
Learning Vague Concepts for the Semantic Web

Paolo Pareti and Ewan Klein

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK
P.Pareti@sms.ed.ac.uk, ewan@inf.ed.ac.uk

Abstract. Ontologies can be a powerful tool for structuring knowledge,
and they are currently the subject of extensive research. Updating the
contents of an ontology or improving its interoperability with other on-
tologies is an important but difficult process. In this paper, we focus on
the presence of vague concepts, which are pervasive in natural language,
within the framework of formal ontologies. We will adopt a framework
in which vagueness is captured via numerical restrictions that can be
automatically adjusted. Since updating vague concepts, either through
ontology alignment or ontology evolution, can lead to inconsistent sets
of axioms, we define and implement a method to detecting and repairing
such inconsistencies in a local fashion.

1 Introduction

Historically, there has been a close relationship between ontologies on the one
hand, and glossaries, taxonomies and thesauri on the other hand: although formal
ontologies are expressed in a well-defined formal language, many of the intuitions
and terms used in ontologies are derived from their natural language counter-
parts. Nevertheless, there is an obvious mismatch between formal ontologies and
natural language expressions: vagueness is pervasive in natural language, but is
typically avoided or ignored in ontologies.

Following standard usage, we will say that a concept is vague when it ad-
mits borderline cases — that is, cases where we are unable to say whether the
concept holds or fails to hold.1 The standard example involves the adjective tall.
There are some people that we regard as definitely tall, and others we regard as
definitely short; but people of average height are neither tall nor short. Notice
that the source of indeterminacy here is not lack of world knowledge: we can
know that John is, say, 1.80 metres in height, and still be undecided whether he
counts as tall or not.

Rather than trying to capture vague expressions directly (for example, by
means of fuzzy logic), we will view vagueness as a property that characterizes
the definition of certain concepts over a sequence of ontologies deployed by an
agent. While ‘ordinary’ concepts are treated as having a fixed meaning, shared
by all users of the ontology, we propose instead that the meaning of a vague

1 For recent overviews of the very extensive literature on vagueness, see [31, 32]

2 Paolo Pareti and Ewan Klein

concept is unstable, in the sense that the threshold on the scale of height which
distinguishes between being tall and not tall is inherently defeasible.

Is there any reason why we should care about ontologies being able to express
vagueness? As an example, consider FOAF [6], which is one of the most widely
used ontologies on the web. One of FOAF’s core predicates is based near. It is
instructive to read the commentary on this property:

The based near relationship relates two “spatial things” (anything that
can be somewhere), the latter typically described using the geo:lat /
geo:long geo-positioning vocabulary. . .

We do not say much about what ‘near’ means in this context; it is a
‘rough and ready’ concept. For a more precise treatment, see GeoOnion
vocab design discussions, which are aiming to produce a more sophisti-
cated vocabulary for such purposes.

The concept is ‘rough and ready’ in a number of senses: it is undeniably useful; it
is vague in that there are obviously borderline cases; and it is also highly context-
dependent. This latter issue is addressed to a certain extent by the GeoOnion
document [34] which is referenced above, but there is no systematic attempt to
get to grips with vagueness.

We have chosen to implement our approach in OWL 2 [33], since we are inter-
ested in targetting semantic applications on the web, and OWL 2 is sufficiently
expressive for our purposes while offering efficient reasoners such as Pellet [29]
and HermiT [28]. Since the relevant aspects of OWL 2 can also be expressed
more compactly in Description Logic (DL) [3], we will use the latter as our main
vehicle for representing ontologies.

In this paper, we will start off (§1) by considering how to accommodate vague
concepts into a framework such as Description Logic, and we will also situate
the discussion within the wider perspective of ontology evolution and ontology
alignment. Then §2 presents the architecture of the VAGO system, which treats
vague concepts as defeasible; that is, able to be updated when new information
is acquired. §3 describes and discusses a number of experiments in which the
implemented VAGO system runs with both artificial and real-world data. Finally,
§4 provides a conclusion.

