun-
tries, but also the data storage and parallel computing resources. This brings
us well beyond the era of science on a desktop and into a paradigm in which
astronomers, calibration scientists and computer scientists spread over a dozen
or more locations in many countries link and share their work, SC and latest
results in a environment that allows the quality control, re-processing and data
discovery. This is demonstrated by the creation of the Virtual Observatory(VO)∗

∗ http://www.euro-vo.org/



by the astronomers. The concept is that astronomers should have access to all
the world’s astronomical data, results and can link published work to the data.
The VO is developing standards for linking various archives and data centers
together. This linked data shall be accessed the same way people have access to
any datum by linking his/her computer to the web.

Although the astronomers have not deployed the Resource Description Frame-
work (RDF) and the Hypertext Transfer Protocol (HTTP) to publish structured
data on the Web and to connect data between different data sources, they have
used the VO to conceptually address the same problem (linking archives, data,
and results). However since the Web is increasingly understood as a global infor-
mation space consisting not just of linked documents and Linked Data, it would
be interesting to investigate how Linked data framework can be applied to the
VO.

The data of the very large majorities of surveys is fully public. Any as-
tronomer is entitled to a copy of the data. Survey data is often used for new
science cases the original designers of the survey were not planning to do them-
selves or did not foresee. In fact, many of the surveys are designed with the
intention of precisely this happening. To be able to do this successfully requires
that everyone is provided access to detailed information on the existing cal-
ibrational procedures and resulting quality of the data at every stage of the
processing, that is, have access to the data and the metadata including process
configuration at every step in the chain from raw data to final data products
and most importantly detailed SC that was used to process the data. Sometimes,
the unanticipated use-case specific demands may require re-processing of data
sometimes starting from the raw data or probably requiring modifications in SC
taking advantage of already existing work and an improved understanding/in-
sights into the computational methods.

Another requirement with the physicists is the long-term preservation of the
data, and processed results and the ability of recalibrating (re-processing) it to
the requirements of new science cases. With time, software that is used to process
data evolves with no backward compatibility support, this is where the linking
of SC to the data (i.e., COVA) is very also important. With virtually many
achieves linked together, finding of relevant datasets becomes another problem.
This work includes another aspect of locating data of interest by combing code-
based searches with provenance. This framework represents SC is as objects.
Rather than viewing SC as linear streams of ASCII characters, we can now
view SC as objects (COs). It will certainly allow extreme data validation, data
reuse, ability to view data in many ways, and to search for data or code by any
attribute/key.

4 Change Detection

To determine if a new version of a class has to be created, two classes are
matched together to find the differences. We use two metrics to determine a
matching between two classes. The first metric is the semantic difference in the
class and the second metric is if the changes identified affect the results of a
computation.



For each class, we generate and build a dependency graph. We denote a
dependency graph of a class as node-labeled directed graph G(V,E) where V (G)
denotes the set of all nodes in G and E(G) denote the set of all edges in G.. The
graph contains class nodes (non-leaf) and methods (leaf) nodes for each method
in a class. For each method node, there is an edge connecting the method node
to the class node. For a derived class, there exists an edge between the class and
the classes from which it inherits. This process of adding nodes is recursive for
the depth and with of the inheritance hierarchies.

The dependency graph represents the class and its interaction with other
classes. This graph accounts for effects of inheritance, scoping, polymorphism
and dynamic binding. What remains is to find the difference between the graph
generated for the original class (G) and the graph of the modified class (G′).

4.1 Class Matching

For each dependency graph of a class, we begin by matching the classes (non-
leaf nodes), then for each class match we match the methods and attributes
(leaf) nodes. To compare method nodes, we do not build an enhanced control-
flow graph as work done in [1], we instead compare Python bytecodes. We do
so because we want to avoid source edits that change spacing, comments, and
other minor cosmetic tweaks do not alter a function’s behavior. If changes are
detected during method comparison, we continue to check if the results of the
two methods differ. i.e., given two methods M and M ′ and same input dataset
o, if M(o) 6= M ′(o), then we assume the changes made to M to create M ′, are
significant to create a new version of a method, and eventually a new version
of a class. The actual differences between the two methods are determined and
logged.

We therefore provide a new graph representation and a differencing algorithm
that will identify and classify changes between two graphs corresponding to a
class while comparing known results of changed methods to verify the effect of
the changes on the methods. We then associate the detected changes between
classes and/or methods to the derived data objects that shall be created through
the modified classes.

