
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Experiences and Empirical Studies
in Software Modelling (EESSMod 2011) 	
 	

ACM/IEEE 14th International
Conference on Model Driven
Engineering Languages and
Systems, Wellington, New Zealand,
October 16-21, 2011

	

October 17 	

Michel Chaudron, Marcela Genero,
Silvia Abrahão, Parastoo Mohagheghi,
Lars Pareto (Eds)

CEUR Workshop Proceedings Vol. 785 , ISSN 1613-0073

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

i

EESSMod 2011
First International Workshop on Experiences and

Empirical Studies in Software Modelling

Michel Chaudron1, Marcela Genero2, Silvia Abrahão3, Parastoo Mohagheghi4, Lars
Pareto5

1 LIACS – Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
chaudron@liacs.nl

2ALARCOS Research Group, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
Marcela.Genero@uclm.es

3 ISSI Research Group, Department of Information Systems and Computation – Universitat

Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain

sabrahao@dsic.upv.es

4 SINTEF and Norwegian University of Science and Technology
Forskningsveien 1, 0373 Oslo, Norway

parastoo.mohagheghi@sintef.no

5Chalmers – University of Gothenburg
Gothenburg, Sweden
pareto@chalmers.se

Preface

Most software development projects apply modelling in some stages of development and
to various degrees in order to take advantage of the many and varied benefits of it.
Modelling is, for example, applied for facilitating communication by hiding technical
details, analysing a system from different perspectives, specifying its structure and
behaviour in an understandable way, or even for enabling simulations and generating test
cases in a mode-driven engineering approach. Thus, the evaluation of modelling
techniques, languages and tools is needed in order to assess their advantages and
disadvantages, to ensure their applicability to different contexts, their ease of use, and
other issues such as required skills and costs; either isolated or in comparison with other
methods.

The need to reflect and advance on empirical methods and techniques that help
improving the adoption of software modelling in industry led us to organize the first
edition of the International Workshop on Experiences and Empirical Studies in Software
Modelling (EESSMod 2011) that was held in conjunction with the ACM/IEEE 14th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2011). The main purpose of the workshop was to bring together professionals

MODELS'11 Workshop - EESSMod 2011

 ii

and researchers interested in software modelling to discuss in which way software
modelling techniques may be evaluated, share experiences of performing such
evaluations and discuss ideas for further research in this area. The workshop accepted
both experience reports of applying software modelling in industry and research papers
that describe more rigorous empirical studies performed in industry or academia.

These proceedings collect the papers presented at the Workshop. All the submitted
papers were peer-reviewed by three independent reviewers. The accepted papers (5
regular papers) discuss theoretical and practical issues related to experimentation in
software modelling or the use of modelling techniques in industry.

In particular, the paper by Fernández-Sáez et al. presents a controlled experiment for
analysing the influence of the level of detail of UML models on the maintenance of the
corresponding source code. The paper by Zugal et al. proposes a framework for
assessing the impact of hierarchy on model understandability and discusses the
implications for experiments investigating the impact of modularization on conceptual
models. The paper by Carver et al. analyses the frequency with which empirical
evaluation has been reported in the software modelling community. The results of an
analysis of papers published in the MoDELS conference (from 2006-2010) showed that,
of 266 papers, 195 of them (73%) performed no empirical evaluation. The paper by
Leotta et al. presents an experience report on the use of a model-driven method for
developing VECM-based systems in the context of two Italian companies. Finally, the
paper by Cadavid et al. proposes a process for analysing meta-models expressed using
MOF and OCL and reports on the pre-processing of 52 meta-models in order to get them
ready for automatic empirical analysis.

We would like to thank the authors for submitting their papers to the Workshop. We
are also grateful to the members of the Program Committee for their efforts in the
reviewing process, and to the MoDELS2011 organizers for their support and assistance
during the workshop organization. More details on the Workshop are available at
http://www.eesmod.org.

Leiden, Ciudad Real, Valencia, Oslo,
Gothenburg
28 September 2011

Michel Chaudron
Marcela Genero

Silvia Abrahão
Parastoo Mohagheghi

Lars Pareto

MODELS'11 Workshop - EESSMod 2011

 iii

Program Committee

Bente Anda, University of Oslo, Norway
Teresa Baldasarre, Universita' Degli Studi di Bari, Italy
Narasimha Bolloju, University of Hong Kong, China
Lionel Briand, Simula Research Laboratory, Norway
Danilo Caivano, Universita' Degli Studi di Bari, Italy
Karl Cox, University of Brighton, UK
Jose Antonio Cruz-Lemus, University of Castilla-La Mancha, Spain
H. Eichelberger, Universität Hildesheim, Germany
Felix Garcia, University of Castilla-La Mancha, Spain
Carmine Gravino, University of Salerno, Italy
Torchiano Marco, Politecnico di Torino, Italy
Jan Mendling, Humboldt-University Berlin, Germany
James Nelson, Southern Illinois University, USA
Ariadi Nugroho, LIACS, Leiden University, The Nederlands
Jeffrey Parson, Memorial University of Newfoundland, Canada
Keith Phalp, Bournemouth University, UK
Geert Poels, University of Ghent, Belgium
Jan Recker, Queensland University of Technology, Australia
Giuseppe Scaniello, Universita' Degli Studi della Basilicata, Italy
Samira Si-Said Cherfi, CEDRIC-CENAM
Keng Siau, University of Nebraska-Lincoln, USA
Dag Sjøberg, University of Oslo, Norway
Sara Sprenkle, Washington & Lee University, USA
Miroslaw Staron, University of Gothenburg, Sweden

MODELS'11 Workshop - EESSMod 2011

 iv

MODELS'11 Workshop - EESSMod 2011

 v

Content

Preface i

Program committee iii

What do 449 MDE Practitioners Think About MDE? (Keynote Speech) ...…… 1
Jon Whittle

Does the Level of Detail of UML Models Affect the Maintainability of
Source Code? …………………………………………………………...…........ 3
A. M. Fernández-Sáez, M. Genero and M. R.V. Chaudron

Assessing the Impact of Hierarchy on Model Understandability – A
Cognitive Perspective………………………………………………………..... 18
S. Zugal, J. Pinggera, B. Weber, J. Mendling and H. A. Reijers

Assessing the Frequency of Empirical Evaluation in Software Modeling
Research……………………………………………………………….……..... 28
Jeffrey C. Carver, Eugene Syriani and Jeff Gray

Building VECM-based Systems with a Model Driven Approach: an
Experience Report…………………………………………………….……..... 38
M. Leotta, G. Reggio, F. Ricca and E. Astesiano

Empirical evaluation of the conjunct use of MOF and OCL ………………..... 48
J. Cadavid, B. Baudry and B. Combemale

MODELS'11 Workshop - EESSMod 2011

 vi

MODELS'11 Workshop - EESSMod 2011

What do 449 MDE Practitioners Think About MDE?
(Keynote Speech)

Jon Whittle

Computing	
 Department	
 	

Lancaster	
 University,	
 UK	
 	

whittle@comp.lancs.ac.uk

This talk will present the results of an in-depth survey of model-driven engineering
(MDE) industrial practice. The survey, disseminated electronically, consisted of 35
questions on MDE use and received 449 responses. The study focused on six key criteria
related to productivity and maintainability for evaluating MDE success. Each of these
can be impacted positively or negatively depending on how MDE is applied. The study
aimed to understand whether, in current practice, the positive impacts outweigh the
negative ones. Findings indicate that productivity gains from code generation tend to
outweigh losses from integration with existing code. Successful MDE practitioners
follow best practice guidelines by making changes at the model level. MDE allows for
faster turn-arounds on new requirements, but there is a risk that it may prevent
organizations from responding to new business opportunities. Findings also indicate that
MDE increases overall training costs. Finally, UML is not yet universally accepted as
the modeling language of choice and, in fact, domain-specific modeling languages are
much more prevalent than anticipated. This is joint work with John Hutchinson and
Mark Rouncefield.

Biography

Jon Whittle is a full Professor, Chair of Software Engineering and Royal Society
Wolfson Merit Scholar at Lancaster University. He has parallel research interests in
model-driven engineering and social computing. In particular, his recent interests are in
how new social media and social networking can influence or contribute to MDE. Jon
has been intimately involved with the MDE community for over ten years, having served
as Chair of the Steering Committee of MODELS from 2006-2008 and serving as PC
Chair in 2011. He also sits on the editorial board of the Journal of Software and System
Modeling. Jon is currently principal or co-investigator on a number of interdisciplinary
research projects, with a total net worth of around £5M.

MODELS'11 Workshop - EESSMod 2011

- 1 -

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

MODELS'11 Workshop - EESSMod 2011

- 2 -

Does the Level of Detail of UML Models Affect the
Maintainability of Source Code?

Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

1Alarcos Quality Center, S.L., Department of Technologies and Information Systems,
University of Castilla-La Mancha

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
+34 926295300 ext.6648

ana.fernandez@alarcosqualitycenter.com

2ALARCOS Research Group, Department of Technologies and Information Systems,
University of Castilla-La Mancha

Paseo de la Universidad 4, 13071, Ciudad Real, Spain
+34 926295300 Ext. 3740

Marcela.Genero@uclm.es

3LIACS - Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

+31 715277065 (secr 7061)
chaudron@liacs.nl

Abstract. This paper presents an experiment carried out as a pilot study to
obtain a first insight into the influence of the quality of UML models on the
maintenance of the corresponding source code. The quality of the UML models
is assessed by studying the amount of information they contain as measured
through a level of detail metric. The experiment was carried out with 11
Computer Science students from the University of Leiden. The results obtained
indicate a slight tendency towards obtaining better results when using low level
of detail UML models, which contradicts our expectations based on previous
research found in literature. Nevertheless, we are conscious that the results
should be considered as preliminary results given the low number of subjects
that participated in the experiment. Further replications of this experiment are
planned with students and professionals in order to obtain more conclusive
results.

Keywords: UML, maintenance, empirical studies, controlled experiment

1 Introduction

The current increasing complexity of software projects [1] has led to the emergence of
UML [2] as a tool with which to increase the understanding between customer and
developer and to improve communication among team members [3]. Despite this, not
all UML diagrams have the same complexity, layout, level of abstraction, etc.
Previous studies have shown that the style and rigor used in the diagrams may vary

MODELS'11 Workshop - EESSMod 2011

- 3 -

2 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

considerably throughout software projects [4], in addition to affecting the source code
of the system in a different way.

On the one hand, the different purposes for which a model may be intended (for
example: architecting solutions, communicating design decisions, detailed
specification for implementation, or automatically generating implementation code)
signifies that the same system can be represented with different styles. On the other
hand, the development diagrams are sometimes available for maintainers, but this is
not always the case, and the diagrams must be generated with a reverse engineering
process. The difference in the origin of the models and the different techniques that
can be used to generate a reverse engineering model result in different styles of
models. Some of the most notable differences between these models may be the level
of detail shown. In this work we therefore analyze whether the different levels of
detail (LoD) affect the work that must be carried out by a maintainer.

This document is organized as follows. Section 2 presents the related work. Section
3 presents the description of the experiment. The results obtained in the experiment
are presented in Section 4, whilst the threats to validity are summarized in Section 5.
Finally, Section 6 outlines our main conclusions and future work.

2 Related work

We performed an SLR [5] to discover all the empirical studies performed as regards
the use of UML in maintenance, and found only the following two works related to
the maintenance of source code:

─ In [6] an experiment was performed to investigate whether the use of UML
influences maintenance in comparison to the use of only source code. The
results of this work show a positive influence of the presence of UML for
maintainers.

─ In the work presented in [7], the experiment performed is focused on the
comprehension and the difficulties involved in maintaining object-oriented
systems. UML models were also presented to the subjects of the experiment, but
they were only focused on exploring the participant’s strategies and problems
while they were conducting maintenance tasks on an object-oriented
application.

We therefore decided to perform an experiment related to the influence of different
levels of detail on UML diagrams when assisting in maintenance tasks. We found a
paper [8] focused on the understandability of models with different LoD in the
development phase. The results show a better understanding of models when they
have a high LoD. We would like to discover whether high LoD diagrams help
workers to perform the changes that need to be made to the source code during the
maintenance phase.

3 Experiment description

The experiment was carried out at the University of Leiden (The Netherlands) in
March 2011. In order to run and report this experiment, we followed the

MODELS'11 Workshop - EESSMod 2011

- 4 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 3

recommendations provided in several works [9-11]. The experiment was presented by
following the guidelines for reporting empirical research in software engineering [11]
as closely as possible. The experimental material is available for downloading at:
http://alarcos.esi.uclm.es/experimentUMLmaintenance/

In the following subsections we shall describe the main characteristics of the
experiment, including goal, context, variables, subjects, design, hypotheses, material,
tasks, experiment procedure and analysis procedure.

