
Computing the Changes Between Ontologies

Timothy Redmond and Natasha Noy

The Stanford Center for Biomedical Informatics Research,
tredmond@stanford.edu,noy@stanford.edu

http://bmir.stanford.edu

Abstract. As ontologies evolve, the ability to discover how they have
changed over time becomes critical. In the recent past, a handful of
useful tools based on the Manchester OWL API have addressed this
issue. However, none of these tools took into account how to align entities
across ontologies when the names of entities have changed. For the case of
name changes, we need a way to discover entity alignments between two
ontology versions before we can match up structural differences. In this
paper, we describe a highly optimized pluggable difference engine that
searches for alignments between entities in different ontology versions and
applies those alignments to display the differences in the ontologies. This
difference engine is available as a plug-in in the latest Protege 4.2 release
and sources are available online.1 We discuss our experiences applying
the tools to a selection of ontologies from the BioPortal [5] ontology
repository, including the performance and accuracy of the tool.

Keywords: Evolving Ontologies, Version Control

1 Introduction

In any form of document processing, the people who generate and review the doc-
uments need to have some method of obtaining a usable collection of differences
between the documents. This need arises regardless of whether the document
formats in question are text, Word, software code, or, as in our case, the Web
Ontology Language (OWL).

For OWL ontologies, many users have to resort to viewing the OWL syn-
tax rendering in a text editor, and using text-based difference tools to locate
changes. This approach may sometimes be convenient due to the universal pres-
ence of textual difference tools, but falls far short for several reasons. When OWL
content is saved to the same format (e.g., RDF/XML) by two different tools, the
two files can differ to such a degree that a textual comparison is meaningless.
In addition, even when the RDF/XML is generated by a tool that deliberately
tries to make the textual differences readable (e.g., the OWL API [8]), the for-
mat in which a difference engine displays these changes does not make it clear

1 Sources for the difference engine library (http://goo.gl/sQ4MZ) and Protege plug-in
(http://goo.gl/yIXsO) are located in the Protege Subversion repository.

http://bmir.stanford.edu
http://owlapi.sourceforge.net
http://smi-protege.stanford.edu/repos/protege/protege4/libraries/org.protege.owl.diff/trunk
http://smi-protege.stanford.edu/repos/protege/protege4/plugins/org.protege.editor.owl.diff/trunk


2 Timothy Redmond and Natasha Noy

to an OWL developer how the OWL content has changed in terms of entities or
axioms.

In this paper, we discuss a tool that understands the structures in an OWL
ontology and calculates the structural differences between ontologies. Specifi-
cally, we address the problem of calculating the differences between an earlier
version of an ontology (which we call the source ontology) and a newer version
of the ontology (which we call the target ontology).

The OWL language specification [10] defines OWL in terms of the vocabulary
of an ontology (OWL entities) and structures in the ontology (OWL Axioms).
We follow this paradigm by first comparing the entities of two ontologies, and
then using the results of this comparison to compare the axioms.

OWL entities make up the named terms in an ontology, including classes,
properties, individuals, and data types. The OWL language uses International-
ized Resource Identifiers [1] (IRIs) for the naming of OWL entities. When we
compare two versions of an ontology we need to define a mapping between the
entities that appear in the source ontology and the entities that appear in the
target ontology. There are four types of mappings between entities in source and
target ontologies:

– An entity appears in the target ontology but there is no analogue in the
source ontology (i.e., an entity was created).

– An entity appears in the source ontology but does not appear in the target
ontology (i.e., an entity was deleted).

– An entity appears in both ontologies with the same name.
– An entity that appears in the target ontology corresponds to an entity in

the source ontology, but the names of the two entities are different.

We call such a mapping of all the entities in the source and target ontologies an
alignment of entities. The last case in the list above makes the problem of
calculating the structural difference between two ontologies both interesting and
challenging. There is no guaranteed way to determine which entity in the source
ontology corresponds to which entity in the target ontology when the names of
entities have changed. In order to effectively determine this correspondence, we
will apply a series of heuristics that examine the ontology for clues based on how
the entities appear. We will often refer to the final case a refactor. When the
name of an entity is changed, all referring axioms must be changed to use the
new entity name. This is a very similar notion to a refactor as understood by
software code developers. In both cases, the tools (e.g., Eclipse for Java code and
Protégé for ontologies) call the operation of renaming an entity across multiple
documents a “refactor” operation.