Node Matching To find differences between two graphs, we carry out a match-
ing between corresponding nodes. Class nodes are matched to class nodes and
method nodes are matched to methods nodes. For two graphs G and G′. Non-
Leaf nodes that appear in G that do not appear in G′ are deleted classes, whereas
non-leaf nodes in G′ and not in G are added classes. The same applies to leaf
nodes. However if a class overrides a method in one class, the method will ap-
pear as a new method in overriding class. To ensure uniqueness of a node, we
introduce the pathToNode for this purpose which is defined as follows;

Let V denote a set of all nodes in Tree (T ), if v ∈ V , the pathToNode(vn) =
v1.v2 ... vn−1.vn, where v1 is the root of T , and v1, ...vn1 , vn is the path from root
v1 to vn. The ’.’ represents a link property attribute which defines relationships
between two nodes that are transitively connected.

Based on the definition of the pathToNode, we define a matching M as below;



Given set of node pairs (va, vb) where va ∈ Va and vb ∈ Vb, M is called a
matching from Ta to Tb, iff

1. va, vb ∈ M , va ∈ Va, vb ∈ Vb, pathToNode(va) = pathToNode(vb)
2. ∀(va1, vb1) ∈ M and (va2, vb2) ∈ M , va1 = va2 iff vb1 = vb2
3. Given (va, vb) ∈ M , suppose v′a is a parent of va and v′b is the parent of vb,

then (v′a, v
′
b) ∈ M

4. bytecode(va) == bytecode(vb)

We now use the pathToNode and matching definitions to recursively match
nodes in G and G′. We begin the comparison at the class level. After matching
classes we then match methods for each pair of unmatched classes. Unmatched
classes are those classes that have differences in their implementation. For any
unmatched methods, we compare the output of two methods and we continue
to log the semantic differences if the output of the methods differ. This process
is summarized in algorithm 4.1

Input: Original Class C, Modified class C′

Output: set of unmatched methods classes, C′′ unmatched methods M ′′, set of se-
mantic differences DIFF
Parse classes C and C′ into their dependency graphs G and G′ respectively
T ← V (G) Set of all none leaf nodes of G
T ′ ← V (G′) Set of all none leaf nodes of G′

for each node in t ∈ T and t′ ∈ T ′ do
matched ← match(t, t′)
if matched then

t, t′ are equivalent
continue

else
V ← V (t) Set of all leaf nodes of t
V ′ ← V (t′) Set of all leaf nodes of t′

for every node m in V do
for every node m′ in V ′ do

matched ← match(m, m′)
if not matched then

compare the output of both methods given the same input data
if output differ then

add m,m′ to M ′′, remove m and m′ from V and V ′ respectively
add semantic differences between m and m′ to DIFF

else
remove m and m′ from V and V ′ respectively

else
remove m and m′ from V and V ′ respectively

if M ′′ is not empty, add t, t′ to C′′

remaining in V and V ′ are new nodes(methods)

Algorithm 4.1: Change Detection



(a) (b)

Fig. 1: Disassembled bytecode of debias and flatfield frame

Comparing Output of two methods Given the same list of source code
segments, processing environment and arguments, a compilation should always
return the same derived object. If the results defer, then we can confirm a change
in the implementation. We note that when external imports e.g., numpy, pyfits
are modified, these too can change a result of a method. To diminish the effects
of such changes, the test environment includes a standard setup with known ver-
sions for external exports and expected output from each method. The modified
methods are plugged into this test environment while other dependencies remain
constant. We only execute sections that have been modified.

If a method M was modified to M ′, we check to see if for any object o,
o.M() == o.M ′(). If N , and M are two methods, where N precedes M during
execution, if the state of object o, at the time the compiler completes the exe-
cution of N is o′ i.e., o.N() = o′. and the o′.M() = o′′ then if o′.M ′ 6= o′′ then
we can confirm that changes in M , are significant to create a new version of M
i.e., M ′.

Semantic differences between methods To get the semantic differences be-
tween methods that have not been matched, we use the Python dis module
to disassemble the bytecodes of the unmatched methods. Fig. 1 shows the dis-
assembly of two methods. Fig. 1(a) is the original method while Fig. 1(b) is
the modified method. The changed lines are highlighted in red. In the method
debias and flatfieldframe the operation between attributes self.image and
self.bias.image was INPLACE SUBTRACT, that has been changed to INPLACE -

ADD in the modified method.

5 Object Linking and Version Management

We describe in this section AWE’s mechanisms for linking objects and how we
manage versions between objects. We have used persistent COs that represent a
set of closely related parameters extracted from a class that are represented as
an object stored in a relational database.