3.1 Goal

The principal goal of this experiment was to investigate whether the LoD in UML
models influences the maintenance of source code. The GQM template for goal
definition [12, 13] was used to define the goal of our experiment as follows: “Analyze
the level of detail in UML models with the purpose of evaluating it with respect to the
maintainability of source code from the point of view of researchers, in the context of
Computer Science students at the University of Leiden.

As in [3], we considered that the LoD in UML models should be defined as the
amount of information that is used to represent a modeling element. LoD is a
'continuous' metric, but for the experiment we have taken two “extremes” - high and
low LoD.

We decided to use 3 different types of diagrams (use case, sequence and class
diagrams) since they are those most frequently used. When the LoD used in a UML
model is low, it typically employs only a few syntactical features, such as class-name
and associations, without specifying any further facts about the class. When it is high,
the model also includes class attributes and operations, association names, association
directionality, and multiplicity. In sequence diagrams, in which there is a low LoD,
the messages among objects have an informal label, and when the LoD is high the
label is a method name plus the parameter list. We consider that it is not possible to
distinguish between low and high LoD in use case diagrams because they are very
simple diagrams. The elements that fit each level of detail are shown in Table 1.

Table 1. Levels of detail in UML models

Diagram Element Low LoD High LoD

Class
diagram

Classes (box and name)  
Attributes 
Types in attributes 
Operations 
Parameters in operations 
Associations  
Association directionalities 
Association multiplicities 
Aggregations  
Compositions  

Sequence
diagram

Actors  
Objects  

MODELS'11 Workshop - EESSMod 2011

- 5 -

4 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

Messages in informal language 
Messages with formal language (name
of a method)

 

Parameters in messages 
Labels in return messages 

3.2 Context Selection

The experimental objects consisted of use case, class and sequence diagrams and the
JAVA code of two software systems, which are summarized below:

─ A-H: high LoD diagrams and JAVA code of system A.
─ A-L: low LoD diagrams and JAVA code of system A.
─ B-H: high LoD diagrams and JAVA code of system B.
─ B-L: low LoD diagrams and JAVA code of system B.

Diagrams A-x described a library domain from which a user can borrow books.
Diagrams B-x described a sport centre domain from which users can rent services
(tennis courts, etc.). System A is a Library extracted from [14]. We decided to use it
because it was a representative system, it was complete (source code and models were
available) and it gave us a starting point from which to compare our results (it was
only possible to compare the results obtained from the subjects who received System
A with high LoD with [7]). System B is a Sport centre application created as part of
the Master’s degree Thesis of a student from the University of Castilla-La Mancha,
and we therefore consider it to be a real system. Both systems are desktop
applications and have more or less the same complexity. These experimental objects
were presented in English.

The subjects students on a Software Engineering course from which they had
acquired training in UML diagrams. Their knowledge was sufficient for them to
understand the given systems, and they had roughly the same background. They had
knowledge about the use of UML diagrams in general, but they were taught about
UML diagrams and JAVA in a training session organized to take place the day before
the experiment was carried out.

The experiment was carried out by 11 Computer Science students from the
University of Leiden (The Netherlands) who were taking the Software Engineering
course in the second-year of their B.Sc.

Working with students also implies various advantages, such as the fact that their
prior knowledge is fairly homogeneous, there is the possible availability of a large
number of subjects [15], and there is the chance to test experimental design and initial
hypotheses [16]. An additional advantage of using novices as subjects in experiments
on comprehensibility and modifiability is that the cognitive complexity of the objects
under study is not hidden by the subjects’ experience. Nonetheless, we also wish to
test the findings with practitioners in order to strengthen the external validity of the
results obtained.

The students who participated in the experiment were volunteers selected for
convenience (the students available in the corresponding course). Social threats

MODELS'11 Workshop - EESSMod 2011

- 6 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 5

caused by evaluation apprehension were avoided by not grading the students on their
performance.

3.3 Variables selection

The independent variable (also called “main factor”) is the LoD, which is a nominal
variable with two values (low LoD and high LoD). We combined each level of the
independent variable with the two different systems used to obtain four treatments
(see Table 2).

The dependent variables are modifiability and understandability. These two
variables were considered because understandability and modifiability directly
influence maintainability [17]. In order to measure these dependant variables, we
defined the following measures:

─ Understandability Effectiveness (UEffec): This measure reflects the ability to
correctly understand the system presented. It is calculated with the following
formula: number of correct answers / number of questions. A higher value of
this measure reflects a better understandability.

─ Modifiability Effectiveness (UEffic): This measure reflects the ability to
correctly modify the system presented. It is calculated with the following
formula: number of correctly performed modification tasks / number of
modification tasks. A higher value of this measure reflects a better modifiability.

─ Understandability Efficiency (MEffec): This measure also reflects the ability to
correctly understand the system presented. It is calculated with the following
formula: time spent / number of correctly answered questions. A lower value of
this measure reflects a better understandability.

─ Modifiability Efficiency (MEffic): This measure also reflects the ability to
correctly modify the system presented. It is calculated with the following
formula: time spent / number of correctly performed tasks. A lower value of this
measure reflects a better modifiability.

Additional independent variables (called “co-factors”) were considered according
to the experimental design of the replication, and their effect has been controlled and
analyzed:

─ Order. The selected design (see Table 2), i.e., the variation in the order of
application of each method (low LoD, high LoD), was intended to alleviate
learning effects. Nonetheless, we analyzed whether the order in which the LoD
were used by the subjects biased the results.

─ System. This factor indicates the systems (i.e., A and B) used as experimental
objects. The design selected for the experiment (see Table 2) forced us to
choose two application domains in order to avoid learning effects. Our intention
was that the system factor would not be a confounding factor that might also
influence the subjects’ performances. We therefore selected well-known
domains and experimental objects of a similar complexity.

MODELS'11 Workshop - EESSMod 2011

- 7 -

6 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

3.4 Hypotheses formulation

Based on the assumption that the more information a model contains, the more is
known about the concepts/knowledge described in the model, the hypothesis are:

1. H1,0: There is no significant difference in the subjects’ understandability
effectiveness when working with UML diagrams modeled using high or low levels
of detail.
H1,1:H1,0

2. H2,0: There is no significant difference in the subjects’ understandability efficiency
when working with UML diagrams modeled using high or low levels of detail.
H2,1:H2,0

3. H3,0: There is no significant difference in the subjects’ modifiability effectiveness
when working with UML diagrams modeled using high or low levels of detail.
H3,1:H3,0

4. H4,0: There is no significant difference in the subjects’ modifiability efficiency
when working with UML diagrams modeled using high or low levels of detail.
H4,1: H4,0

The goal of the statistical analysis will be to reject these null hypotheses and
possibly to accept the alternative ones (e.g., Hn1=¬ Hn0).

3.5 Experimental design

We selected a balanced factorial design in which the group-interaction acted as a
confounding factor [18] which permits the lessening of the effects of learning and
fatigue. The experiment’s execution consisted of two runs. In each round, each of the
groups was given a different treatment. The corresponding system (source code +
UML models) was assigned to each group at random, but was given out in a different
order in each case. Table 2 presents the outline of the experimental design.

Table 2. Experimental design

RUN 1 LoD RUN 2 LoD
 Low High Low High

System
A Group 1 Group 2

System
A Group 3 Group 4

B Group 3 Group 4 B Group 2 Group 1

Before carrying out the experiment, we provided the subjects with a background

questionnaire and assigned them to the 4 groups randomly, based on the marks
obtained in the aforementioned questionnaire (blocked design by experience) in an
attempt to alleviate experience effects. To avoid a possible learning effect, the
diagrams came from different application domains (A-a Library and B-a Sport
centre).

When designing the experiment we attempted to alleviate several issues that might
threaten the validity of the research done by considering the suggestions provided in
[19].

MODELS'11 Workshop - EESSMod 2011

- 8 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 7

3.6 Experimental tasks

The tasks to be performed did not require high levels of industrial experience, so we
believed that the use of students could be considered appropriate, as suggested in
literature [20, 21]. The material used was written in English.

There were three kinds of tasks:

─ Understandability task: This contained 3 questions concerning the semantics
of the system, i.e. the semantics of diagrams and the semantics of code. These
questions were multiple choice questions and were used to obtain UEffec and
UEffic.

─ Modifiability task: The subjects received a list of requirements in order to
modify the code of the system in order to add/change certain functionalities.
This part of the experiment contained 3 modifiability tasks and allowed us to
calculate MEffec and MEffic. The subjects were provided with answer sheets to
allow them to structure their responses related to maintenance tasks. They had to
fill in a different form depending on the element that they wished to maintain.
The answer sheets can be found at:

http://alarcos.esi.uclm.es/experimentUMLmaintenance/

─ Post-questionnaire task: At the end of the execution of each run, the subjects
were asked to fill in a post-experiment questionnaire, whose goal was to obtain
feedback about the subjects’ perception of the experiment execution, which
could be used to explain the results obtained. The answers to the questions were
based on a five-point Likert scale [22].

3.7 Experimental procedure

The experiment took place in two sessions of two hours each. The subjects first
attended a training session in which detailed instructions on the experiment were
presented and the main concepts of UML and JAVA were revised. In this session, the
subjects carried out an exercise similar to those in the experimental tasks in
collaboration with the instructor. During the training session, the subjects were
required to fill in a background questionnaire. Based on the marks obtained in this
questionnaire, the subjects were randomly assigned to the 4 groups shown in Table 2,
thus obtaining balanced groups in accordance with the marks obtained in the
background questionnaire.

The experiment then took place in a second session, consisting of two runs. In each
run, each of the groups was given a different treatment, as is shown in Table 2.

The experiment was conducted in a classroom, where the students were supervised
by the instructor and no communication among them was allowed.

After the experiment execution, the data collected from the experiment were placed
on an excel sheet.

3.8 Analysis procedure

The data analysis was carried out by considering the following steps:

MODELS'11 Workshop - EESSMod 2011

- 9 -

8 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

1. We first carried out a descriptive study of the measures of the dependent variables,
i.e., understandability and modifiability.

2. We then tested the formulated hypotheses using the non-parametric Kruskal-Wallis
test [23] for the data collected in the experiment. The use of this test was possible
because, according the design of the controlled experiment, we obtained paired
samples. In addition, Kruskal-Wallis is the most appropriate test with which to
explore the results of a factorial design with confounded interaction [18, 24], i.e.,
the design used in our experiment, when there is non-normal distribution of the
data.

3. We next used the Kruskal-Wallis test to analyze the influence of the co-factors
(i.e., System and Order).

4. The data collected from the post-experiment questionnaire was finally analyzed
using bar graphs.

4 Results

The following subsections show the results of the data analysis of the experiment
performed using SPSS [25].

4.1 Descriptive statistics and exploratory analysis

Table 3 and Table 4 show the descriptive statistics of the Understandability and
Modifiability measures, respectively (i.e., mean (), standard error (SE), and
standard deviation (SD)), grouped by LoD.

Table 3. Descriptive statistics for UEffec and UEffic.

LoD Subjects
Ueffec UEffic

SE SD SE SD
Low N = 10 (1 outlier) 0.767 0.051 0.161 334.500 36.308 114.816
High N = 11 0.758 0.650 0.215 363.924 82.602 273.960

Table 4. Descriptive statistics for Meffec and MEffic.

LoD Subjects
Meffec MEffic

 SE SD SE SD
Low N = 11 0.437 0.066 0.221 240.121 41.008 136.007
High N = 11 0.402 0.050 0.169 294.637 47.198 156.539

At a glance, we can observe that when the subjects used low LoD diagrams they

obtained better values in all variables. This indicates that low LoD diagrams may, to
some extent, improve the comprehension and modification of the source code.

MODELS'11 Workshop - EESSMod 2011

- 10 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 9

4.2 Influence of LoD

In order to test the formulated hypotheses we analyzed the effect of the main factor
(i.e. LoD) on the dependent variables considered (i.e., UEffec, UEffic, MEffec and
MEffic) using the Kruskal-Wallis test (see Table 5).

Table 5. Kruskal-Wallis test results for Ueffec, Ueffic, Meffec and Meffic

 Ueffec UEffic Meffec MEffic
LoD 1 0.439 0.792 0.491

Testing H1,0 (UEffec)
The results in Table 5 suggest that the null hypothesis cannot be rejected since the p-
value is greater than 0.05. This means that there is no significant difference in UEffec in
either group.

 We decided to investigate this result in greater depth by calculating the number of
subjects who achieved better values when using the low LoD models (i.e. a low LoD
value is higher than a high LoD value):

Table 6. Comparison of subjects’ results for each measure

 low LoD = high LoD low LoD < high LoD low LoD > high LoD
UEffec 6 3 2
UEffic 0 7 4
MEffec 0 7 4
MEffic 0 5 6

As Table 6 shows, the number of subjects who obtained the same results for both

treatments (high and low LoD) is relatively high. There were more subjects who
performed better with a high LoD than with a low LoD, but the differences in
comparison to the opposite group is very small (only one subject).