The alignment of the OWL entities, in turn, drives the alignment of OWL
axioms in source and target ontologies. As with OWL entities, there are four
types of mappings between OWL axioms in source and target ontologies:

– An axiom in the source ontology matches an axiom in the target ontology if
the alignment of the OWL entities maps the structures in the source ontology
axiom to the axioms in the target ontology axiom.



Protege 4 Difference Engine 3

– An axiom in the source ontology is removed if it does not match any axioms
in the target ontology.

– An axiom in the target ontology is added if it does not match any axioms in
the source ontology.

– An axiom in the target ontology is changed if the axiom can be shown to
correspond to a different axiom that exists in the source ontology.

In the rest of this paper, we describe the implementation and behavior of a
difference engine that we built to calculate the structural difference of two on-
tologies. We had the following requirements in developing the difference engine:

– calculation of structural differences between ontologies,
– ability to handle refactor operations,
– run fast, perhaps favouring run time performance over memory consumption,
– pluggable, in order to allow users to configure their own alignment and ex-

planation algorithms,
– run either within or outside the Protégé editing environment.

We built a difference engine to meet these requirements, and then applied this
tool to several of the ontologies in the NCBO BioPortal [5]. In this paper, we
describe how we approached the problem and the results that we achieved.

2 Related Work

Much of the inspiration for this work was derived from a study of the Prompt-
Diff tool [6,7]. Before the OWL 2 specification was released, PromptDiff
was the premier tool used by ontology authors who wanted to compare differ-
ent versions of an ontology. PromptDiff compares different versions of large
ontologies, detects when ontology entities have been refactored, and presents
the differences between the ontologies. It is pluggable, allowing developers to
add custom extensions to the alignment process. Evaluations reported by the
PromptDiff authors [6] cite high levels of accuracy and reliability.

The National Cancer Institute (NCI) has been a prototypical user of the
PromptDiff tool [13]. A team at NCI develops NCI Thesaurus [11], a large-
scale biomedical ontology for representing terms relevant to diagnosis and treat-
ment of cancer. There are several developers who contribute to the NCI The-
saurus. At the end of each month, the administrators must examine the changes
that these developers have performed, in order to provide quality control before
publishing a new production version of the NCI Thesaurus [13]. Thus, the ad-
ministrators must be able to determine what changes the developers made to
the ontology in order to decide whether these changes should be accepted or re-
jected. NCI uses PromptDiff for this task, running it to compare the contents
of the NCI Thesaurus at the end of the editing cycle with the baseline version
from the beginning of the cycle. A lead editor at NCI then looks through the
changes that were made to the ontology and decides which of those changes to
accept or reject.



4 Timothy Redmond and Natasha Noy

Unfortunately, PromptDiff has not kept up with the changes to the OWL
specification. It is still using an older API for accessing OWL ontologies and
this API is not able to handle OWL 2 ontologies. The difference engine that we
describe in this paper was inspired by PromptDiff and was born out of the
need to support OWL 2. In some ways, these tools appear very different. The
difference engine that we describe here uses the Manchester OWL API [8] which
takes a very structural view of an ontology. PromptDiff uses a “frame-like”
API where an ontology is viewed as a container of property values for named
and anonymous entities. At first glance this difference seems quite significant,
and indeed, the explanation phase of the difference engine has no analogue in
PromptDiff and appears to be a consequence of this differing point of view.
However, many of the heuristics that we use during the alignment phase of the
difference engine were ported directly from algorithms used by PromptDiff. In
addition, the results and explanations of the alignments and differences generated
by the two tools are often clearly related to one another. In fact, part of the future
work is to port more of the algorithms used by PromptDiff to the difference
engine.