2 Representing and Updating Vague Concepts

2.1 Gradable Adjectives and Measures

Adjectives such as tall, expensive and near are often called gradable, in that
they can be combined with degree modifiers such as very and have compar-
ative forms (taller, more expensive). As a starting point for integrating such
predicates into Description Logic, consider the following degree-based semantic
representation of the predicate expensive

expensive ≡ λx.∃d[C(d) ∧ expensive(x) ⪯ d] (1)

Learning Vague Concepts 3

Here, “expensive represents a measure function that takes an entity and returns
its cost, a degree on the scale associated with the adjective” [21], p.349. The
predicate C is a contextually-given restriction which determines the threshold
for things that are definitely expensive. Thus, an object will be expensive if
its cost is greater than the threshold d. The relation expensive resembles a
datatype property in OWL, associating an individual with a data value. In DL,
we could introduce a concept Expensive and constrain its interpretation with a
datatype restriction of the following kind [27], where X is a variable whose role
we will discuss shortly:

Expensive ⊑ ∃hasMeasure.(≥, X) (2)

In [2], an expression such as (≥, 200) is called a predicate name, and corresponds
to an abstraction over a first-order formula, e.g., λx.x ≤ 200.

To gain a more general approach, we will adopt the approach to adjectives
proposed in [1] and make the predicate’s scale (in this case, the cost) explicit:

Expensive ≡ ∃hasProperty.(Cost ⊓ ∃hasMeasure.(≥, X)) (3)

However, we are left with a problem, since we still need some method of to
provide a concrete value in place of X in particular contexts of use. We will
regard X as a metavariable, and to signal its special function, we will call it
an adaptor. Any DL axiom that contains one or more adaptors is an axiom
template. Suppose ϕ[X1, . . . Xn] is an axiom template, X = {X1, . . . Xn} is
the set of adaptors in ϕ and TD is a set of datatype identifiers. A assignment
θ : X 7→ TD is a function which binds a datatype identifier to an adaptor. We
write ϕ[X1, . . . Xn]θ for the result of applying the assignment θ to ϕ[X1, . . . Xn].
For example, if ϕ[X] is the axiom template in (2), then ϕ[X]{X ← 200} is
Expensive ⊑ ∃hasMeasure.(≥, 200).

2.2 Delineations

Gradable adjectives typically come in pairs of opposite polarity; for example, the
negative polarity opposite of expensive is cheap, which we can define as follows:

Cheap ≡ ∃hasProperty.(Cost ⊓ ∃hasMeasure.(≤, X ′)) (4)

Should the value of X ′ in (4) — the upper bound of definitely cheap — be
the same as the value of X in (3) — the lower bound of definitely expensive?
On a partial semantics for vague adjectives, the two will be different. That is,
there be values between the two where things are not clearly expensive or cheap.
One problem with partial valuation is that if C(x) is neither true nor false for
some x then plausible treatments of logical connectives would give the same
undefined value to C(x) ∧ ¬C(x) and C(x) ∨ ¬C(x). However, many logicians
would prefer these propositions to retain their classical values of true and false
respectively. To address this problem, Fine [11] and Kamp [20] proposed the use
of supervaluations, namely valuations which make a partial valuation more

4 Paolo Pareti and Ewan Klein

definitely cheap definitely expensivesupervaluations

Fig. 1. Delineations of a Vague Concept

precise by extending them to a total valuation of the standard kind. In place of
formal details, let’s just consider a diagram: That is, each supervaluation can be
thought of as way of finding some value v in the ‘grey area’ which is both an
upper bound threshold for cheap and a lower bound threshold for expensive.

We adopt a model of vagueness in which vague concepts do receive total
interpretations, but these are to be regarded as similar to supervaluations, in
the sense that there may be multiple admissible delineations for the concept.
The particular delineation that is adopted by an agent in a specific context
can be regarded as the outcome of learning, or of negotiation with other agents.
Consequently, on this approach, vague concepts differ from crisp concepts by only
virtue of their instability: a vague concept is one where the threshold is always
open to negotiation or revision. As we have already indicated, the defeasibility
of threshold is not completely open, but is rather restricted to some borderline
area; however, we will not attempt to formally capture this restriction here.2

2.3 Ontology Evolution and Ontology Alignment

As part of a learning process, an agent should be prepared to update the value
of adaptors occurring in concepts in its ontology. New values can be learned as a
result of interaction with other agents—corresponding to ontology alignment
[10, 8], or as a result of updating its beliefs about the world—corresponding
to ontology evolution [12]. We will examine two important issues. The first
concerns the question of how to automatically update vague concepts in an
ontology as a result of learning new information [35]. The second, closely related
issue, is how to ensure that an ontology is still consistent after some of its axioms
have been modified [22].