Testing H2,0 (UEffic)
The results in Table 5 suggest that the null hypothesis cannot be rejected since the p-
value is greater than 0.05. This means that there is no significant difference in UEffic in
either group.

 We decided to investigate this result in greater depth by calculating the number of
subjects who achieved better values when using the low LoD models (i.e. a low LoD
value is smaller than a high LoD value):

As Table 6 shows, no subjects obtained the same UEffic for both treatments (high
and low LoD). More subjects performed better with a low LoD than with a high LoD.

Testing H3,0 (MEffec)
The results in Table 5 suggest that the null hypothesis cannot be rejected since the p-
value is greater than 0.05. This means that there is no significant difference in MEffec
in either group.

MODELS'11 Workshop - EESSMod 2011

- 11 -

10 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

 We decided to investigate this result in greater depth by calculating the number of
subjects who achieved better values when using the low LoD models (i.e. a low LoD
value is higher than a high LoD value):

As Table 6 shows, no subjects obtained the same MEffec for both treatments (high
and low LoD). More subjects performed better with a high LoD than with a low LoD.

Testing H4,0 (MEffic)
The results in Table 5 suggest that the null hypothesis cannot be rejected since the p-
value is greater than 0.05. This means that there is no significant difference in MEffic
in either group.

 We decided to investigate this result in greater depth by calculating the number of
subjects who achieved better values when using the low LoD models (i.e. a low LoD
value is smaller than a high LoD value):

As Table 6 shows, no subjects obtained the same MEffic for both treatments (high
and low LoD). More subjects performed better with a high LoD than with a low LoD,
but the differences in comparison to the opposite group are also small.

4.3 Influence of system

In order to test the effect of the co-factor System, we performed a Kruskal-Wallis test
whose results are shown in Table 7. As all the p-values were higher than 0.05, except
in one case (UEffic), we did not have sufficient evidence to reject the hypothesis, i.e. it
seems that the system did not influence the subjects’ performance (and this was
therefore a controlled co-factor).

Table 7. Kruskal-Wallis test results for the influence of the System.

 Ueffec UEffic Meffec MEffic
System 0.804 0.035 0.575 0.061

4.4 Influence of order

In order to test the effect of Order, we performed a Kruskal-Wallis test (see Table 8).
As all p-values were higher than 0.05, we did not have sufficient evidence to reject
the hypothesis, i.e. the order did not influence the subjects’ performance (and this was
therefore a controlled co-factor).

Table 8. Kruskal-Wallis tests results.

 Ueffec UEffic Meffec MEffic
Order 1 0.105 0.223 0.341

4.5 Post- experiment survey questionnaire results

The analysis of the answers to the post-experiment survey questionnaire revealed that
the time needed to carry out the comprehension and modification tasks was

MODELS'11 Workshop - EESSMod 2011

- 12 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 11

considered to be inappropriate (more time was needed), and that the subjects
considered the tasks to be quite difficult (Fig. 1).

 We also asked about the subjects’ perception of some of the items that appeared in
the high LoD diagrams but did not appear in the low LoD diagrams. Fig. 2 shows that
high LoD elements seem to be appreciated by the subjects. With regard to the
histograms in Fig. 2, if a subject responds 1 or 2, this indicates that s/he thinks that the
element in the question was helpful, while a response of 4 or 5 indicates that the
elements in the question are not helpful (3 is a neutral response). If we focus on the
elements related to class diagrams (upper histograms) we can see that attributes are
helpful for 9 subjects (versus 1 subject who does not believe them to be helpful). The
same is true of operations (10 subjects vs. 1 subject). If we focus on the elements
related to sequence diagrams (lower histograms) we can see that formal messages are
more helpful (16 subjects) than natural language messages (0 subjects), and the same
can also be said of the appearance of parameters in messages (13 subjects vs. 2
subjects).

4.6 Summary and discussion of the data analysis

The null hypothesis cannot be rejected for any of the dependent variables. Although
we cannot draw conclusive results on the main factor (LoD), we have found that co-
factors (system, order) have not influenced the results.

Nevertheless, the descriptive statistics in general showed a slight tendency in favor
of using low LoD diagrams in contrary to what we believed, as the diagrams with a
high LoD helped developers in the software development stage [8]. This may result
from the fact that the subjects did not have the expected amount of knowledge about
UML (a mean of 8.8 correct answers out of 16 questions) and JAVA (a mean of 4.9
correct answers out of 9 questions) tested in the background questionnaire. The results
of the experiment must be considered as preliminary results owing to the small size of
the group of subjects who participated in the experiment.

Fig. 1. Subjects' perception of the experiment.

MODELS'11 Workshop - EESSMod 2011

- 13 -

12 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

	

5 Threats to Validity

We must consider certain issues which may have threatened the validity of the
experiment:

─ External validity: External validity may be threatened when experiments are
performed with students, and the representativeness of the subjects in
comparison to software professionals may be doubtful. In spite of this, the tasks
to be performed did not require high levels of industrial experience, so we
believed that this experiment could be considered appropriate, as suggested in
literature [13]. There are no threats related to the material used since the systems
used were real ones.

─ Internal validity: Internal validity threats are mitigated by the design of the
experiment. Each group of subjects worked on the same system in different
orders. Nevertheless, there is still the risk that the subjects might have learned
how to improve their performances from one performance to the other.
Moreover, the instrumentation was tested in a pilot study in order to check its
validity. In addition, mortality threats were mitigated by offering the subjects
extra points in their final marks.

─ Conclusion validity: Conclusion validity concerns the data collection, the
reliability of the measurement, and the validity of the statistical tests. Statistical
tests were used to reject the null hypotheses. We have explicitly mentioned and
discussed when non-significant differences were present. What is more,

Fig. 2. Subjects’ opinion of LoD (1=Complete Agreement 2=Partial Agreement
3=Neither agree/ nor disagree 4=Partial Disagreement 5=Total disagreement)

MODELS'11 Workshop - EESSMod 2011

- 14 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 13

conclusion validity might also be affected by the number of observations.
Further replications on larger datasets are thus required to confirm or contradict
the results.

─ Construct validity: This may be influenced by the measures used to obtain a
quantitative evaluation of the subjects’ performance, the comprehension
questionnaires, the maintenance tasks, and the post-experiment questionnaire.
The metrics used were selected to achieve a balance between the correctness
and completeness of the answers. The questionnaires were defined to obtain
sufficiently complex questions without them being too obvious. The post-
experiment questionnaire was designed using standard forms and scales. Social
threats (e.g., evaluation apprehension) have been avoided, since the students
were not graded on the results obtained.

6 Conclusions and future work

The main concern of the research presented in this paper is the use of a controlled
experiment to investigate whether the use of low or high level of detail in UML
diagrams influences the maintainer’s performance when understanding and modifying
source code. The experiment was carried out by 11 academic students from the
University of Leiden in the Netherlands.

The results obtained are not significant owing to various factors such as the fact
that the subjects selected had a low level of experience in using UML and JAVA
code, and the small size of the group of subjects who participated in the experiment. It
is only possible to observe a slight tendency towards obtaining better results with low
LoD diagrams, contrary to the results obtained in [8].

Despite these drawbacks, we have ensured that the experimental results were not
influenced by other co-factors such as the system used or the order in which the
subjects received the experimental material.

We are planning to perform two replications with students from the University of
Castilla-La Mancha (Spain) and students from the University of Bari (Italy). A third
possible replication with professionals is also being planned. All the drawbacks found
in the execution of this experiment will be taken into account in the replications.

Acknowledges. This research has been funded by the following projects: MEDUSAS
(CDTI-MICINN and FEDER IDI- 20090557), ORIGIN (CDTI-MICINN and FEDER
IDI-2010043(1-5), PEGASO/MAGO (MICINN and FEDER, TIN2009-13718-C02-
01), EECCOO (MICINN TRA2009-0074), MECCA (JCMM PII2I09-0075-8394) and
IMPACTUM (PEII 11-0330-4414).

References
1. Van Vliet, H., Software Engineering: Principles and Practices 3rd ed. 2008:

Wiley.
2. OMG. The Unified Modeling Language. Documents associated with UML Version

2.3 2010; Available from: http://www.omg.org/spec/UML/2.3.
3. Nugroho, A. and M.R.V. Chaudron. Evaluating the impact of UML modeling on

software quality: An industrial case study. in Proceeding of 12th International

MODELS'11 Workshop - EESSMod 2011

- 15 -

14 Ana M. Fernández-Sáez1, Marcela Genero2, and Michel R.V. Chaudron3

Conference on Model Driven Engineering Languages and Systems (MODELS’09).
2009.

4. Lange, C.F.J. and M.R.V. Chaudron, In practice: UML software architecture and
design description. IEEE Software, 2006. 23(2): p. 40-46.

5. Fernández-Sáez, A.M., M. Genero, and M.R.V. Chaudron, Empirical studies on
the influence of UML in software maintenance tasks: A systematic literature
review. Submitted to Science of Computer Programming - Special issue on
Software Evolution, Adaptability and Maintenance, Elsevier.

6. Dzidek, W.J., E. Arisholm, and L.C. Briand, A realistic empirical evaluation of
the costs and benefits of UML in software maintenance. IEEE Transactions on
Software Engineering, 2008. 34(3): p. 407-432.

7. Karahasanovic, A. and R. Thomas. Difficulties Experienced by Students in
Maintaining Object-Oriented Systems: an Empirical Study. in Proceedings of the
Australasian Computing Education Conference (ACE'2007) 2007.

8. Nugroho, A., Level of detail in UML models and its impact on model
comprehension: A controlled experiment. Information and Software Technology,
2009. 51(12): p. 1670-1685.

9. Juristo, N. and A. Moreno, Basics of Software Engineering Experimentation.
2001: Kluwer Academic Publishers.

10. Wohlin, C., et al., Experimentation in Software Engineering: an Introduction.
2000: Kluwer Academic Publisher.

11. Jedlitschka, A., M. Ciolkowoski, and D. Pfahl, Reporting Experiments in Software
Engineering, in Guide to Advanced Empirical Software Engineering F. Shull, J.
Singer, and D.I.K. Sjøberg, Editors. 2008, Springer Verlag.

12. Basili, V. and D. Weiss, A Methodology for Collecting Valid Software
Engineering Data. IEEE Transactions on Software Engineering, 1984. 10(6): p.
728-738.

13. Basili, V., F. Shull, and F. Lanubile, Building Knowledge through Families of
Experiments. IEEE Transactions on Software Engineering, 1999. 25: p. 456-473.

14. Eriksson, H.E., et al., UML 2 Toolkit. 2004: Wiley.
15. Verelst, J. The Influence of Abstraction on the Evolvability of Conceptual Models

of Information Systems. in International Symposium on Empirical Software
Engineering (ISESE'04). 2004.

16. Sjøberg, D.I.K., et al., A Survey of Controlled Experiments in Software
Engineering. IEEE Transaction on Software Engineering, 2005. 31(9): p. 733-753.

17. ISO/IEC, ISO/IEC 25000: Software Engineering, in Software product quality
requirements and evaluation (SQuaRe). 2008, International Organization for
Standarization.

18. Kirk, R.E., Experimental Design. Procedures for the Behavioural Sciences. 1995:
Brooks/Cole Publishing Company.

19. Wohlin, C., et al., Experimentation in Software Engineering: An Introduction.
2000, Norwell, MA, USA: Kluwer Academic Publishers.

20. Basili, V., F. Shull, and F. Lanubile, Building Knowledge through Families of
Experiments. IEEE Transactions on Software Engineering, 1999. 25(4): p. 456-
473.

21. Höst, M., B. Regnell, and C. Wholin. Using students as subjects - a comparative
study of students and professionals in lead-time impact assessment. in 4th

MODELS'11 Workshop - EESSMod 2011

- 16 -

Does the Level of Detail of UML Models Affect the Maintainability of Source Code? 15

Conference on Empirical Assessment and Evaluation in Software Engineering.
2000.

22. Oppenheim, A.N., Questionnaire Design, Interviewing and Attitude Measurement.
1992: Pinter Publishers.

23. Conover, W.J., Practical Nonparametric Statistics. 3rd ed. 1998: Wiley.
24. Winer, B.J., D.R. Brown, and K.M. Michels, Statistical Principles in

Experimental Design. 3rd ed. 1991: Mc Graw Hill Series in Psychology.
25. SPSS, SPSS 12.0, Syntax Reference Guide. 2003, Chicago, USA: SPSS Inc.