ContentCVS [3] is a system based on concurrent versioning, where users check
out versions of an ontology and then commit their changes. Different users may
check out a copy of a common ontology and make conflicting changes to the on-
tology. Therefore, ContentCVS provides a framework for concurrent versioning
of ontologies, which includes version comparison, conflict detection, and conflict
resolution. ContentCVS takes a structural approach to calculating the differ-
ence between two ontologies. This approach is similar in spirit to the structural
approach that we describe here. In addition, ContentCVS considers issues in-
volving unwanted entailments that occur when multiple users attempt to merge
their changes to a baseline ontology. In contrast, our difference engine does not
address the problem of merging and detecting conflicts. These are important
problems that we have not yet addressed in our tool. But the primary advantage
of our difference engine over ContentCVS is that our tool is able to detect many
refactor operations.

RDF Deltas [14] addresses the problem of expressing the difference between
two RDF graphs using change operations that include side-effects. Including the
side-effects as part of the change operations allows the size of the change sets
to be minimized. This is very useful in a Semantic Web environment, effectively
reducing the bandwidth needed to transmit a collection of changes between two
graphs.

The difference engine deviates from RDF Deltas in that we work exclusively
with OWL ontologies, RDF Deltas does not deal with refactors, and the RDF
Deltas approach involves the use of inference.

The OWLDiff tool [9] is a powerful tool for finding differences between on-
tologies. It addresses the problem of calculating a difference in the sets of axioms
that can be entailed in a source and target ontology. The OWLDiff tool has two
modes: a basic ontology comparison and a CEX logical comparison. In the basic
ontology comparison, OWLDiff calculates the set difference of the axioms in the



Protege 4 Difference Engine 5

two ontologies and then filters this difference by an analysis of what axioms are
entailed by the two ontologies. The CEX logical comparison employs a more
complicated algorithm, which uses the fact that in a formally precisely defined
sense, the difference between the axioms entailed by the two ontologies can be
calculated [4].

The OWLDiff work is distinct from ours in two ways. First, our approach
is confined to a purely structural difference. We do not address the problem of
entailment. We have focused on the case where the ontology developer wants
to understand the set of edits made to an ontology. If, for instance, an axiom
was removed because it was already inferred, our tool will not indicate this
fact. Second, the OWLDiff tool does not address the problem of understanding
refactor operations. In many real-world cases, the names of ontology entities
change as the ontology evolves. In some cases, our algorithm is able to apply
heuristics that detect these name changes and map axioms in the source ontology
to axioms in the target ontology based on these refactor operations.

3 Approach

Our approach to calculating the difference between two ontologies has two phases:
the alignment phase and the explanation phase. In the alignment phase, we de-
termine the difference between the signatures of the two ontologies and calculate
any refactors that occurred when the ontology was changed. The explanation
phase reorganizes the axiom changes into a format that is more readable to a
human and then attempts to represent these changes in the manner that would
be the most readable. Both of these phases are pluggable; the body of work
is performed by running a collection of algorithms in sequence until no further
progress can be made.

3.1 The Alignment Phase

The goal of the alignment phase of the difference algorithm is to generate a raw
low level alignment of the source ontology to the target ontology. It does not
address issues of how this information should be presented to the end user and
it only identifies axioms that have been added or removed; it does not detect
when axioms have changed. As it aligns the entities in the signature of the source
ontology with entities in the signature of the target ontology, the alignment tool
incrementally keeps track of which axioms from the source ontology map to
which axioms from the target ontology.

Since we consider only structural differences between OWL ontologies, the
case where there are no refactor operations is not particularly interesting. Essen-
tially, the mapping is determined by a set differences of the two signature and
axiom sets. However, detecting when the name of an entity changes is a more
difficult task and we must rely on heuristics to find the changes that have been
made.



6 Timothy Redmond and Natasha Noy

In order to find these mappings, the alignment phase repeatedly runs a se-
ries of pluggable heuristic algorithms in sequence until the algorithms are no
longer making any progress. Each algorithm builds upon the work of previous
algorithms to find and add alignments of OWL entities to the pool of discov-
ered alignments. As entity alignments are found, alignments of OWL axioms are
incrementally calculated and this information is fed back into the alignment algo-
rithms. Once found, alignments are never removed or altered. As the alignment
process progresses, the problem of finding alignments becomes easier because the
portion of the ontology that is not aligned becomes smaller and smaller. There-
fore, if possible we run the slower algorithms later in the process so that they
have a smaller section of the unaligned ontology to take into consideration. In
addition, we run less accurate algorithms later in the sequence so that the more
accurate algorithms get first pass at finding any alignments. For these reasons,
we assign each algorithm a priority that determines when it should run.