Let’s assume we have two ontologies O1 = (S,A1) and O2 = (S,A2) which
share a signature S but have differing axiom sets A1 and A2. Axioms will consist
of concept inclusions C ⊑ D, concept assertions C(a) and role assertions r(a, b).
Suppose A1 contains the following axioms:

LegalAdult(Jo) (5)

LegalAdult ≡ Person ⊓ ∃hasAge.(≥, 18) (6)

2 For more discussion, see [24, 7].

Learning Vague Concepts 5

We now want to update O1 with the axiom set A2, which happens to contain
the following:

hasAge(Jo, 17) (7)

How do we deal with the ensuing inconsistency? The core of our proposal involves
identifying the numerical restriction in (1) as the value of an adaptor parame-
ter, and therefore open to revision. That is, like other approaches to Ontology
Repair, we need to identify and modify axioms that are responsible for causing
an inconsistency. However, we localize the problem to one particular component
of axioms that provide definitions for vague concepts. In this example, the in-
consistency could be solved by changing the value 18 used in the definition of a
LegalAdult to the value of 17.

3 System Architecture

3.1 Overview

As described earlier, vagueness is captured by the ‘semantic instability’ of certain
concepts. This can be seen as an extreme kind of defeasibility: the threshold of a
vague concept has a propensity to shift as new information is received. We have
developed a a computational framework called VAGO in which learning leads to
a change in the extension of vague concepts via the updating of adaptors. This
is the only kind of ontology update that we will be considering here.

The first input to VAGO is the ontology O = (S,A) that will potentially be
updated. We call this the original ontology to distinguish it from the updated
ontology which is the eventual output of the system. The second input is a set
At of axioms, here called training axioms, that will be used to trigger an
update of the original ontology. At is assumed to be part or all of the axiom set
of some other ontology O′ = (S,A′), and uses the same signature S as O.

A schematic representation of VAGO’s architecture is shown in Fig 2. Given
the original ontology and the training axioms as inputs, the framework will
output an updated version of the ontology. The whole process of computing this
output can be divided into three main phases: validation, learning and update.

The goal of the validation phase is to extract diagnostic feedback from the
training axioms. This feedback should provide information about the adaptors
used in the original ontology. In particular, it should state whether an adaptor
is responsible for an inconsistency and if so, propose an alternative value for the
adaptor to remove the inconsistency.

The purpose of second phase, namely learning, is to determine how the values
of adaptors should be updated, given the diagnostic feedback extracted during
validation. These updates will in turn form the input of the third phase, which
controls in detail how the original ontology should be modified to yield the
updated ontology.

6 Paolo Pareti and Ewan Klein

Original
Ontology

Training
Axioms

Updated
Ontology

Learn

Feedback

Update

Are the
adaptors locally
inconsistent? By

how much?

How should the
adaptors be

updated?

When should
the updates
take place?

Validate

Fig. 2. Diagram of System Architecture

3.2 Validation Phase

Validation is the first phase of VAGO and examines the training axioms to pro-
duce a number of diagnostic feedback objects (FOs for short). These will
contain a compact representation of all the information required for the subse-
quent learning phase. Let’s suppose that in the original ontology, it is asserted
that only people over the age of 18 are legal adults, where 18 is the value of
adaptor X. In DL this assertion could be represented by the following axiom
template:

Adult ≡ Person ⊓ ∃hasAge.(≥, X) (8)

with the adaptor X instantiated to the value of 18. Table 1 shows the feedback

Table 1. Example of feedback objects for adaptor X

FO-1 FO-2

Adaptor identifier X X

Was the adaptor correct? False True

Current value of the adaptor 18 18

Required value for the adaptor 16 26

that the validation phase would output after examining the following training

Learning Vague Concepts 7

axioms:

LegalAdult(John) (9)

hasAge(John, 16) (10)

LegalAdult(Jane) (11)

hasAge(Jane, 26) (12)

In this example, training axioms (9) and (10) are incompatible with the defi-
nition of LegalAdult in the original ontology, generating an inconsistency. More
specifically, under the assignment X ← 18, the set consisting of (8) and axioms
(9), (10) is inconsistent, and in such a case we shall say that X ← 18 (or more
briefly, just X) is locally inconsistent. However, this inconsistency can be re-
moved by assigning a new value to X; more specifically, no inconsistency would
arise for X holding a value less than or equal to 16. The optimal new value is
one that removes the inconsistency with the least modification to the current
value of X, which in this case is 16.

How is it possible to automatically determine, among all the possible values
of X, the value v that will remove the inconsistency while differing least from the
current value of X? Fortunately, if v exists, it is straightforwardly recoverable
from training axioms. It is therefore sufficient to consider only a small set of
possible candidate values for the adaptor. Given a set of inconsistent axioms
(possibly minimal) and an adaptor X, algorithm 1 shows how to extract this
candidate set.

Given the set V of values computed by Algorithm 1 for a set A of inconsistent
axioms and an adaptor X, if there is an assignment X ← v which will remove
the inconsistency from axioms A, then v is either included in V , or it is the
immediate predecessor or successor of a value in V .3 For each value v ∈ V , it is
necessary to consider also the first successor and first predecessor to deal with
both strict and non-strict inequalities in numerical constraints.

3.3 Learning Phase

The learning phase is responsible for computing the updates that the original
ontology should adopt, given the feedback objects extracted from the training
axioms. The feedback objects are intended to provide the evidence necessary to
justify a change in the adaptors.

If an adaptor assignment was found to be locally inconsistent, then it reason-
able to assume that there is evidence to support its change. More specifically,
given feedback to the effect that assignment X ← v0 is locally inconsistent
whereas X ← v1 is not, then there is evidence to support a new assigment
X ← v2, where v2 = (v1 − v0).

The validation phase can discover different pieces of evidence supporting
different values [v1, v2, ..., vn] for the same adaptor X. We will assume that the

3 We define b to be the immediate successor of a if a < b and there is no other value
c such that a < c < b; the immediate prececessor is defined in a parallel manner.

8 Paolo Pareti and Ewan Klein

Algorithm 1. Compute all candidate values for set A of inconsistent axioms and
adaptor X

computeAlternativeValues(parameters: inconsistent_axioms ,

adaptor)

values ← empty set

data_relations ← set of relations in inconsistent_axioms

restricted by the adaptor on value of their target

cardinality_relations ← set of relations in

inconsistent_axioms restricted by the adaptor in their

cardinality

all_individuals ← set of individuals in

inconsistent_axioms

foreach individual in all_individuals do

foreach r in data_relations do

data_values ← set of all values that individual is

related to by relation r

values ← values + all data_values

end

foreach r in cardinality_relations do

cardinality ← number of relations r that the

individual has

values ← values + cardinality

end

end

return (values)

update to be computed should be the arithmetic mean of all these possible
values. If the information contained in the training axioms is subject to noise, it
will be desirable to reduce the importance of new values that are far from the
mean v̄. For this purpose, we use a sigmoid function l : R 7→ [0, 1] to reduce
exponentially the importance of a candidate value v the further it is from the
mean v̄. Values far from the mean will be scaled by a factor close to 0 (e.g.,
l(∞) = 0) while those close to the mean will be scaled by a factor close to 1
(e.g., l(0) = 1). Given the distance x from the mean and the standard deviation
δ over the set V of candidate values, a plausible definition for the function l
might be the following (where q and b are free parameters):

l(x) =
1(

1 + (δ/q)e−b(x−2δ)
)q/δ

After these additional considerations, the update u can be computed analytically
using the following formula:

u =
1

n

(
n∑

i=1

vi l(|vi − v̄|)

)

Learning Vague Concepts 9

3.4 Implementation

We have built a Java implementation of VAGO using the OWL API version 3.2.3
[18] to manipulate OWL 2 ontologies.4 Adaptors are identified and modified by
accessing the XML/RDF serialization of the ontology. The operations on the
XML data make use of the JDOM API version 1.1.1 [19]. Additional information
has to be added to the ontology in order to represent adaptors. To preserve the
functionality of the OWL ontologies, any additional information required by
VAGO can be encoded as axiom annotations, or as attributes in the RDF/XML
serialization of the ontology. As a result, this information will be transparent to
any reasoner and it will not change the standard semantics of the ontology.