MODELS'11 Workshop - EESSMod 2011

- 17 -

Assessing the Impact of Hierarchy on Model
Understandability—A Cognitive Perspective

Stefan Zugal1, Jakob Pinggera1, Barbara Weber1, Jan Mendling2, and Hajo A.
Reijers3

1 University of Innsbruck, Austria
{stefan.zugal|jakob.pinggera|barbara.weber}@uibk.ac.at

2 Humboldt-Universität zu Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

3 Eindhoven University of Technology, The Netherlands
h.a.reijers@tue.nl

Abstract. Modularity is a widely advocated strategy for handling com-
plexity in conceptual models. Nevertheless, a systematic literature review
revealed that it is not yet entirely clear under which circumstances mod-
ularity is most beneficial. Quite the contrary, empirical findings are con-
tradictory, some authors even show that modularity can lead to decreased
model understandability. In this work, we draw on insights from cognitive
psychology to develop a framework for assessing the impact of hierarchy
on model understandability. In particular, we identify abstraction and
the split-attention effect as two opposing forces that presumably medi-
ate the influence of modularity. Based on our framework, we describe an
approach to estimate the impact of modularization on understandabil-
ity and discuss implications for experiments investigating the impact of
modularization on conceptual models.

1 Introduction

The use of modularization to hierarchically structure information has for decades
been identified as a viable approach to deal with complexity [1]. Not surprisingly,
many conceptual modeling languages provide support for hierarchical structures,
such as sub-processes in business process modeling languages like BPMN and
YAWL [2] or composite states in UML statecharts. While hierarchical structures
have been recognized as an important factor influencing model understandabil-
ity [3, 4], there are no definitive guidelines on their use yet. For instance, for
business process models, recommendations for the size of a sub-process, i.e.,
sub-model, range from 5–7 model elements [5] over 5–15 model elements [6] to
up to 50 model elements [7]. Also in empirical research into conceptual models
(e.g., ER diagrams or UML statecharts) the question of whether and when hi-
erarchical structures are beneficial for model understandability seems not to be
entirely clear. While it is common belief that hierarchy has a positive influence
on the understandability of a model, reported data seems often inconclusive or
even contradictory, cf. [8, 9].

MODELS'11 Workshop - EESSMod 2011

- 18 -

2 S. Zugal et al.

As suggested by existing empirical evidence, hierarchy is not beneficial by de-
fault [10] and can even lead to performance decrease [8]. The goal of this paper
is to have a detailed look at which factors cause such discrepancies between the
common belief in positive effects of hierarchy and reported data. In particular,
we draw on concepts from cognitive psychology to develop a framework that de-
scribes how the impact of hierarchy on model understandability can be assessed.
The contribution of this theoretical discussion is a perspective to disentangle the
diverse findings from prior experiments.

The remainder of this paper is structured as follows. In Sect. 2 a systematic
literature review about empirical investigations into hierarchical structuring is
described. Afterwards, concepts from cognitive psychology are introduced and
put in the context of conceptual models. Then, in Sect. 3 the introduced concepts
are used as basis for our framework for assessing the impact of hierarchy on
understandability, before Sect. 4 concludes with a summary and an outlook.

2 The Impact of Hierarchy on Model Understandability

In this section we revisit results from prior experiments on the influence of hierar-
chy on model understandability, and analyze them from a cognitive perspective.
Sect. 2.1 summarizes literature reporting experimental results. Sect. 2.2 describes
cognitive foundations of working with hierarchical models.

2.1 Existing Empirical Research into Hierarchical Models

The concept of hierarchical structuring is not only applied to various domains,
but also known under several synonyms. In particular, we identified synonyms
hierarchy, hierarchical, modularity, decomposition, refinement, sub-model, sub-
process, fragment and module. Similarly, model understandability is referred to
as understandability or comprehensibility. To systematically identify existing em-
pirical investigations into the impact of hierarchy on understandability within
the domain of conceptual modeling, we conducted a systematic literature re-
view [11]. More specifically, we derived the following key-word pattern for our
search: (synonym modularity) X (synonym understandability) X experiment X
model. Subsequently, we utilized the cross-product of all key-words for a full-text
search in the online portals of Springer1, Elsevier2, ACM3 and IEEE 4 to cover
the most important publishers in computer science, leading to 9,778 hits. We
did not use any restriction with respect to publication date, still we are aware
that online portals might provide only publications of a certain time period. In
the next step, we removed all publications that were not related, i.e., did not
consider the impact of hierarchy on model understandability or did not report

1 http://www.springerlink.com
2 http://www.sciencedirect.com
3 http://portal.acm.org
4 http://ieeexplore.ieee.org

MODELS'11 Workshop - EESSMod 2011

- 19 -

Assessing the Impact of Hierarchy on Model Understandability 3

empirical data. All in all, 10 relevant publications passed the manual check, re-
sulting in the list summarized in Table 1. Having collected the data, all papers
were systematically checked for the influence of hierarchy. As Table 1 shows,
reported data ranges from negative influence [12] over no influence [12–14] to
mostly positive influence [15]. These experiments have been conducted with a
wide spectrum of modeling languages. It is interesting to note though that di-
verse effects have been observed for a specific notation such as statecharts or
ER-models. In general, most experiments are able to show an effect of hierarchy
either in a positive or a negative direction. However, it remains unclear under
which circumstances positive or negative influences can be expected. To approach
this issue, in the following, we will employ concepts from cognitive psychology
to provide a systematic view on which factors influence understandability.

Work Findings

Moody [15]
Domain: ER-Models

Positive influence on accuracy, no influence / neg-
ative influence on time

Reijers et al. [16, 17]
Domain: Business Process Models

Positive influence on understandability for one out
of two models

Cruz-Lemus et al. [9, 18]
Domain: UML Statecharts

Series of experiments, positive influence on under-
standability in last experiment

Cruz-Lemus et al. [13]
Domain: UML Statecharts

Hierarchy depth of statecharts has no influence

Shoval et al. [14]
Domain: ER-Models

Hierarchy has no influence

Cruz-Lemus et al. [8]
Domain: UML Statecharts

Positive influence on understandability for first
experiment, negative influence in replication

Cruz-Lemus et al. [12, 19]
Domain: UML Statecharts

Hierarchy depth has a negative influence

Table 1. Empirical studies into hierarchical structuring

2.2 Inference: A General-Purpose Problem Solving Process

As discussed in Sect. 2.1, the impact of hierarchy on understandability can range
from negative over neutral to positive. To provide explanations for these diverse
findings, we turn to insights from cognitive psychology. In experiments, the un-
derstandability of a conceptual model is usually estimated by the difficulty of
answering questions about the model. From the viewpoint of cognitive psychol-
ogy, answering a question refers to a problem solving task. Thereby, three different
problem-solving “programs” or “processes” are known: search, recognition and
inference [20]. Search and recognition allow for the identification of information
of low complexity, i.e., locating an object or the recognition of patterns. Most
conceptual models, however, go well beyond complexity that can be handled
by search and recognition. Here, the human brain as a “truly generic problem
solver” [21] comes into play. Any task that can not be solved by search or recogni-
tion, has to be solved by deliberate thinking, i.e., inference, making inference the
most important cognitive process for understanding conceptual models. Thereby,
it is widely acknowledged that the human mind is limited by the capacity of its

MODELS'11 Workshop - EESSMod 2011

- 20 -

4 S. Zugal et al.

working memory, usually quantified to as 7±2 slots [22]. As soon as a mental
task, e.g., answering a question about a model, overstrains this capacity, errors
are likely to occur [23]. Consequently, mental tasks should always be designed
such that they can be processed within this limit; the amount of working memory
a certain task thereby utilizes is referred to as mental effort [24].

In the context of this work and similar to [25], we take the view that the
impact of modularization on understandability, i.e., the influence on inference,
ranges from negative over neutral to positive. Seen from the viewpoint of cogni-
tive psychology, we can identify two opposing forces influencing the understand-
ability of a hierarchically structured model. Positively, hierarchical structuring
can help to reduce the mental effort through abstraction by reducing the num-
ber of model elements to be considered at the same time [15]. Negatively, the
introduction of sub-models may force the reader to switch her attention between
the sub-models, leading to the so-called split-attention effect [26]. Subsequently,
we will discuss how these two forces presumably influence understandability.

Abstraction. Through the introduction of hierarchy it is possible to group a part
of a model into a sub-model. When referring to such a sub-model, its content
is hidden by providing an abstract description, such as a complex activity in a
business process model or a composite state in an UML statechart. The con-
cept of abstraction is far from new and known since the 1970s as “information
hiding” [1]. In the context of our work, it is of interest in how far abstraction
influences model understandability. From a theoretical point of view, abstraction
should show a positive influence, as abstraction reduces the amount of elements
that have to be considered simultaneously, i.e., abstraction can hide irrelevant
information, cf. [15]. However, if positive effects depend on whether information
can be hidden, the way how hierarchy is displayed apparently plays an impor-
tant role. Here, we assume, similar to [15, 17], that each sub-model is presented
separately. In other words, each sub-model is displayed in a separate window if
viewed on a computer, or printed on a single sheet of paper. The reader may
arrange the sub-models according to her preferences and may close a window or
put away a paper to hide information. To illustrate the impact of abstraction,
consider the BPMN model shown in Fig. 1. Assume the reader wants to deter-
mine whether the model allows for the execution of sequence A, B, C. Through
the abstraction introduced by sub-processes A and C, the reader can answer this
question by looking at the top-level process only (i.e., activities A, B and C);
the model allows to hide the content of sub-processes A and C for answering this
specific question, hence reducing the number of elements to be considered.

Split-Attention Effect. So far we have illustrated that abstraction through hier-
archical structuring can help to reduce mental effort. However, the introduction
of sub-models also has its downsides. When extracting information from the
model, the reader has to take into account several sub-models, thereby switch-
ing attention between sub-models. The resulting split-attention effect [26] then
leads to increased mental effort, nullifying beneficial effects from abstraction.
In fact, too many sub-models impede understandability, as pointed out in [4].

MODELS'11 Workshop - EESSMod 2011

- 21 -

Assessing the Impact of Hierarchy on Model Understandability 5

Again, as for abstraction, we assume that sub-models are viewed separately. To
illustrate this, consider the BPMN model shown in Fig. 1. To assess whether
activity J can be executed after activity E, the reader has to switch between
the top-process as well as sub-processes A and C, causing her attention to split
between these models, thus increasing mental effort.

A B C

D

E

F

H

J

I

Fig. 1. Example of hierarchical structuring

While the example is certainly artificial and small, it illustrates that it is
not always obvious in how far hierarchical structuring impacts a model’s under-
standability.5

3 Assessing the Impact of Hierarchy

Up to now we discussed how the cognitive process of inferencing is influenced by
different degrees of hierarchical structuring. In Sect. 3.1, we define a theoretical
framework that draws on cognitive psychology to explain and integrate these
observations. We also discuss the measurement of the impact of hierarchy on
understanding in Sect. 3.2 along with its sensitivity to model size in Sect. 3.3
and experience in Sect. 3.4. Furthermore, we discuss the implications of this
framework in Sect. 3.5 and potential limitations in Sect. 3.6.

questionabout answers

answer

yields

model
understandability

estimates

hierarchy

has

influences

Model Subject

influences

Fig. 2. Research model

3.1 Towards a Cognitive Framework

The typical research setup of experiments investigating the impact of hierarchy,
e.g., as used in [8, 9, 15, 17, 18], is shown in Fig. 2. The posed research question

5 At this point we would like to remark that we do not take into account class diagrams
hierarchy metrics, e.g. [27], since such hierarchies do not provide abstraction in the
sense we define it. Hence, they fall outside our framework.

MODELS'11 Workshop - EESSMod 2011

- 22 -

6 S. Zugal et al.

thereby is how the hierarchy of a model influences understandability. In order
to operationalize and measure model understandability, a common approach is
to use the performance of answering questions about a model, e.g., accuracy or
time, to estimate model understandability [9, 17, 18]. In this sense, a subject is
asked to answer questions about a model; whether the model is hierarchically
structured or not serves as treatment.