To give a flavor of how the alignment works we will give a simple but illustra-
tive example from the Biomedical Resource Ontology (BRO) [12]. We compared
version 2.6 against version 3.2.1; both versions can be found in BioPortal [5]. The
later version has 486 classes. The contrast between the two versions was a mod-
erately simple diff involving 147 new entities, 58 deleted entities, 83 refactored
entities, and 309 entities that were modified but did not fall into the previous
categories.

Consider, for example, the following alignment that was identified by our
difference engine (Figure 1): the class “Symbolic and Analytical Resource”, from
version 2.6, was aligned with the class “Symbolic and Analytic Model” from
version 3.2 of the ontology. Finding this alignment involved two steps. First ,the
difference engine needed to align the class “Models with closed form solutions”
from the source ontology with the class “Model with closed form solutions” from
the target. This alignment is a typical change that the BRO authors performed
during this period. A plural form of the ontology concept was changed to a
singular form. The algorithm that discovered his change looked at the children
of a concept that was already aligned to find out if any of them had similar
names. Since the BRO ontology does not use numeric identifiers, making this
change involved also changing the name for the concepts.

Fig. 1. Alignment in the BRO ontology



Protege 4 Difference Engine 7

Once these classes were aligned, the difference engine had enough information
to align the “Symbolic and Analytical Resource” concept. One of our algorithms
compares parents and children of concepts from the two ontologies. If a concept
in the source ontology has a parent and child that match the parent and child of
a concept from the target ontology, then the algorithm adds this as a match. In
this case the parent and child of “Symbolic and Analytical Model” in the first
ontology were “Algorithm” and “Models with closed form solutions”. This parent
and child corresponded to a parent and child of “Symbolic and Analytic Model”
concept from the second ontology. The parent of “Symbolic and Analytic Model”
in the second ontology was the “Algorithm” concept which had an identical name
to the “Algorithm” concept from the first ontology. And the child of “Symbolic
and Analytic Model” was “Model with closed form solutions”.

This example also shows how the alignment algorithms are notified of progress
in the alignment of OWL axioms. When the “Models with Closed Form Solu-
tions” is aligned with the “Model with Closed Form Solutions” class, the axiom

"Models with Closed Form Solutions"

SubClassOf "Symbolic and Analytic Resource"

moves one step closer to being aligned. The algorithm that looks for matching
parents and children is then notified of this movement and this is what tells
this algorithm to examine the “Symbolic and Analytic Resource” class in more
detail.

Many of the algorithms used by the Protégé 3 PromptDiff engine can be
adapted for use in our difference engine. Thus far, we have not implemented
very many of these algorithms but we already have enough that we are finding
interesting alignments. The current set of algorithms included in the main OWL
difference engine are

– Align by IRI: This is a highly reliable algorithm that will align entities from
the ontologies being compared if they have the same IRI and type. It is
very much expected that if two ontologies refer to a concept with the same
IRI, then the two concepts are identical. For this reason, the Align by IRI
algorithm is run first.

– Align by rendering: Many ontologies have some notion of how entities should
be rendered. In a lot of cases the rendering is taken from the rdfs:label anno-
tation property. In these cases, the difference engine can match up concepts
that have the same rendering even if they have different IRIs. This algorithm
is substantially less reliable than the algorithm that aligns by IRI because
it is not uncommon, even in a single ontology, for two distinct concepts to
have the same rendering.

– Align by IRI fragment: In some cases, the name of an entity changes only
because the namespace changed. In these cases, we want to align entities
that differ only by their namespace.

– Align siblings with similar renderings: This algorithm will align siblings of a
matched class that have very similar renderings. This type of refactor is very
common when an author corrects a typo or misspelling . Also, this algorithm



8 Timothy Redmond and Natasha Noy

will often catch the case when modelers change all of their class names from
plural to singular.

– Align entities with aligned parent and child: If a potentially aligned pair of
entities in two ontologies have a matching parent and child we can guess
that the entities should be aligned. This is a powerful algorithm which finds
some otherwise difficult to match items. Occasionally it finds questionable,
yet interesting matches such as the match of “non computational service” in
version 2.6.2 of the BRO ontology with “people resource” in version 3.2.