Adaptors will be identified in OWL ontologies using special labels. More
specifically, if a value v used in axiom A is labeled with an unique identifier
associated with adaptor X, then it is possible to say that X is currently holding
the value v and that the axiom A is dependent on the adaptor X. When the
value of adaptor X is updated to a new value z, then the value v in axiom A
will be replaced with the new value z. If multiple axioms of an ontology are
dependent on adaptor X, then all their internal values associated with X will
change accordingly.

4 Experiments

4.1 Experiments using Artificial Data

The first evaluation of VAGO uses an ontology describing persons and simple
relations between them. The most important definitions in this ontology are the
following:

– Person: a general class representing a human being;

– Minor ≡ Person ⊓ ∃hasAge.(<,X1): a class representing a young person
(defined as a person under the age of X1);

– LegalAdult ≡ Person ⊓ ∃hasAge.(≥, X1): a class representing an adult (de-
fined as a person of age X1 or older);

– BusyParent ≡ Person ⊓ ≥X2parentOf.Minor: a class representing the vague
concept of a busy parent (defined as a person with at least X2 young chil-
dren);

– RelaxedParent ≡ Person ⊓ ∃parentOf.Person ⊓ ¬BusyParent: a class repre-
senting the vague concept of a relaxed parent (defined as a parent that is
not busy);

– hasAge: a functional data property with domain Person and range integer
values;

– parentOf: an object relation between two Persons, a parent and a child.

4 The code for the implementation is available at http://bitbucket.org/ewan/vago/
src.

10 Paolo Pareti and Ewan Klein

The training axioms used in each iteration are produced automatically by gener-
ating instances of the above mentioned classes, and the relations between them.
Since the data is produced automatically, it is possible to know the exact value
that the adaptors should have, namely the value used while producing the data.

Values of X1 over multiple iterations

X1 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

v
a
lu
e
 o
f
X
1

Fig. 3. Plot of the values of adaptor X1 across 40 iterations of the system. The red
squares indicate the value computed by the system, the blue circles indicate the correct
value for that iteration.

In the first scenario, the system tries to adjust the adaptor X1 that defines
the threshold between the concepts Minor and LegalAdult by examining a num-
ber of individuals described in the training axioms. Forty sets of training axioms
are generated, each one containing information about thirty persons. Whether
these individuals are labelled as Minor or LegalAdult depends on their age (ran-
domly determined by the generation algorithm) and on the correct value that X1

should have in that iteration. The correct value for this adaptor changes every 10
iterations to test whether the system can adapt to changes in the environment.
The results of this simulation are shown in Fig. 3. It can be seen that under these
conditions the adaptor X1 quickly converges to a consistent value.

The second scenario is concerned with the evolution of the adaptor X2, which
restricts the cardinality of a relation. In each of the 40 iterations of the system,
a set of training axioms is generated so that the value of X2 in that iteration
is varied randomly. Each set of training axioms contains information about ten
instances of the BusyParent class, such that they are parentOf at least X2 chil-
dren. It also contains ten instances of the class RelaxedParent, such that they are
parentOf less than X2 children.