When taking into account the interplay of abstraction and split-attention ef-
fect, as discussed in Sect. 2.2, it becomes apparent that the impact of hierarchy
on the performance of answering a question might not be uniform. Rather, each
individual question may benefit from or be impaired by hierarchy. As the esti-
mate of understandability is the average answering performance, it is essential
to understand how a single question is influenced by hierarchy. To approach this
influence, we propose a framework that is centered around the concept of mental
effort, i.e., the load imposed on the working memory [24], as shown in Fig. 3. In
contrast to most existing works, where hierarchy is considered as a dichotomous
variable, i.e., hierarchy is present or not, we propose to view the impact of hier-
archy as the result of two opposing forces. In particular, every question induces
a certain mental effort on the reader caused by the question’s complexity, also
referred to as intrinsic cognitive load [23]. This value depends on model-specific
factors, e.g., model size, question type or layout, and person-specific factors, e.g.,
experience, but is independent of the model’s hierarchical structure. If hierarchy
is present, the resulting mental effort is decreased by abstraction, but increased
by the split-attention effect. Based on the resulting mental effort, a certain an-
swering performance, e.g., accuracy or time, can be expected. In the following,
we discuss the implications of this framework. In particular, we discuss how to
measure the impact of hierarchy, then we use our framework to explain why
model size is important and why experience affects reliable measurements.

performanceabstraction

split-attention effect

mental effort

question complexity

induces

determineslowers

increases

hierarchy

enables

causes

Fig. 3. Theoretical framework for assessing understandability

3.2 Measuring the Impact on Model Understandability.

As indicated [9, 8, 15, 17, 18] it is unclear whether and under which circumstances
hierarchy is beneficial. As argued in Sect. 2.2, hierarchical structuring can affect
answering performance positively by abstraction and negatively by the split-
attention effect. To make this trade-off measurable for a single question, we pro-
vide an operationalization in the following. We propose to estimate the gains of
abstraction by counting the number of model elements that can be “hidden” for
answering a specific question. Contrariwise, the loss through the split-attention
effect can be estimated by the number of context switches, i.e., switches be-
tween sub-models, that are required to answer a specific question. To illustrate

MODELS'11 Workshop - EESSMod 2011

- 23 -

Assessing the Impact of Hierarchy on Model Understandability 7

the suggested operationalization, consider the UML statechart in Fig. 4. When
answering the question whether sequence A, B is possible, the reader presumably
benefits from the abstraction of state C, i.e., states D, E and F are hidden—
leading to a gain of three (hidden model elements). On the contrary, when an-
swering the question, whether the sequence A, D, E, F is possible, the reader
does not benefit from abstraction, but has to switch between the top-level state
and composite state C. In terms of our operationalisation, no gains are to be
expected, since no model element is hidden. However, two context switches when
following sequence A, D, E, F, namely from the top-level state to C and back,
are required. Overall, it can be expected hierarchy compromises this question.

A

B

C

X

Y
W

D

F

E

Z

Fig. 4. Abstraction versus split-attention effect

Regarding the use of this operationalization we have two primary purposes in
mind. First, it shall help experimenters to design experiments that are not biased
toward/against hierarchy by selecting appropriate questions. Second, on the long
run, the operationalization could help to estimate the impact of hierarchy on a
conceptual model. Please note that these applications are to be viewed under
some limitations as discussed in Sect. 3.6.

3.3 Model Size

Our framework defines two major forces that influence the impact of hierar-
chy on understandability: abstraction (positively) and the split-attention effect
(negatively). In order that hierarchy is able to provide benefits, the model must
be large enough to benefit from abstraction. Empirical evidence for this theory
can be found in [9]. The authors conducted a series of experiments to assess
the understandability of UML statecharts with composite states. For the first
four experiments no significant differences between flattened models and hier-
archical ones could be found. Finally, the last experiment showed significantly
better results for the hierarchical model—the authors identified increased com-
plexity, i.e., model size, as one of the main factors for this result. While it seems
very likely that there is a certain complexity threshold that must be exceeded,
so that desired effects can be observed, it is not yet clear where exactly this
threshold lies. To illustrate how difficult it is to define this threshold, we would
like to provide an example from the domain of business process modeling, where
estimations range from 5–7 model elements [5] over 5–15 elements [6] to 50 el-
ements [7]. In order to investigate whether such a threshold indeed exists and
how it can be computed, we envision a series of controlled experiments. Therein,
we will systematically combine different model sizes with degrees of abstraction
and measure the impact on the subject’s answering performance.

MODELS'11 Workshop - EESSMod 2011

- 24 -

8 S. Zugal et al.

3.4 Experience

Besides the size of the model, the reader’s experience is an important subject-
related factor that should be taken into account [28]. To systematically answer
why this is the case, we would like to refer to Cognitive Load Theory [23]. As
introduced, it is known that the human working memory has a certain capacity,
if it is overstrained by some mental task, errors are likely. As learning causes
additional load on the working memory, novices are more likely to make mistakes,
as their working memory is more likely to be overloaded by the complexity of
the problem solving task in combination with learning. Similarly, less capacity is
free for carrying out the problem solving task, i.e, answering the question, hence
lower performance with respect to time is to be expected. Hence, experimental
settings should ensure that most mental effort is used for problem solving instead
of learning. In other words, subjects are not required to be experts, but must
be familiar with hierarchical structures. Otherwise, it is very likely that results
are influenced by the effort needed for learning. To strengthen this case, we
would like to refer to [8], where the authors investigated composite states in
UML statecharts. The first experiment showed significant benefits for composite
states, i.e., hierarchy, whereas the replication showed significant disadvantages
for composite states. The authors state that the “skill of the subjects using
UML for modeling, especially UML statechart diagrams, was much lower in this
replication”, indicating that experience plays an important role.

3.5 Discussion

The implications of our work are threefold. First, hierarchy presumably does not
impact answering performance uniformly. Hence, when estimating model under-
standability, results depend on which questions are asked. For instance, when
only questions are asked that do not benefit from abstraction, but suffer from
the split-attention effect, a bias adversely affecting hierarchy can be expected.
None of the experiments presented in Sect. 2.1 describes a procedure for defining
questions, hence inconclusive results may be attributed to unbalanced questions.
Second, for positive effects of hierarchy to appear, presumably a certain model
size is required [9]. Third, a certain level of expertise is required that the impact
of hierarchy instead of learning is measured, as to be observed in [8].

3.6 Limitations

While the proposed framework is based on established concepts from cognitive
psychology and our findings coincide with existing empirical research, there are
some limitations. First, our proposed framework is currently based on theory
only, an empirical evaluation is yet missing. To counteract this problem, we are
currently planning a thorough empirical validation, cf. Sect. 4. In this vein, also
the operationalization of abstraction and split-attention effect needs to be inves-
tigated. For instance, we do not know yet whether a linear increase in context
switches also results in a linearly decreased understandability, or the correlation

MODELS'11 Workshop - EESSMod 2011

- 25 -

Assessing the Impact of Hierarchy on Model Understandability 9

can be described by, e.g., a quadratic or logarithmic behavior. Second, our pro-
posal focuses on the effects on a single question, i.e., we can not yet assess the
impact on the understandability of the entire model. Still, we think that the
proposed framework is a first step towards assessing the impact on model under-
standability, as it is assumed that the overall understandability can be computed
by averaging the understandability of all possible individual questions [29].

4 Summary and Outlook

We first had a look at studies on the understandability of hierarchically struc-
tured conceptual models. Hierarchy is widely recognized as viable approach to
handle complexity—still, reported empirical data seems contradictory. We draw
from cognitive psychology to define a framework for assessing the impact of hier-
archy on model understandability. In particular, we identify abstraction and the
split-attention effect as opposing forces that can be used to estimate the impact
of hierarchy with respect to the performance of answering a question about a
model. In addition, we use our framework to explain why model size is a prereq-
uisite for a positive influence of modularization and why insufficient experience
can bias measurement in experiments. We acknowledge that this work is just the
first step towards assessing the impact of hierarchy on model understandability.
Hence, future work clearly focuses on empirical investigation. First, the proposed
framework is based on well-established theory, still, a thorough empirical vali-
dation is needed. We are currently preparing an experiment for verifying that
the interplay of abstraction and split-attention effect can actually be observed
in hierarchies. In this vein, we also pursue the validation and further refinement
of the operationalization for abstraction and split-attention effect.

References

1. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15 (1972) 1053–1058

2. van der Aalst, W., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30 (2005) 245–275

3. Davies, R.: Business Process Modelling With Aris: A Practical Guide. Springer
(2001)

4. Damij, N.: Business process modelling using diagrammatic and tabular techniques.
Business Process Management Journal 13 (2007) 70–90

5. Sharp, A., McDermott, P.: Workow Modeling: Tools for Process Improvement and
Application Development. Artech House (2011)

6. Kock, N.F.: Product flow, breadth and complexity of business processes: An em-
pirical study of 15 business processes in three organizations. Business Process
Re-engineering & Management Journal 2 (1996) 8–22

7. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guide-
lines (7pmg). Information & Software Technology 52 (2010) 127–136

8. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Piattini, M.: Evaluating the Effect
of Composite States on the Understandability of UML Statechart Diagrams. In:
Proc. MODELS ’05. (2005) 113–125

MODELS'11 Workshop - EESSMod 2011

- 26 -

10 S. Zugal et al.

9. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assess-
ing the understandability of UML statechart diagrams with composite states—A
family of empirical studies. Empir Software Eng 25 (2009) 685–719

10. Burton-Jones, A., Meso, P.N.: Conceptualizing systems for understanding: An em-
pirical test of decomposition principles in object-oriented analysis. ISR 17 (2006)
38–60

11. Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from
applying the systematic literature review process within the software engineering
domain. JSS 80 (2007) 571–583

12. Cruz-Lemus, J., Genero, M., Piattini, M.: Using controlled experiments for vali-
dating uml statechart diagrams measures. In: Software Process and Product Mea-
surement. Volume 4895 of LNCS. Springer Berlin / Heidelberg (2008) 129–138

13. Cruz-Lemus, J., Genero, M., Piattini, M., Toval, A.: Investigating the nesting level
of composite states in uml statechart diagrams. In: Proc. QAOOSE ’05. (2005)
97–108

14. Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the
model, method of creation and experimental evaluation. Requirements Engineering
9 (2004) 217–228

15. Moody, D.L.: Cognitive Load Effects on End User Understanding of Conceptual
Models: An Experimental Analysis. In: Proc. ADBIS ’04. (2004) 129–143

16. Reijers, H., Mendling, J., Dijkman, R.: Human and automatic modularizations of
process models to enhance their comprehension. Inf. Systems 36 (2011) 881–897

17. Reijers, H., Mendling, J.: Modularity in Process Models: Review and Effects. In:
Proc. BPM ’08. (2008) 20–35

18. Cruz-Lemus, J.A., Genero, M., Morasca, S., Piattini, M.: Using Practitioners for
Assessing the Understandability of UML Statechart Diagrams with Composite
States. In: Proc. ER Workshops ’07. (2007) 213–222

19. Cruz-Lemus, J.A., Genero, M., Piattini, M., Toval, A.: An empirical study of the
nesting level of composite states within uml statechart diagrams. In: Proc. ER
Workshops. (2005) 12–22

20. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand
Words. Cognitive Science 11 (1987) 65–100

21. Tracz, W.J.: Computer programming and the human thought process. Software:
Practice and Experience 9 (1979) 127–137

22. Miller, G.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review 63 (1956) 81–97

23. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognitive
Science 12 (1988) 257–285

24. Paas, F., Tuovinen, J.E., Tabbers, H., Gerven, P.W.M.V.: Cognitive Load Mea-
surement as a Means to Advance Cognitive Load Theory. Educational Psychologist
38 (2003) 63–71

25. Wand, Y., Weber, R.: An ontological model of an information system. IEEE TSE
16 (1990) 1282–1292

26. Sweller, J., Chandler, P.: Why Some Material Is Difficult to Learn. Cognition and
Instruction 12 (1994) 185–233

27. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20 (1994) 476–493

28. Reijers, H.A., Mendling, J.: A Study into the Factors that Influence the Under-
standability of Business Process Models. SMCA 41 (2011) 449–462

29. Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On Measuring the Understand-
ability of Process Models. In: Proc. BPM Workshops ’09. (2009) 465–476

MODELS'11 Workshop - EESSMod 2011

- 27 -

Assessing the Frequency of Empirical Evaluation in

Software Modeling Research

Jeffrey C. Carver, Eugene Syriani, Jeff Gray

University of Alabama, Department of Computer Science

Tuscaloosa, Alabama USA

{carver, esyriani, gray}@cs.ua.edu

Abstract. Researchers in software modeling often publish new tools or

methodologies that claim to offer some advantage to the modeling community.

There are different methods by which those claims can be evaluated. In this

paper, we examine the degree to which such claims are supported by various

types of empirical evaluation. We surveyed five editions of the MoDELS

conference from 2006-2010, as well as the primary conference that focuses on

empirical software engineering (the International Symposium on Empirical

Software Engineering and Metrics), to understand the frequency with which

empirical evaluation has been reported in the software modeling community.

Our summary of 266 MoDELS papers found that 195 (73%) of the publications

performed no empirical evaluation. This paper summarizes our findings from

that survey and offers recommendations for improving the awareness and need

for empirical evaluation in software modeling research.

Keywords: Empirical software engineering, Model-driven Engineering

1. Introduction

Research into software modeling has attracted many creative and transformative ideas

over the past decade, ranging from new methods for defining languages and

transforming their model instances, to higher level performance analysis and

verification tools that abstract the essence of some system property. Although the

novelty of software modeling research has led to numerous advances, the collective

body of work in this area has not always followed the typical tenets of a scientific

discipline. One of the key precepts of scientific investigation is the ability to repeat an

experiment to verify that some new scientific discovery can be confirmed under

numerous scenarios. For most contributions in model-driven engineering, some new

tool or technique is often proposed and discussed through an illustrative case study,

but generally is not evaluated at the level of rigor assumed for a traditional empirical

evaluation.