– Align lone matching sibling: This algorithm will align entities between two
ontologies if all the siblings of the entities in question have been matched.
This algorithm currently finds a number of very good matches, but occa-
sionally locates outrageous ones that are clearly wrong. We are still experi-
menting with the best settings for this algorithm.

With the exception of the last algorithm, these algorithms have been very reliable
in practice.

3.2 The Explanation Phase

Running the alignment phase of the algorithm will generate a large amount of
information about the relationship between two ontologies. However, this in-
formation is not organized for human consumption and is hard to understand
without some restructuring. In order to describe our explanation phase, we start
by giving example of a typical explanation output and then describe the pro-
cessing that has taken place to put the raw alignment data into that form.

Consider the difference between versions 2.6.2 and 3.2 of the BRO ontology.
The alignment phase of the difference engine will generate a list of entity align-
ments and an unsorted list of axioms added and removed. In particular, after
digging through these results we would find the following entity alignment:

Surgical_Procedure -> Surgical_Procedure

and hidden among the added and removed axioms we would find the following:

Removed: Surgical_Procedure SubClassOf Novel_Therapeutics

Added: Surgical_Procedure SubClassOf Therapeutics

Added: Surgical_Procedure prefLabel "Surgical Procedure"^^string

In contrast, the output section of the explanation phase that refers to Surgi-
cal Procedure looks as follows:

Renamed and Modified:

Surgical_Procedure -> Surgical_Procedure

------------------------------------------------------

Superclass changed:

Surgical_Procedure SubClassOf Novel_Therapeutics

changed to

Surgical_Procedure SubClassOf Therapeutics

Added: Surgical_Procedure prefLabel "Surgical Procedure"^^string

------------------------------------------------------



Protege 4 Difference Engine 9

The first two lines of this report indicate that the Surgical Procedure class has
changed names. Indeed in the earlier 2.6.2 version of the ontology, the full name for
Surgical Procedure was:

http://bioontology.org/ontologies/biositemap.owl#Surgical_Procedure

but in the later 3.2 version of the ontology, the full name has become:

http://bioontology.org/ontologies/Activity.owl#Surgical_Procedure.

Thus far there is no difference between the information being provided here and the
information that is available at the end of the alignment phase. However, in the changes
listed underneath the alignment of the Surgical Procedure class there are two signif-
icant enhancements to the information that is present in the alignment phase. First,
the changes being listed are exactly those changes that are relevant to the entity in
question. Thus, in the Surgical Procedure section we list precisely those axioms de-
scribing how the superclass of Surgical Procedure has changed and how the annotation
properties of Surgical Procedure have changed. This organization was not generated
during the alignment phase; the alignment phase result just had a list of axioms added
and removed.

Second, the changes that are presented underneath the Surgical Procedure heading
are not confined to simply axiom added and axiom removed. The explanation phase
understands that the best way to present the difference given by

Axiom Removed: Surgical_Procedure SubClassOf Novel_Therapeutics

Axiom Added: Surgical_Procedure SubClassOf Therapeutics

is to represent this information as a change to the super class of Surgical Procedure.
This last change is done by a series of pluggable algorithms that detect patterns

among changes to axioms and determines the best way to present those patterns to a
user. In this case, the work was done by an algorithm called “identify changed super-
class.” This routine looks for patterns of the form:

Axiom Removed: X SubClassOf Y

Axiom Added: X SubClassOf Z

where X, Y, and Z are named classes. In this case, it will present the change as a
change to the superclass of X. It understands that it does not know how to interpret
the case where more than one class has been added or removed. For instance, if it finds
the following:

Axiom Removed: X SubClassOf Y

Axiom Added: X SubClassOf Z

Axiom Added: X SubClassOf T

where X, Y, Z, and T are named classes, it will leave the pattern alone.
The fact that the algorithms are pluggable makes it possible to customize the output

of the explanation phase to a particular set of ontology development patterns. For
example, in the case of NCI Thesaurus, there are annotation properties that indicate
that a merge operation took place. An NCI merge operation is performed on two classes,
X and Y. All the axioms that describe the Y class are structurally altered so that they
talk about X instead of Y. The Y class is then deprecated and it is no longer referenced
by any axioms.