Fig. 4 illustrates the result of the simulation in this second scenario, and
shows that an adaptor restricting a cardinality (in this case X2) can converge to

Learning Vague Concepts 11

Values of X2 over multiple iterations

X2 Correct value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

of iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

v
a
lu
e
 o
f
X
2

Fig. 4. Plot of the values of adaptor X2 across 40 iterations of the system. The squares
indicate the value computed by the system, the circles indicate the target value for
that iteration.

a consistent value as long as the convergence involves an increase in the value.
If, instead, the convergence reduces the value of the adaptor (as in the last ten
iterations of this simulation), the adaptor will not change. For this reason, X2

is not able to adapt to the last change in the simulation, namely reducing its
value from 6 to 4. The inability to reduce the value of X2, which might seem
undesirable from a practical point of view, is a logical consequence of the Open
World Assumption [9] made by the reasoner used.

4.2 Experiments with Web Data

This second evaluation deals with a hypothetical scenario where the user of
VAGO is a company that owns bookshops in cities around the world. This com-
pany is interested in developing an automatic system to discover cities where it
might be profitable to open a new bookshop by providing a sufficient definition
for the concept ‘profitable place’. We will here make the simplified assumption
that a city centre will be classified as profitable place to open a business if there
are few competitor bookshops nearby. In the centre of a city, potential customers
of books are assumed to reach a bookshop on foot. Therefore in this context the
concept ‘near’ should be interpreted as within walking distance. However, even
after this clarification, two concepts remain underspecified. How many bookshops
should there be in a city centre to be able to say that they are “too many”? And
how many meters away should an object be to count as “near”?

These vague concepts are defined in an OWL ontology using two adaptors.
The first one, C, determines the maximum number of nearby bookshops that a
place can have while still being considered profitable. The second one, D, deter-
mines the maximum number of meters between two places that are considered
near to each other.

12 Paolo Pareti and Ewan Klein

The most important definitions contained in the original ontology used in
this simulation are the following:

– An instance of class Distance should be related to two SpatialThing (the
places between which the distance is computed) and to one integer (the
meters between the two places):
Distance ≡= 2 distBetween.SpatialThing⊓ = 1 distMeasure

– To be considered near, two places should have a CloseDistance between them
(a Distance which measures no more than D meters):
CloseDistance = Distance ⊓ ∃distMeasure.(≤, D)

– A ProfitablePlace is a place that has no more than C bookshops nearby. In
DL, it could be expressed as follows:
ProfitablePlace ≡ SpatialThing ⊓
≤ C hasDistance.(CloseDistance ⊓ ∃distBetween.bookshop)

In order to learn the proper values to give to the adaptors C and D, a series
of training axioms is fed to the system. More specifically, the city centres of
the 30 largest city of the United Kingdom are classified as a ProfitablePlace and
then additional information about each city is extracted using web data. This
additional information describes places (such as bookshops) and the distances
between them. To begin with, the location of a city centre is extracted from
DBpedia [4]. A number of places around that city centre are then obtained from
the Google Places API [14]. Some of these will be already classified Google as
bookshops or as having a CloseDistance between them. The distances between
them are then computed by the Google Distance Matrix API [13]. The resulting
information was subject to noise; for example, several distances measuring more
than ten kilometers were classified as CloseDistance. The sigmoid function used
in the learning phase reduced the effect that values greatly differing from the
mean have on the evolution of the adaptors.

Fig. 5 shows the evolution of adaptor D concurrent with the evolution of the
adaptor C shown in Fig. 6. The ontology produced after the thirty iterations of
this simulation defines a place to be profitable if there are no more than four
bookshops within 1,360 meters distance.

A possible way to determine the correct value for the adaptor C is to consider
the average number of bookshops near the city centres plus its standard deviation
across the iterations (considering just the information contained in the training
axioms). This value is found to be equal to 2.49. In a similar way the average
measure of a CloseDistance plus the standard deviation is calculated as 1,325.
Assuming those values as the correct ones, the final value computed by the
system for the adaptor D differs from the correct value by 4% of the standard
deviation. The final value for adaptor C differs from the correct value by 162%
of the standard deviation.

Learning Vague Concepts 13

Values of d over multiple iterations

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

v
a
lu
e
 o
f
d

Fig. 5. Plot of the values of adaptor d across 30 iterations of the system

5 Related Work

A number of papers have addressed the problem of vagueness in ontologies with
a common methodology of representing the indeterminacy of vague concepts as
a static property, usually in terms of fuzzy logic and probabilistic techniques [25,
30, 5, 23]. The approach we have presented here instead situates the problem of
vagueness within the framework of ontology evolution and ontology alignment.
That is, we focus on the dynamic properties of vague concepts, whereby there
indeterminacy is bound up with their capacity to change and adapt to different
contexts.