5.1 Persistent and Code Objects

The persistent object hierarchy makes the core of this framework. We automati-
cally make all objects persistent in the database as attributes, as fully integrated
objects or as descriptors. Source code files are not stored in the database, how-
ever their unique filenames and links to their COs are stored in the database.



Each versioned class has an associated CO from which the versions of the
derived objects are obtained. Each CO knows all its dependencies (methods and
relationships with other COs) and their states (versions). Each CO is linked to
other COs which can themselves be linked to other COs. These COs constitute
a class-hierarchy relationship. The highest CO in the hierarchy being the most
specific class for the derived object. The dependency hierarchy graph of a CO
can be represented as version graph. Each version graph will be same for all
derived objects of same version.

For each data object processed, a persistent link to the version of CO that
was used to make the object is created and is stored as the part of the object’s
attributes (or metadata). This ensures that during the object’s de-serialization
the appropriate classes are called to reconstruct the object. The CO is iden-
tified by a unique object identifier (object id) and version number version no.
The object id and the version no of a CO are used as reference to identify the
relationship between the SC and the derived object. A class (or derived object)
is linked to the CO through a persistent attribute called code object.

Definition of persistent attributes. All AWE classes are derived from a cus-
tomized metaclass. Using the metaclass we can then manipulate class creation,
object instantiation and method execution. We defined another class DBObject

which is the root class of the hierarchy of the persistent classes. This class de-
fines the primary key object id of all objects. DBObject is derived from the
metaclass. Any classes that inherits the DBObject, automatically becomes per-
sistent. This creates all the necessary schema structures, such that attributes and
data created or used during the processing will be stored. Likewise, a persistent
attribute is defined by using the following expression in the class definition.

attribute name = persistent(’A doc-string for the attribute’,

attribute type, attribute default)

If attribute type is a subclass of DBObject, then the attribute will be a link,
else the attribute will be a descriptor. If the attribute default is a list, then the
attribute will be an array of objects of that type. If persistent has only a string
argument, then the attribute is assumed to be a link to an object of the same
type as the class it is defined in. We present an example below

class ClassB(DBObject):

e = persistent(’’, ClassA, (ClassA, (), {})

f = persistent(’’, ClassA, [])

g = persistent(’’)

filename = persistent(’File part’, str, ’’)

class ClassC(ClassB):

h = persistent(’’, ClassD, None)

ClassB defines four links: ’e’ is a link to an instance of ClassA, ’f’ is a array
of links to instances of A (default empty), ’g’ is a link to another instance of
ClassB and filename attribute supports the storage of files. Note that persistent
properties are inherited. So ClassC defines a new persistent object, with four
persistent attributes (’e’, ’f’, ’g’, ’h’).



5.2 Version Control

Our requirement is that we are able to test the equivalence of two COs. Each CO
has a unique identity, a version attribute and a version predecessor attribute. If
a CO is created as a new version of another existing CO, its version predecessor
pointer points to its version predecessor otherwise its version predecessor pointer
is null. Each CO is read-only. Changes made to an existing CO are stored as
new version of the CO.

A new version will be created for all unmatched classes and unmatched meth-
ods. We have created versioned groups we have called ’type’ which are identified
by the class names or method name. For each type, the version number counter
begins from 1 and incremented by 1. For example, the type of a class called
BaseFrame will be BaseFrame. Three basic operations for version control are
new, edit and delete. Each of these operations is modeled as a function that
takes a class as its major input and returns a new version and a CO stored in
the database.

The New operation creates and adds new CO to a database. The CO repre-
sents new type which is different from any existing type in the database. This
new CO will have no version predecessor. The Edit operation is used to create
a new (edited) version of an existing type in the database. This operation takes
as input a class that is assumed to be modified and matches the class against an
existing CO. Based on the results of matching a new version of a CO might be
created. If a new version of the CO is created, the version predecessor attribute
of the new version will point to the CO that was used during the matching.
A user has an option of selecting a specific version of the CO to use during
matching, otherwise the latest version will be used during the matching process.
The Delete operation is used to remove a version represented by a CO from the
database. If the CO being removed is referred to by other CO then the Delete
operation will not be successful.

6 Evaluation

We present in this section a few implementation details for the system in relation
to processing data objects and querying COs.

The AWEPIPE environment variable specifies to AWE where the local person-
alized checkout is stored. It is the classes in the personalized checkout that are
used to process data. After the processing of a target, the class that was used
to make the target(data object) are matched against the CO of the same type
stored as the database.