10 Timothy Redmond and Natasha Noy

To make the difference between two versions of the NCI Thesaurus understand-
able to the NCI editors, we added an algorithm to “identify merged concepts.” This
algorithm can present the changes made to X as a “merge with Y” operation. It can
present the changes made to Y as a “deprecated because of merge” operation. Finally,
it can identify axioms that have been structurally modified because of the merge.

4 Early Tests of the Prototype

We tested the prototype implementation of the difference engine on the NCI Thesaurus
and on several ontologies in BioPortal. The primary goals of these tests was to get an
initial assessment of the accuracy of the difference engine heuristics and of how the
tool performs. We had access to several versions of the NCI Thesaurus and chose four
version comparisons. We also tested twenty five of the ontologies from BioPortal. Here
we report our findings on the Chemical entities of biological interest (ChEBI) ontology
because we had the good fortune to be able to accurately assess the accuracy of our
algorithms in this case.

4.1 Performance of the difference engine

Our primary interest in the difference of the NCI Thesaurus is to determine how fast the
tool works. The ontology design patterns used by the NCI Thesaurus developers rule
out the possibility of refactor operations so we expected that the differences generated
by the tool would be relatively simple. However, the performance of initialization of the
difference engine and the first few alignment algorithms does not depend on whether
or not the ontology will have many refactors. Thus, measuring performance on an
ontology with over 87 thousand classes is a useful test. We also paid attention to the
performance of the difference engine on the ontologies from BioPortal, though these
ontologies tended to be much smaller. The biggest ontology we tested on the BioPortal
was the ChEBI ontology which had over 29 thousand classes.

We did our tests on a 2.66 GHz 64-bit quad core Intel machine with 8GB of mem-
ory. The difference engine proved to be fast. In all the tested cases the time to calculate
the difference between an already parsed ontology against an unparsed ontology was
dominated by the time required to parse the second ontology. For example, in compar-
ing version 10.10a against 11.01e, the load of the 10.10a version of the NCI Thesaurus
took 56 seconds and the calculation of the differences took 12 seconds. In the case of
the ChEBI ontology, parsing the baseline ChEBI ontology took 10 seconds and the
difference calculation took 5 seconds. The ChEBI ontology was one of the larger differ-
ences that we studied. The difference between versions 1.42 and 1.82 of the ontology,
as calculated by the difference engine, involved 10,177 entities created, 121 entities
deleted, 97 entities renamed, and 15,509 entities modified.

4.2 Accuracy of the difference engine

We used the ChEBI ontology to evaluate the accuracy of the difference engine. The
developers of the ChEBI ontology keep careful track of all the refactors that they
perform. They use a numeric identifier naming scheme. When they change the name of
an entity, they add an alt id annotation property that indicates the previous identifier
that they used for the entity. The evidence that we have, suggests that they were very



Protege 4 Difference Engine 11

consistent in adding the property. Because our difference engine is (currently) oblivious
to the use of the alt id, we can use the alt id to verify the accuracy of the refactors
that the difference engine finds.

As we mentioned earlier, we observed that our algorithm that aligns lone unmatched
siblings is prone to providing false positive matches. Thus, we ran our evaluation for
both configurations of the difference engine: with and without this algorithm.

Out of 97 refactors that the difference engine found with “Match lone siblings”
turned off, between versions 1.42 and 1.82, we found

– 92 alignments where the difference engine and the alt id annotation properties were
in perfect agreement.

– 2 alignments where we are confident that the difference engine was correct but
there is no alt id annotation property.

– 3 alignments where the difference engine was wrong.

This data suggests that the alt id mechanism is consistently used in the ChEBI devel-
opment process (92/94 = 98% of the time). It also suggests that we have a good false
positive rate (3/97 = 3.1% false positives).

The false negative result is harder to interpret as a percentage, though it is clear
that this result is not as good as the false positive rate. We found that the alt id
annotation indicated 36 alignments between the source and target ontology that the
difference engine did not find. But as we work on improving our false negative count
we will have to be careful not to increase the false positive result by too much.