Unlike work in Ontology Learning (e.g., [36]), we are not attempting to con-
struct ontologies from raw sources of information, such as unstructured text.
Instead, our approach aims at computing ontological updates by aligning an
existing ontology to another source of ontological information.

Several solutions have been proposed (e.g., [15]) to the problem of resolving
inconsistencies in evolving ontologies, but none of them seem entirely satisfac-
tory. One option is to develop reasoning methods that can cope with inconsistent
axiom sets [26]. However, these methods are hard to automate and can be more
time-consuming than traditional approaches. An alternative, proposed by [17],
is to restrict updates to those that will preserve consistency. The disadvantage
is that many kinds of ontology update will be disallowed, including the modifi-
cation of vague concepts. Yet another strategy is to restore the consistency of
an ontology (ontology repair) when an inconsitency arises. One possibility for
automating the process of ontology repair is to remove some of the axioms that
cause the inconsistency [16]. The axioms removed, however, might roll back the
new changes that were introduced in the ontology or delete part of the ontol-
ogy that should have been preserved. Our strategy for handling inconsistencies
shares similarities with the ontology repair approach but differs from existing
strategies in that no axioms are deleted as a result of the repair process.

14 Paolo Pareti and Ewan Klein

Values of c over multiple iterations

c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

of iterations

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

v
a
lu
e
 o
f
c

Fig. 6. Plot of the values of adaptor c across 30 iterations of the system

6 Conclusion

The VAGO system presented here implements a novel approach for dealing with
vagueness in formal ontologies: a vague concept receives a total interpretation
(regarded as a supervaluation) but is inherently open to change through learn-
ing. More precisely, the meaning of a vague concept is dependent on a number of
values, marked by adaptors, which can be automatically updated. These adap-
tors can be used to define cardinality restrictions and datatype range restrictions
for OWL properties.

The definitions of the vague concepts of an ontology are automatically up-
dated by validating the original ontology against a set of training axioms, thereby
generating an updated ontology. Inconsistencies that arise from combining the
training axioms with the the original ontology are interpreted as a misalignment
between those two sources of ontological information. This misalignment can be
reduced by modifying the values of the adaptors used in the original ontology.
If the axioms of another ontology are used as training axioms for the original
ontology, then the update will result in an improved alignment between the two
ontologies. The preliminary results obtained by the simulations suggest that this
framework could be effectively used to update the definitions of vague concepts
in order to evolve a single ontology or to improve the extension-based alignment
between multiple ontologies.

References

1. Amoia, M., Gardent, C.: Adjective based inference. In: Proceedings of the Work-
shop KRAQ’06 on Knowledge and Reasoning for Language Processing. pp. 20–27.
Association for Computational Linguistics (2006)

Learning Vague Concepts 15

2. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept
languages. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI91).
pp. 452–457. Citeseer (1991)

3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F.,
Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, chap. 3.
Elsevier (2007)

4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: Dbpedia - a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3), 154 – 165 (2009)

5. Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner.
In: Fuzzy Systems, 2008. FUZZ-IEEE 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE International Conference on. pp. 923–930. IEEE (2008)

6. Brickley, D., Miller, L.: FOAF vocabulary specification 0.98, http://xmlns.com/
foaf/spec/

7. Burato, E., Cristiani, M.: Learning as meaning negotiation: A model based on
English auction. In: H̊akansson, A. (ed.) KES-AMSTA 2009, pp. 60–69. No. 5559
in LNAI, Springer-Verlag (2009)

8. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Rec. 35,
34–41 (September 2006), http://doi.acm.org/10.1145/1168092.1168097

9. Drummond, N., Shearer, R.: The Open World Assumption. In: eSI Workshop: The
Closed World of Databases meets the Open World of the Semantic Web (2006)

10. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)