To process a target, a researcher begins by sending a query to the database
for the target. If the target exists, the target is returned, else the processing
of the target is initiated. The inputs to the pipeline are either queried from the
database if they already exist or created on the fly if the objects are not uptodate
or do not exist. This is a recursive process that begins from the target to the raw
data as observed from the telescope. An object is uptodate if the most specific
class and its dependencies that were used to make the object have not changed or
if any of its dependencies have not been made by a newer version of a class. This



is determined by comparing version of CO that was used to make the object and
version of the current (latest) CO. AWE provides a web-service for this check, an
example of this comparison is shown in Fig. 2. If a newer version of classes exists
it highlighted in orange. The object viewer of each object would give details of
the changed attributes.

Fig. 2: Dependency graph of classes required to make the ReducedScienceFrame
object

Querying Versioning Information. We have defined a notation that is based
on the idea that a class is in some sense equivalent to the set of all its instances.
To illustrate the concept, let us give a few examples. Given a persistent class X
with persistent property y, then the expression X.y == 5 represents the set of
all instances x of X, or subclasses of X, for which x.y == 5 is true. To obtain
these objects the expression needs to be evaluated, which can be done by passing
it to the select function, which returns a list of objects satisfying the selection.
AWE publishes data to the virtual observatory. Objects from AWE can be displayed
with all its data and code provenance information.

7 Related Work and Conclusion

There are a number of existing techniques for computing differences between
two versions that also recognize differences in object-oriented features. Semantic
diff [5], compares two versions of a program procedure-by-procedure. However,
it does not consider dependencies relationship between classes and variables.
BMAT [9] performs matching on both code and data blocks between two ver-
sions of a program in binary format, however it does not provide information
about differences between matched entities. JDIFF [1], uses the OOP approach
when comparing classes. Its main focus is to determine differences that change
the behavior of a program, e.g., changing branch conditions. Our focus is not
behavior of the program, but changes that have an effect on the results of a
program. There is also considerable work related to Version Control Systems
(VCSs) [8], however their focus is dedicated on modeling software artifacts and



therefore version numbers created by VCSs are opaque identifiers and as such
can not be used for object versioning.

We could leverage on some of the change detection tools, however, all users
have to sign up to a systematic approach of processing and storage. Specifi-
cations for research code (as compared to production-quality code) are often
ill-defined and constantly-changing likewise a typical data analysis work cycle is
a recursive process where scientists change methods (or an implementation) or
may even disagree on some implementations. In a such an environment, not all
these changes would become part of the SC repository.

The work done in this paper, allows such kind of changes to be stored while
linking them to the objects they created. All variations of implementations cre-
ated during the scientific processes become publicly available and can be used to
reprocess data, to find data through code-based searches and to understand the
process the lead to the creation of a data item. This framework allows portability
of data and reuse since each derived objects knows specifically how it was made.

References

1. Apiwattanapong, T., Orso, A., Harrold, M.J.: A differencing algorithm for object-
oriented programs. In: Proceedings of the 19th IEEE international conference on
Automated software engineering. pp. 2–13. IEEE Computer Society, Washington,
DC, USA (2004)

2. Begeman, K.G., Belikov, A.N., Boxhoorn, D.R., Dijkstra, F., Valentijn, E.A.,
Vriend, W.J., Zhao, Z.: Merging grid technologies. Journal of Grid Computing 8,
199– 221 (2010)

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI pp. 265–298 (2004)

4. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for computational tasks: A
survey. Computing in Science and Engineering 10(3), 11–21 (2008)

5. Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of modi-
fications. In: Proceedings of the International Conference on Software Maintenance.
pp. 243–252. ICSM ’94, IEEE Computer Society, Washington, DC, USA (1994)

6. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci. 2,
99–241 (February 2010), http://dx.doi.org/10.1561/1800000010

7. Ogasawara, E., Rangel, P., Murta, L., Werner, C., Mattoso, M.: Comparison and
versioning of scientific workflows. In: Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models. pp. 25–30. CVSM ’09, IEEE Com-
puter Society, Washington, DC, USA (2009)

8. Oliveira, H., Murta, L., Werner, C.: Odyssey-vcs: a flexible version control system for
uml model elements. In: Proceedings of the 12th international workshop on Software
configuration management. pp. 1–16. SCM ’05, ACM, New York, NY, USA (2005)

9. Wang, Z., Pierce, K., McFarling, S.: Bmat - a binary matching tool for stale profile
propagation. The Journal of Instruction-Level Parallelism 2, 2000 (2002)