Enabling the “Match lone siblings” algorithm made the false positive results signifi-
cantly worse. In this case, the difference engine had 11 false positives out of 109 refactor
operations (11/109=10.1% false positive rate). In other words, 2/3 of the alignments
found by the “Match lone siblings” algorithm were wrong. We had noticed this pattern
in other cases and had examples of bad alignments in both the EDAM and the BRO
ontologies.

Finally, we performed a few experiments where we did some smaller differences of
the ChEBI ontologies. The BioPortal includes 31 different versions of ChEBI and we
were able to run the difference engine on each pair of ontologies. Overall, the false
positive rate when we did the diffs incrementally in this way was slightly higher (5%
false positive). In some instances, the false positive rate for an individual difference was
significantly higher. In particular, two of the differences had a false positive rate of 7%.
This happened because, while there was only one false positive alignment, there were
only 13 refactors found altogether. But one of the bigger differences that we tested this
way had a false positive rate of only 3/373=.8% and all but three of the differences
had no false positives.

5 Discussion

In this paper, we have described a heuristic-based tool for finding alignments between
versions of OWL 2 ontologies.

Note that while on the surface there may be similarities with the approaches to
mapping different ontologies (not versions of the same ontology) [2], we believe that the
heuristics we used are applicable largely only in the context of comparing two versions.
They rely on the fact that two versions of the same ontology do not differ nearly as
much as two ontologies that came from different sources.



12 Timothy Redmond and Natasha Noy

Naturally, we would not need to use heuristics to identify the refactor operations,
if the tools for ontology development enabled developers to track these refactors and
to specify them declaratively in the ontology. We have found, for instance, that the
ChEBI ontologies maintain an alt id annotation property that serves as a pointer to
previous versions of a particular concept. For the ChEBI, this property serves as a
highly accurate way of aligning entities from two versions of the ontology. In a similar
way, the NCI tools used annotation properties to record merge and split operations.

One might think that refactor operations would become less common as ontology
developers move towards using “meaningless” identifiers for their concepts. However,
in our experiments with the BioPortal ontologies we found refactor operations among
many ontologies with “meaningless” identifiers.

Specifically, there are two strategies that ontology developers take regarding the
naming of entities. One approach is to make the name of an entity correspond to
something meaningful that users can understand. An example of an ontology that
takes this approach is BRO. For example, to follow is the IRI for the class “Area of
Research” in BRO:

http://bioontology.org/ontologies/ResearchArea.owl#Area_of_Research.

Because in this approach, an IRI for a class has to change any time a typo or a mis-
spelling is fixed, many ontology-development projects consider it to be a good practice
to use meaningless identifiers. In this case, the names for the entities consist of a prefix
followed by a numeric part. So for instance the entity representing “sugar” in ChEBI
has the following IRI:

http://purl.obolibrary.org/obo/chebi_16646.

In order to associate this entity with its readable name (sugar), the ChEBI ontology
provides the entity with an rdfs:label annotation with the value “sugar”. In theory,
when an ontology is developed in this manner, entity names will never change and the
chebi 16646 will always refer to the concept associated with “sugar.”

However, in our experiments, we have found that in several cases, the name of
an entity does change even when the ontology is using numeric names for its entities.
Generally, this change occurs because the namespace used for the ontology entities has
changed. Thus, we can still use the numeric fragment at the end of the full name to
guide how the entities in the two ontologies should be aligned. We noticed this pattern
in several of the ontologies in BioPortal [5].

Even when numeric identifiers are used and the namespace is not changed, there are
occurrences of good matches where the full name of the concept changes. For example,
we did a comparison of the ChEBIontology version 41 against version 81. We found that
the “1,2-oxazoles” concept from version 41 was changed to be the “isoxazoles” concept
in version 81. The ChEBI ontology uses numeric identifier to identify their concepts.
But in the first ontology, the name of the “1,2-oxazoles” concept ended with chebi 46813
and the name of the “isoxazoles” concept ended with chebi 55373. The ontologies in
the ChEBI group were clearly aware of this refactor because in the new ontology there
was an annotation that indicated that the alternative id for the “isoxazoles” concept
was “chebi:46813”.



Protege 4 Difference Engine 13

6 Conclusion

In this paper we have presented a tool that will do a structural comparison of OWL
ontologies. We showed that the algorithm runs reasonably quickly, so that even large
ontologies like the NCI Thesaurus can be easily compared.