11. Fine, K.: Vagueness, truth, and logic. Synthese 30, 265–300 (1975)

12. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-
tology change: Classification and survey. Knowl. Eng. Rev. 23, 117–152 (June
2008), http://portal.acm.org/citation.cfm?id=1394822.1394823

13. Google Inc.: The Google Distance Matrix API (Website accessed on: 12/08/2011),
http://code.google.com/apis/maps/documentation/distancematrix/

14. Google Inc.: The Google Places API (Website accessed on: 12/08/2011), {http:
//code.google.com/apis/maps/documentation/places/}

15. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework
for handling inconsistency in changing ontologies. In: The Semantic Web – ISWC
2005, Lecture Notes in Computer Science, vol. 3729, pp. 353–367. Springer Berlin
/ Heidelberg (2005)

16. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In: Gómez-Pérez,
A., Euzenat, J. (eds.) The Semantic Web: Research and Applications, Lecture
Notes in Computer Science, vol. 3532, pp. 182–197. Springer Berlin / Heidelberg
(2005)

17. Heflin, J., Hendler, J.: Dynamic ontologies on the web. In: Proceedings of the 17th
National Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence. pp. 443–449. AAAI Press (2000)

18. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL
2 Ontologies. In: OWLED 2009, 6th OWL Experienced and Directions Workshop
(2009)

19. Hunter, J., McLaughlin, B.: JDOM, http://jdom.org/

20. Kamp, H.: Two theories of adjectives. In: Keenan, E. (ed.) Formal Semantics of
Natural Languages. Cambridge University Press (1975)

21. Kennedy, C., McNally, L.: Scale structure, degree modification, and the semantics
of gradable predicates. Language 81(2), 345–381 (2005)

16 Paolo Pareti and Ewan Klein

22. Khattak, A., Pervez, Z., Lee, S., Lee, Y.: After effects of ontology evolution. In:
Future Information Technology (FutureTech), 2010 5th International Conference
on. pp. 1–6. IEEE (2010)

23. Koller, D., Levy, A., Pfeffer, A.: P-CLASSIC: A tractable probablistic description
logic. In: Proceedings of the National Conference on Artificial Intelligence. pp.
390–397. Citeseer (1997)

24. Lehmann, F., Cohn, A.: The EGG/YOLK reliability hierarchy: Semantic data
integration using sorts with prototypes. In: Proceedings of the third international
conference on Information and knowledge management. p. 279. ACM (1994)

25. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Web Semantics: Science, Services and Agents on the
World Wide Web 6(4), 291 – 308 (2008)

26. Ma, Y., Jin, B., Feng, Y.: Dynamic evolutions based on ontologies. Knowledge-
Based Systems 20(1), 98–109 (2007)

27. Magka, D., Kazakov, Y., Horrocks, I.: Tractable extensions of the Description Logic
EL with numerical datatypes. In: Automated Reasoning, Lecture Notes in Com-
puter Science, vol. 6173, pp. 61–75 (2010)

28. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: Automated Deduction – CADE-21, Lecture Notes in Computer
Science, vol. 4603, pp. 67–83 (2007)

29. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semantics: science, services and agents on the World Wide Web
5(2), 51–53 (2007)

30. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: The Fuzzy Description
Logic f-SHIN . In: Proc. of the International Workshop on Uncertainty Reasoning
for the Semantic Web. pp. 67–76. Citeseer (2005)

31. Van Deemter, K.: Not Exactly: In Praise of Vagueness. Oxford Univ Press (2010)
32. Van Rooij, R.: Vagueness and linguistics. In: Ronzitti, G. (ed.) Vagueness: A Guide.

Springer Verlag (2011)
33. W3C OWL Working Group (ed.): OWL 2 Web Ontology Language Document

Overview. W3C (October 2009), http://www.w3.org/TR/owl2-overview/
34. W3C Wiki: GeoOnion, http://www.w3.org/wiki/GeoOnion
35. Zablith, F., Sabou, M., d’Aquin, M., Motta, E.: Ontology evolution with Evolva.

The Semantic Web: Research and Applications pp. 908–912 (2009)
36. Zhou, L.: Ontology learning: state of the art and open issues. Information Tech-

nology and Management 8, 241–252 (2007)