Our suspicion about the level of empirical studies in modeling research led to this

summary paper that analyzes the degree of empirical evaluation in software modeling

research. To approach this topic, we analyzed the most recent five editions (from

2006 through 2010) of the most influential conference in software modeling – the

MODELS'11 Workshop - EESSMod 2011

- 28 -

conference on Model-Driven Engineering, Languages and Systems (MoDELS). Two

of the authors of this paper (Gray and Syriani) have themselves published papers at

this conference that did not contain an empirical evaluation. We were curious about

the extent to which this practice is common in the software modeling community. In

addition to observing contributions at MoDELS, we also considered the prevalence of

modeling papers at a venue focused on empirical software engineering. The

remainder of this paper summarizes our findings from an analysis of 266 MoDELS

papers. Our suspicions were confirmed by our analysis, which suggests that a large

majority of research papers in the modeling community fail to provide any level of

empirical evidence to support the claims of benefit made in those papers.

The next section of this paper provides an overview of empirical studies and the

methodology that we used in conducting our analysis of MoDELS papers. Section 3

presents the results of our analysis of the MoDELS conference and our analysis of

software modeling papers that have appeared in the flagship empirical software

engineering conference, the International Symposium on Empirical Software

Engineering and Measurement (ESEM). Section 4 discusses the results of the analysis

in more detail. Finally, we conclude the paper in Section 5.

2. Overview of Empirical Studies and Methodology

For a new modeling tool or technique to become used, the developer of the tool or

technique must demonstrate its value. Although a proof-of-concept or illustrative

example are important first steps in establishing the usefulness of a technique or tool,

claims about the usefulness of modeling techniques and tools cannot be fully

validated without the use of various types of empirical studies. An empirical study is a

validation method that draws conclusions based on observations (as opposed to proof,

argumentation, or expert opinion).

In the larger software engineering community, empirical studies have commonly

been used to understand developer behavior in a number of important areas. There is

an entire sub-community focused on validating software engineering claims via

empirical study. This sub-community has a conference (ESEM), a Springer journal

(Empirical Software Engineering) and a number of handbooks [3], [9], [14]. The first

author of this paper comes from this community.

The goal of this investigation was to determine how many papers had some type of

empirical evaluation of their claims. We realize that there are evaluation methods

other than empirical studies (e.g., demonstration/proof-of-concept or theoretical

proof). But, in this paper, we focus only on empirical evaluation. Among the three

authors, two are experts in the modeling domain and one is an expert in the empirical

software engineering domain. Working together, we were able to complement each

other’s expertise to perform this analysis.

We used a three-step process for identifying which papers contain an empirical

component. The first step was to develop an initial characterization scheme. Next, the

two modeling experts individually analyzed the proceedings of various years of the

MoDELS proceedings to identify and classify the papers. Third, the empirical studies

expert reviewed the papers identified in step two and validated the classification of

MODELS'11 Workshop - EESSMod 2011

- 29 -

those papers. Step 3 resulted in some modifications to the characterization scheme.

The remainder of this section describes each step in more detail.

2.1. Step 1 – Develop an initial characterization scheme

We began with the assumption that there are two types of empirical studies: those that

are more analytical (i.e., perform some type of analysis of a tool and its properties

without using humans) and those that are human-based (i.e., they involved studying

one or more people using a modeling technique). For each type of study, we created

two categories: “non-rigorous” and “rigorous.” The difference between rigorous and

non-rigorous was subjective and ill-defined at this first stage of analysis.

Because we had no preconceived notions of the results of the literature search, this

initial characterization scheme was necessarily vague. We realized that after

examining the actual papers, we would have to refine the characterization scheme to

accurately describe the identified papers.

2.2. Step 2 – Identification of candidate papers

The two modeling experts divided the five years of MoDELS proceedings between

them and individually analyzed all of the papers. For each paper, they first determined

whether there was any type of empirical study and whether it was human-based. At

this stage, they also made a subjective determination as to whether a paper was

rigorous. After this step, we developed a spreadsheet that characterized each paper

into one of five categories: no empirical study, non-rigorous non-human, rigorous

non-human, non-rigorous human and rigorous human.

2.3. Step 3 – Review of candidate papers and finalization of characterization

The empirical software engineering expert then reviewed each paper that the

modeling experts identified during Step 2 as having an empirical study. The goal of

this process was to provide a second observation to validate the characterization from

Step 2. During the review, it quickly became apparent that our initial characterization

scheme was inadequate. We refined the initial characterization as follows.

First, we more clearly defined the term “empirical study.” Some of the candidate

papers identified during Step 2 really contained just a demonstration or

implementation of the new tool or technique rather than an empirical study. In fact,

several MoDELS papers had an “Evaluation” section that was merely a discussion of

lessons learned, rather than what those in the empirical software engineering

community would call an empirical study. We clarified the definition of what we

considered as an empirical study to exclude papers that clearly did not gather any type

of data to evaluate the proposed tool or technique.

MODELS'11 Workshop - EESSMod 2011

- 30 -

In reviewing the papers, we identified two types of empirical papers:

1. Papers that propose a new tool or technique and then perform some type of

evaluation of it.

2. Papers that gather information about the use of modeling techniques in

practice. These papers do not propose new approaches; rather, they study

existing approaches or survey users to develop requirements for tools or

techniques that may be needed. We call these papers Formative Case

Studies, as opposed to the Illustrative Case Studies that just illustrate the use

of a new tool or technique.

Second, we refined the original characterization scheme to define more concretely the

categories into which the papers could be classified. The revised characterization

scheme is as follows:

1. No empirical evaluation – the paper did not provide any type of empirical

evaluation of the proposed tool or technique (this, unfortunately, represented

the overwhelming majority of the papers we analyzed).

2. Non-human evaluation of the proposed tool/technique only – the paper

offered some type of empirical evaluation (e.g., performance or correctness)

of the proposed tool, but did not compare the new tool against other tools or

benchmarks.

3. Non-human evaluation of proposed tool/technique by comparison with other

tools – the paper provided an empirical evaluation by comparing the

proposed tool/technique against one or more existing tools or benchmarks to

evaluate some aspect of the new tool/technique.

4. Observation of humans using new tool/technique – the paper discussed and

analyzed the results from the use of the new tool/technique by one or more

people other than the authors of the paper.

5. Human-based controlled experiment – the paper described a controlled

experiment where the new tool/technique was compared against one or more

existing approaches through a human-based controlled experiment where

each participant used one or more approaches and provided data that could

be analyzed to evaluate the new tool/technique.

6. Formative case study – as defined above.

3. Results of Literature Survey

This section summarizes the results of our survey of the MoDELS papers and of the

modeling papers that appeared in the ESEM conference.

MODELS'11 Workshop - EESSMod 2011

- 31 -

Table 1. Results of the survey of the papers published at MoDELS 2006-2010

3.1. Results of MoDELS Survey

In the empirical evaluations conducted, we analyzed a total of 266 papers published at

MoDELS from 2006-2010. The complete analysis of the papers took approximately

18 hours of observation and recording. Table 1 summarizes the results of this

assessment.

It is very clear that, for each year, the number of papers without any evaluation

was predominant: ranging from 61% in 2010 up to 82% in 2006. However, the

tendency seems to suggest a rising awareness and influence of the need for empirical

studies, as we note an average decrease of about 4% each year in the number of

papers with no evaluation (there is a 21% drop in the “No Evaluation” category from

the beginning of our study period to the end of the period over the five years

observed). We have no direct evidence for the cause of this improvement, but

feedback sent to authors on reviews over the period of the study may suggest the

emerging demand among the Program Committee for more rigorous evaluation.

Those papers that did have some form of empirical study were often restricted to

simple evaluations of performance or correctness of the proposed tool/technique

without comparing it to other results (41% of the those papers describing an empirical

study were in the “No comparison” category). The papers in 2007 seem to be the only

exception, where 11% of all papers addressed comparisons with other tools or

benchmarks.

On average, about 11% of the papers were supported by empirical studies

involving humans. In this category, 42% of the papers contained controlled

experiments, representing not more than 7% of all papers (years 2008 and 2010). The

number of papers where the evaluation was observed by at least one external

participant has been quite steady at about 3% of all papers. Formative case studies are

gaining popularity with up to 6% of all the papers in 2010.

The “Total” row (at the bottom of Table 1) shows the portions occupied by each of

the categorizations defined in Section 2 across all years. Although 73% of the papers

published at MoDELS do not contain an evaluation, 10% of the papers only evaluate

their own tool without any comparison to other approaches. Thus, only the remaining

17% of the papers involve an empirical evaluation of the proposed tool or technique.

However, according to Fig. 1, this number is increasing every year: up to 24% in

2010. This trend may suggest that authors are aware of the lack of empirical evidence

in the modeling community and are now working on filling this gap.

MODELS'11 Workshop - EESSMod 2011

- 32 -

Fig. 1. Evolution of the empirical studies involved in MoDELS 2006-2010 papers

3.2 Results of ESEM Survey

As evidenced by the discussion in the previous section, the MoDELS conference

appears to be focused mainly on proposing new tools and techniques without rigorous

evaluation. To the authors’ credit, the paper length restrictions of the LNCS format

used in MoDELS leave little space for discussion of formal evaluation. The ESEM

conference is a general software engineering conference that focuses on the empirical

evaluation of newly proposed techniques across all software engineering topics. We

analyzed the same five years of the ESEM conference to determine whether more

formal evaluations of modeling research were being published there. To identify the

set of papers, we queried the proceedings using the following keywords: “UML,”

“DSL,” “metamodel,” “model,” and “model-driven.” The modeling experts then

vetted the results of the search to ensure that the papers were within the scope of

software modeling.

Based on this analysis, we can make a few interesting observations. The ESEM

conference has three types of papers: Regular Papers, Short Papers, and Posters. In

total, we only found 17 modeling papers across the five years that we analyzed

ESEM. Of those 17 papers, only 4 were Regular Papers (10 pages IEEE or ACM

format) out of a total of 178 Regular Papers and 10 were Short Papers (4 pages) out of

a total of 118 Short Papers. Thus, even when software modeling papers are published

in an empirical venue, they tend to be shorter and do not provide a high-level of

detail. In analyzing the five years of ESEM, we were not able to identify any trends

MODELS'11 Workshop - EESSMod 2011

- 33 -

that would suggest the prominence of modeling papers is increasing in the empirical

software engineering community. One final observation, in comparing the author lists

and titles of the ESEM papers against the empirical MoDELS papers, we found very

little overlap; only one paper seemed to be about the same tool or technique. Thus, the

cross-pollination of results across the two communities seems to be very low.

4. Observations from Our Survey

This section provides a summary of our observations about the papers that focused on

controlled experiments and formative case studies.

4.1. Controlled Experiments

Across the five years of the MoDELS conference, we found twelve controlled

experiments [1], [2], [5], [6], [7], [8], [10], [11], [12], [13], [15], [16]. This category

of papers serves as an example of the types of papers that we feel should be more

prevalent within the MoDELS community. In this section, we provide a brief

discussion of some of the trends observed in these controlled experiment papers.

Overall, the level of detail reported by the authors of these papers is quite low. We

realize that this level of reporting is likely affected by paper length restrictions and the

need to fully describe the newly proposed tool or technique as the core contribution of

the paper. Although we do not have the space to evaluate the quality of each study in

detail, there are two important factors that are relatively easy to evaluate: 1) the

number of participants, and 2) whether the participants were students or professionals.

In terms of the number of participants in the studies, one half of the identified

papers had less than 25 participants, and only two studies had more than 50

participants. Furthermore, one study did not even report the number of participants. In

terms of the type of participant, only one study had professionals as a portion of the

participants. The overwhelming majority of the studies relied on undergraduates with

only a few using graduate students. Over 33% of the studies did not specify whether

the participants were students or professionals. The use of student participants is not

necessarily bad, but researchers need to make a clear case as to why student

participants are a valid population for the question under investigation [4].

There does not appear to be a significant trend in the number of controlled

experiments reported. From 2006 through 2008, the number was increasing. Then,

there was a large drop of such experiments in 2009. The percentage of controlled

experiments in 2010 was equivalent to the percentage reported in 2008. Even in the

best years, only 7% of the papers reported controlled experiments. In general, we

would like to see an increase in both the frequency and diversity of controlled

experiments within the modeling community.