In addition, the difference engine has demonstrated the ability to detect non-trivial
refactor operations. In several of the ontologies from the BioPortal, we found alignments
that are not obvious from the perspective of someone who is not a domain expert. For
example, in the ChEBI ontology, there are several cases where the difference engine
would align a concept with a very long label, e.g. 9-(2,3-dideoxy-beta-D-ribofuranosyl)-
1,9-dihydro-6H-purin-6-one) with a different concept with a much shorter label, e.g.
didanosine. In these cases, the only way that we could determine that the alignment
was indeed valid was to notice that the latest version of the ChEBI ontology includes
an alt id annotation property value that indicates that didanosine has an alternative
id of chebi:39738.

As well as being an effective tool, the difference engine is highly flexible. In our
work for NCI, we used a different set of alignment and explanation algorithms that
were custom-tailored to fit their specific needs. We aligned entities based on the code
annotation property as this is guaranteed to be an immutable identifier for entities
developed by an NCI editor. We changed the explanation algorithm to detect merge and
split operations and to present this information in a way that can be easily understood
in the NCI context.

References

1. Duerst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs).
http://www.ietf.org/rfc/rfc3987.txt (January 2005), IETF Network Working
Group

2. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Berlin ; New York (2007)

3. Jiménez-Ruiz, E., Grau, B., Horrocks, I., Berlanga, R.: Building ontologies collab-
oratively using contentcvs. In: Proc. of the International Workshop on Description
Logics (DL). vol. 477. Citeseer

4. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. Automated Reasoning pp. 259–274 (2008)

5. Noy, N., Shah, N., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Montegut, M., Rubin,
D., Youn, C., Musen, M.: Bioportal: A web repository for biomedical ontologies and
data resources. In: Demo session at 7th International Semantic Web Conference
(ISWC 2008). Citeseer (2008)

6. Noy, N., Kunnatur, S., Klein, M., Musen, M.: Tracking changes during ontology
evolution. The Semantic Web–ISWC 2004 pp. 259–273 (2004)

7. Noy, N., Musen, M.: Promptdiff: A fixed-point algorithm for comparing ontology
versions. In: Proceedings of the National Conference on Artificial Intelligence. pp.
744–750. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999
(2002)

8. OWL API. http://owlapi.sourceforge.net

9. OWLdiff Project. http://krizik.felk.cvut.cz/km/owldiff/

10. OWL 2 Web Ontology Language Structural Specification and Functional-Style
Syntax. http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

http://owlapi.sourceforge.net
http://krizik.felk.cvut.cz/km/owldiff/
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/


14 Timothy Redmond and Natasha Noy

11. Sioutos, N., de Coronado, S., Haber, M., Hartel, F., Shaiu, W., Wright, L.: NCI
Thesaurus: A semantic model integrating cancer-related clinical and molecular
information. Journal of Biomedical Informatics 40(1), 30–43 (2007)

12. Tenenbaum, J.D., Whetzel, P.L., Anderson, K., Borromeo, C.D., Dinov, I.D.,
Gabriel, D., Kirschner, B., Mirel, B., Morris, T., Noy, N., Nyulas, C., Rubenson,
D., Saxman, P.R., Singh, H., Whelan, N., Wright, Z., Athey, B.D., Becich, M.J.,
Ginsburg, G.S., Musen, M.A., Smith, K.A., Tarantal, A.F., Rubin, D.L., Lyster,
P.: The biomedical resource ontology (bro) to enable resource discovery in clinical
and translational research. Journal of Biomedical Informatics 44, 137–145 (2011)

13. Tudorache, T., Noy, N., Tu, S., Musen, M.: Supporting collaborative ontology
development in protégé. The Semantic Web-ISWC 2008 pp. 17–32 (2008)

14. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the foundations of computing
deltas between rdf models. The Semantic Web pp. 637–651 (2007)


	Computing the Changes Between Ontologies
	Introduction
	Related Work
	Approach
	The Alignment Phase
	The Explanation Phase

	Early Tests of the Prototype
	Performance of the difference engine
	Accuracy of the difference engine

	Discussion
	Conclusion