MODELS'11 Workshop - EESSMod 2011

- 34 -

4.2. Formative Case Studies

Across the five years of the MoDELS conference, we found ten Formative Case

Study papers. There were two types of Formative Case Studies. First, there were four

studies that did not involve humans. These studies tended to analyze some existing

source code to understand how various modeling tools would or would not work

effectively. Second, there were six studies that focused on humans. These studies

mostly used a survey method to understand how existing tools were not meeting the

needs of developers. The output of many of these studies was a set of requirements

for new tools that were needed. Contrary to the Controlled Experiments, which

focused heavily on student participants, the Formative Case Studies were focused

more on industrial settings. Similar to the Controlled Experiments, we would also like

to see additional Formative Case Studies that provide input to tool and method

developers to help ensure that their work is relevant to the needs of practitioners.

5. Conclusion

This paper provides evidence that the rigor of empirically validated research in

software modeling is rather weak and should be a focus of future authors of MoDELS

papers. The high-level of incidence of papers with no evaluation is somewhat

alarming when compared to other software engineering venues (e.g., ICSE) where

empirical evaluation is more expected as a scientific contribution. Overall, the level of

empirical evaluation as seen in the software modeling community is quite low for a

scientific and engineering discipline. A goal of this paper is to raise the awareness of

this issue to assist in progressing the area of software modeling with a more scientific

underpinning. Our own future work will include a similar analysis of papers in the

software modeling community’s flagship journal – Software and Systems Modeling.

As part of this work, we posit that there is a need for more controlled experiments

within the modeling community. We realize that there are at least three factors that

are hindering these types of studies being conducted. First, many researchers in the

modeling community may lack the background or training to carry out empirical

studies. This situation is evidenced by the fact that authors frequently mention

“validation experiments” which are nothing more than the application of the findings

or a toy example. Second, many researchers in the modeling community are more

interested in creating new tools and techniques than they are in performing the

rigorous evaluation of those techniques. Third, given the length restrictions of the

formatting style in the MoDELS conference, there is often not adequate space to

discuss both the new tool or technique and its validation, so most researchers seem to

opt for devoting space to the definition of the tool or technique as representing the

core contribution of their paper.

Our goal in this paper is to stress the importance of building a culture that values

and expects empirical validation of newly proposed tools and methods. To help

facilitate this goal, we propose the following solutions to the problem. First,

researchers in the modeling domain who are interested in conducting appropriate

empirical evaluations themselves need to collaborate more often with researchers who

MODELS'11 Workshop - EESSMod 2011

- 35 -

have expertise in empirical evaluation of software engineering methods (as the

authors of this paper are doing). Such a collaboration allows both types of researchers

to do what they are interested in and what they do best. Second, we suggest that more

rigorous empirical evaluations of modeling research be published in the ESEM

conference, where the focus is on the empirical evaluation, to cross-pollinate the

contributions of the modeling community with those explicitly working in empirical

techniques. In that venue, authors can devote more space to describing the evaluation

and interpreting the results. A somewhat radical suggestion is to afford MoDELS

authors an additional two to three pages of space for any paper that includes a more

rigorous evaluation based on an empirical study.

A spreadsheet representing the results of our analysis of MoDELS conferences,

and a summary of the papers analyzed for the ESEM conferences, is available at:

http://www.cs.ua.edu/~carver/Data/2011/EESSMOD/

Acknowledgments. This research was supported in part by NSF CAREER award

CCF-1052616.

References

1. Almeida da Silva, M., Bendraou, R., Blanc, X. et al.: Early Deviation Detection in

Modeling Activities of MDE Processes. In: Petriu, D., Rouquette, N. and Haugen, Ø.

(eds.) Model Driven Engineering Languages and Systems, LNCS vol. 6395, pp. 303-317.
Oslo, Norway (2010)

2. Almeida da Silva, M., Mougenot, A., Bendraou, R. et al.: Artifact or Process Guidance, an

Empirical Study. In: Petriu, D., Rouquette, N. and Haugen, Ø. (eds.) Model Driven
Engineering Languages and Systems, LNCS vol. 6395, pp. 318-330.Oslo, Norway (2010)

3. Boehm, B., Rombach, H. D., Zelkowitz, M. V.: Foundations of Empirical Software

Engineering: The Legacy of Victor R. Basili. Springer (2005)

4. Carver, J., Jaccheri, L., Morasca, S. et al.: A Checklist for Integrating Student Empirical

Studies with Research and Teaching Goals. Empirical Software Engineering, 15 (2010)

35-59

5. Correa, A., Werner, C., Barros, M.: An Empirical Study of the Impact of OCL Smells and

Refactorings on the Understandability of OCL Specifications. In: Engels, G., Opdyke, B.,

Schmidt, D., et al (eds.) Model Driven Engineering Languages and Systems, LNCS vol.
4735, pp. 76-90. Nashville, TN (2007)

6. Fuhrmann, H., & von Hanxleden, R.: Taming Graphical Modeling. In: Petriu, D.,

Rouquette, N. and Haugen, Ø. (eds.) Model Driven Engineering Languages and Systems,
LNCS vol. 6394, pp. 196-210. Oslo, Norway (2010)

7. Genero, M., Cruz-Lemus, J., Caivano, D. et al.: Assessing the Influence of Stereotypes on

the Comprehension of UML Sequence Diagrams: A Controlled Experiment. In:

Czarnecki, K., Ober, I., Bruel, J., et al (eds.) Model Driven Engineering Languages and

Systems, LNCS vol. 5301, pp. 280-294. Toulouse, France (2008)

MODELS'11 Workshop - EESSMod 2011

- 36 -

8. Gravino, C., Scanniello, G., Tortora, G.: An Empirical Investigation on Dynamic

Modeling in Requirements Engineering. In: Czarnecki, K., Ober, I., Bruel, J., et al (eds.)

Model Driven Engineering Languages and Systems, LNCS vol. 5301, pp. 615-629.
Toulouse, France (2008)

9. Juristo, N., & Moreno, A.: Lecture notes on empirical software engineering. World

Scientific, Singapore (2003)

10. Lange, C., DuBois, B., Chaudron, M. et al.: An Experimental Investigation of UML

Modeling Conventions. In: Nierstrasz, O., Whittle, J., Harel, D., et al (eds.) Model Driven
Engineering Languages and Systems, LNCS vol. 4199, pp. 27-41. Genova, Italy (2006)

11. Lucrédio, D., de M. Fortes, R., Whittle, J.: MOOGLE: A Model Search Engine. In:

Czarnecki, K., Ober, I., Bruel, J., et al (eds.) Model Driven Engineering Languages and
Systems, LNCS vol. 5301, pp. 296-310. Toulouse, France (2008)

12. Mäder, P., & Cleland-Huang, J.: A Visual Traceability Modeling Language. In: Petriu, D.,

Rouquette, N. and Haugen, Ø. (eds.) Model Driven Engineering Languages and Systems,
LNCS vol. 6394, pp. 226-240. Oslo, Norway (2010)

13. Prochnow, S., & von Hanxleden, R.: Statechart Development Beyond WYSIWYG. In:

Engels, G., Opdyke, B., Schmidt, D., et al (eds.) Model Driven Engineering Languages
and Systems, LNCS vol. 4735, pp. 635-649. Nashville, TN (2007)

14. Shull, F., Singer, J., Sjøberg, D. I. K.: Guide to Advanced Empirical Software

Engineering. Springer (2008)

15. Stålhane, T., & Sindre, G.: Safety Hazard Identification by Misuse Cases: Experimental

Comparison of Text and Diagrams. In: Czarnecki, K., Ober, I., Bruel, J., et al (eds.) Model

Driven Engineering Languages and Systems, LNCS vol. 5301, pp. 721-735. Toulouse,
France (2008)

16. Yue, T., Briand, L., Labiche, Y.: A Use Case Modeling Approach to Facilitate the

Transition towards Analysis Models: Concepts and Empirical Evaluation. In: Schürr, A.

and Selic, B. (eds.) Model Driven Engineering Languages and Systems, LNCS vol. 5795,

pp. 484-498. Denver, CO (2009)

MODELS'11 Workshop - EESSMod 2011

- 37 -

Building VECM-based Systems with a Model

Driven Approach: an Experience Report

Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

Dipartimento di Informatica e Scienze dell’Informazione - DISI
Università di Genova
16146 Genova, Italy

{maurizio.leotta |gianna.reggio |filippo.ricca |astes}@disi.unige.it

Abstract. Recently, we took part in a project with two local companies
about the creation of a UML-based Model Driven rigorous method to
develop VECM-based systems. VECM is a way to abstract from the details
of different Enterprise Content Management (ECM) systems used within
the same organization. This report details the experience made using our
method to develop V-Protocol: a system able to protocol, sign and archive
public competition announcements received by a company.

1 Introduction

The authors have been recently involved in the VirtualECM project1 aimed at
developing the VECM technology and a UML-based Model Driven (MD) rigorous
method for building systems based on VECM. A VECM-based system (shortly
V-System) is a system that uses the VECM software interface (Sect. 2). In a
nutshell, a VECM abstracts the basic operations offered by an ECM. An ECM
is a system used to capture, manage, store, and deliver enterprise content. It
provides operations on documents such as: createDocument() and deleteDocu-
ment(). There are a lot of ECM systems available on the market, e.g., Alfresco
(open source), SharePoint (Microsoft), Oracle Content Management (Oracle),
and Documentum (EMC).

On the top of this heterogeneous ECM environment, usually, the companies
build their systems using several ECM systems characterized by different inter-
faces; for example, a bank that uses an ECM system to manage credit transfer
and another one for loans. Often, the consequence of this practice is the develop-
ment of a system highly coupled with the underlying ECM systems. The VECM
software interface solves this problem. In practice, the VECM allows to develop
systems not tied to the specific characteristics of a particular ECM.

In this paper we propose a UML rigorous method useful to develop VECM-
based systems (Sect. 3). It follows the MD approach [2] for the development
of software systems. In particular, several UML models are created starting
from the business process model to obtain a detailed design model that can

1 VirtualECM project was supported by “Programma Operativo Regionale POR-FESR
(2007-2013)”, Liguria, Italy

MODELS'11 Workshop - EESSMod 2011

- 38 -

2 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

be transformed/refined in a running system. We have applied this method to
build V-Protocol, the selected case study for the project, which is a system used
to protocol, sign and archive public competition announcements received by a
company.

2 VECM and ECM

In this section we explain what a VECM is and report on the factors that have
motivated the development of the VECM software interface, which is the aim of
the VirtualECM project.

There are a lot of ECM systems available on the market. Even if each of them
has some distinguishing features, they provide substantially the same operations
often called in different ways and with different parameters.

Usually, in a big company it is possible to find different ECM systems chosen
by and used in different branches of the same organization. This can happen
for several reasons: for example because different branches of the same company
have chosen different ECM systems for money matters, licence or specific char-
acteristics. Thus, a company often has to build a system in an heterogeneous
ECM environment using different underlying ECM systems. The result of this
practice is a system that interacts with different ECM systems with their own
interfaces, languages, and characteristics. Systems built in this way are tightly
coupled to the set of used ECM systems, and thus tend to exhibit well-known
problems (e.g., difficulties in changing, reusing, and testing software).

That problem can be solved with an additional layer of abstraction placed
between the system and the different ECM systems. Such software layer is called
VECM, a sort of virtualization of ECM systems. In practice, without the VECM
a system has to interact with a set of different ECM systems and it has to
know their different interfaces; instead, with the VECM a system has to know
only the VECM interface. The management of the interaction with the different
underlying ECM systems is totally delegated to the VECM. When the system
uses a functionality offered by the VECM, it does not to know what type of
ECM is actually used. In this way it is possible to replace an ECM with another
without problems.

Fig. 1 shows a simplified definition of the functionalities offered by the VECM,
which are an abstraction of a well defined subset of operations typically offered
by an ECM. As we can see, the VECM operations cover different areas and work
on or produce content.

3 The Method

We propose a method for the development of systems based on the VECM that
follows the MD approach. The starting point is a UML model representing the
target business process including at least an activity diagram and the final result
is a detailed design model that can be transformed into a running system. In

MODELS'11 Workshop - EESSMod 2011

- 39 -

Building VECM-based Systems with a Model Driven Approach 3

Fig. 1. UML presentation of the VECM functionalities

our method, the activity diagrams used to represent the business processes are
created following the “precise style” introduced in [6].

In a nutshell, the “precise style” prescribes that the participants of a busi-
ness process are explicitly listed and precisely modelled with UML by means of
classes. Moreover, the behavioural view of the business process is given by an
activity diagram where the basic activities and the conditions are written by
respectively using the language for the actions of UML and OCL (the textual
language for Boolean expressions part of UML). Thus, our UML precise model
of a business process consists of: a class diagram, introducing the classes needed
to type its participants, the list of its participants, and an activity diagram rep-
resenting its behaviour, where all nodes (arcs) are decorated by operations calls
(OCL expressions). From a previous study, we have seen that this style improves
the quality of the business process models expressed as activity diagrams [5], and
that it is better than a “light stile” [1].

The method for developing a V-System consists of four phases:

– Business Process Modelling
– V-System Placement
– V-System High Level Design
– V-System Detailed Design

We present our method using the Protocol case study selected in the Vir-
tualECM project for the realization of a demonstrator named V-Protocol. The
system V-Protocol has been developed by the two companies following the above

MODELS'11 Workshop - EESSMod 2011

- 40 -

4 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

four phases. The Protocol case study is about the management of the announce-
ments of public competitions received by a company. It can shortly be described
in this way: “First an announcement is received by the company and managed
by a clerk. Subsequently, the announcement is checked by a clerk to verify its
validity, and if it is valid the announcement is protocolled, digitally signed and
saved in a repository”.

3.1 Phase 1: Business Process Modelling

The first phase of our method consists in describing the business process/domain
“as it is”, i.e., by means of the UML model called BusinessProcessModel that
represents the business before the introduction of the system based on the VECM.
At this level the UML model has to be close as much as possible to the given
description of the business. Participants of the business will have a name and
will be typed by a class with stereotype either ≪businessWorker≫ (human being)
or ≪system≫ (hardware/software systems). Also the business objects will have
a name and will be typed by a class stereotyped by ≪businessObject≫.

Since it is not possible to use the V-System in the BusinessProcessModel and
moreover the textual description could be incomplete or quite abstract, in some
cases it could be difficult assigning the activities involving a business object to
a business worker or to a system (e.g., in the business underlying the Protocol
case study, it is not specified who will protocol, sign and save an announcement).
In those cases, it is advisable assigning such activities directly to the business
objects over which they will be executed. We have decided to describe those
activities in the model using the passive form (e.g., DOC.saved() in Fig. 2).

The result of this activity in the Protocol case study is a UML model reported
in Fig. 2. That model is composed by two diagrams: an activity diagram and a
class diagram. In the activity diagram, as reported in the side note, there are two
business workers (the operator and the verificator) and two business objects (an
announcement and a document). Note that in the class diagram the operations of
Document are given in passive form, and that the created() operation is declared
as static because in this phase it is not known who creates the document.

3.2 Phase 2: V-System Placement

The aim of the second phase is deciding which of the activities described in
the previous phase will be performed by the V-System. The placement of the
V-System is done using a swimlane labelled by the name of the system (in our
case V-Protocol). During this phase a set of models are created and finally a
UML model called PlacementModel is obtained. The activities that have to be
performed by the V-System will be placed inside the swimlane, the others will
remain outside. It could happen that an activity is not totally of competence
of the V-System: in this case the activity has to be subdivided in two or more
sub-activities assigned to different participants.
The placement is correct only if the following constraints are observed:

– at least one activity is placed inside the V-System swimlane (no activities in
the swimlane mean that the system will do nothing);

MODELS'11 Workshop - EESSMod 2011

- 41 -

Building VECM-based Systems with a Model Driven Approach 5

(a) Activity Diagram (b) Class Diagram

Fig. 2. Protocol Case Study: BusinessProcessModel

– no activities performed by business workers are inside the swimlane (the sys-
tem cannot replace the behaviour of a human being that it is unpredictable
and not computable, e.g., an examiner of future employees or of the artistic
value of a novel);

– at least an activity should be placed on the border of the swimlane (such an
activity will result in communication between the system and some external
entity);

– no activity flow (control and object) can cross the swimlane boundary (a
crossing flow means a hidden communication between the system and some
external entities).

Therefore only the following types of activities can be placed inside the V-
System swimlane:

– passive activity of a business object: this means that the V-System will exe-
cute the activity on the object (e.g., DOC.saved());

– activity performed by a pre-existing system: this means that the system
under development will replace the existent system in the execution of the
activity.

Since that is not allowed to place an activity assigned to a business worker
inside the V-System swimlane, if the activity has to be performed by the V-
System then it can be placed inside the swimlane only after a model refactoring

MODELS'11 Workshop - EESSMod 2011

- 42 -

6 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

step in which the activity has to be assigned to a participant stereotyped by
≪system≫ (or ≪businessObject≫ using the passive form). This means that the
system will perform an activity that previously was done by a human.

During the placement of the V-System in presence of constraints violations
the following cases can occur:

– the placement becomes corrected after performing one or more business pro-
cess model refactoring;

– it is not possible to refactor the model to satisfy the constraints; in such
case the developer has to either change the placement or to conclude that
the intended system is not doable.

The result of this phase is the PlacementModel , having the form of a Busi-

nessProcessModel where part of the activity diagram is included in one swimlane
named as the system to develop.

The creation of the PlacementModel (that for space limitations we do not
report here) for V-Protocol has required a model refactoring step in order to
create the activities for the messages exchange between the participants. For
example, the activity control(DOC) has been broken in several activities because
it involve both the operator and the system.

3.3 Phase 3: V-System High Level Design

The goal of this phase is providing a high level design of the V-System with a
detailed description of the activities carried out by the system. During this phase
a UML model called DesignModel is produced.

We start from the PlacementModel and perform a refinement step. For each
participant of type ≪businessWorker≫ and ≪system≫ in the activity diagram we
introduce a swimlane labelled by its name. In this model, the involved partic-
ipants communicate using two type of UML actions: – the call action2 ()
used when a participant sends a message to another one and – the accept action
() used when a participant receives a message from another one.

At this level of description, all the activities in the V-System swimlane are
reported as executed by the system as a whole. There are no details about the
inner structure of the V-System (e.g., information about the number of ECM
used).

In Fig. 3 we report the DesignModel for the Protocol case study. It contains
three swimlanes: one is for V-Protocol and two are dedicated to the business
workers that interact with it. The operator, the verificator and V-Protocol per-
form some actions on the business objects announcement and document. The
business process implemented by V-Protocol is triggered by the arrival of a mes-
sage with attached an announcement (each message exchange is depicted in the
activity diagram by means of a dashed line). The starting message is sent by
OP (see Fig. 3). The system interacts also with the verificator that checks the
correctness of the document. In the end, V-Protocol executes some operations
on the document DOC (e.g., VProtocol.save(DOC)) and next the process stops.

2 We are aware that only send signal actions can be represented in this way, but here
we use this icon also for call actions.

MODELS'11 Workshop - EESSMod 2011

- 43 -

Building VECM-based Systems with a Model Driven Approach 7

(a) Activity Diagram

(b) Class Diagram

Fig. 3. Protocol Case Study: DesignModel

In Fig. 3(b), we show the class diagram associated with the activity diagram
of Fig. 3(a). The class diagram is used to type and specify the stereotype of
each participant and to specify attributes and/or operations of each participant.
Moreover, the class diagram can contain datatypes (e.g., DigitalSignature) used
to type attributes or operation parameters. The activity diagram created at this
level ought to be structured [7] because unstructured diagrams make difficult

MODELS'11 Workshop - EESSMod 2011

- 44 -

8 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

the translation of business process models into executable models (e.g., written
in BPEL [3]) that often offer structured-programming constructs only.

The models created following our method can be enriched at each phase with
other UML diagrams or details that increase the level of information provided;
for example in the class diagram in Fig. 3(b) we added some constraints.

3.4 Phase 4: V-System Detailed Design

The fourth and last phase produces a UML model called ArchitectureModel that
depicts the system architecture.

(a) Activity Diagram

(b) Class Diagram

(c) Object Diagram

Fig. 4. Protocol Case Study: ArchitectureModel

MODELS'11 Workshop - EESSMod 2011

- 45 -

Building VECM-based Systems with a Model Driven Approach 9

The detailed design is given in terms of the subsystems that constitute the
system. The subsystems can be: (1) one or more VECMs that abstract the under-
lying ECMs; (2) an orchestrator that coordinates the execution of the different
VECMs and, if necessary, performs some data elaborations. Note that all the
computations not assignable to the VECMs are done by the orchestrator. More-
over, the orchestrator manages the interaction with the outside participants (e.g.,
sending and receiving messages). At this level, for simplicity, the participants not
included in the V-System swimlane are removed from the model. The attention
is uniquely focused on the V-System architecture.

The subsystems that are typed by VECM can perform only a predefined set
of operations (see Fig. 1). All the operations not supported by VECM have to be
executed by the orchestrator and if it is not possible they have to be substituted
by calls to external services and this require a modification of the V-System
design.

In Fig. 4 we show the V-Protocol ArchitectureModel . The system is composed
by four subsystems: one orchestrator (Protocoller) and three repositories of type
VECM. All the operations performed by the repositories are included in the UML
presentation of the VECM functionalities in Fig. 1. Note that the repositories do
not communicate each other.

4 Lessons Learnt

Based on the experience that we have acquired during the development of our
method, we summarize the lessons learnt and discuss opportunities for future
research.

– It is possible to apply MD to build VECM-based applications without invest-
ing in complex tools and expensive training. It is sufficient a UML design
tool (e.g., Visual Paradigm3) and a basic knowledge of UML. In the case of
the VirtualECM project the involved companies had an adequate expertise
for the execution of the method.

– Usually business process descriptions and models used in practice and given
as starting point to develop a system are ambiguous, inconsistent, over-
specific or too generic. Often, models given in “light style” format [6] seem
very simple and easy to understand but often they contain subtle flaws that
could bring to different interpretations and meanings. Using the “precise
style” helps to reduce more common errors and flaws [5].

– The use of VECM is complementary to the use of SOA and not an alternative,
given that they differ in the level of application. Indeed, VECM can be placed
above a set of SOA-based ECM that though they have a SOA-based interface,
the signatures of their operations are not standardized. For this reasons also
in a SOA-based ECM environment it is useful to adopt VECM. Moreover,
VECM exposes a SOA interface so it can be invoked as a web service.

3 a UML modeller covering all kinds of UML diagram types. See http://www.visual-
paradigm.com/

MODELS'11 Workshop - EESSMod 2011

- 46 -

10 Maurizio Leotta, Gianna Reggio, Filippo Ricca, and Egidio Astesiano

– Methods for developing ECM based systems are difficult to find. Some tools
that permit to integrate different ECMs exist (e.g., ECM integration layer
of SAP NetWeaver or FusionEnterprise) but they are part of complex tech-
nology platforms. Instead VECM is a light interface that does not require
complex and expensive solutions.

– The adoption of CMIS4 [4] does not replace the use of VECM. Indeed, even
if CMIS will reach in the future a great diffusion among ECM users, a lot of
companies will still use obsolete ECMs.

– Currently, the two companies involved in the VirtualECM project imple-
mented by hand the system as a web application starting from the V-Protocol
Architecture Model. Future work will be devoted to automate this task.

5 Conclusion and Future Work

In this experience report we have presented: (i) an MD method useful to de-
velop VECM-based systems and (ii) its application to the development of the
V-Protocol case study. Preliminary applications of our method (as the one re-
ported here) show its effectiveness.

Future work will be devoted to refine our method and test it with more
complex real case studies. We also intend developing a tool able to assist the
designer in the construction of VECM-based systems. The tool should automati-
cally transform the orchestrator produced during V-System Architecture Design
phase in executable code.

References

1. F. Di Cerbo, G. Dodero, G. Reggio, F. Ricca, and G. Scanniello. Precise vs. Ultra-
Light Activity Diagrams - An Experimental Assessment in the Context of Business
Process Modelling. In D. Caivano, M. Oivo, M. Baldassarre, and G. Visaggio,
editors, Product-Focused Software Process Improvement, volume 6759 of Lecture
Notes in Computer Science, pages 291–305. Springer Berlin / Heidelberg, 2011.

2. S. Kent. Model driven engineering. In M. J. Butler, L. Petre, and K. Sere, editors,
IFM, volume 2335 of Lecture Notes in Computer Science, pages 286–298. Springer,
2002.

3. OASIS. Web Services Business Process Execution Language, v. 2.0. Standard, 2007.
4. OASIS. Content Management Interoperability Services, v. 1.0. Standard, 2010.
5. G. Reggio, M. Leotta, and F. Ricca. Precise is better than Light - A Document

Analysis Study about Quality of Business Process Models. In Proceedings of 1st
International Workshop on Empirical Requirements Engineering (EmpiRE 2011 co-
located with RE 2011). IEEE Digital Library (to Appear), 2011.

6. G. Reggio, F. Ricca, E. Astesiano, and M. Leotta. On Business Process Modelling
with the UML: a Discipline and Three Styles. Technical Report DISI-TR-11-03, Di-
partimento di Informatica e Scienze dell’Informazione (DISI), Università di Genova,
Italy, April 2011. [Online]: http://softeng.disi.unige.it/tech-rep/TECDOC.pdf.

7. M. H. Williams and H. L. Ossher. Conversion of Unstructured Flow Diagrams to
Structured Form. The Computer Journal, 21(2):161–167, 1978.

4 Content Management Interoperability Services is an OASIS specification for improv-
ing interoperability between Enterprise Content Management systems

MODELS'11 Workshop - EESSMod 2011

- 47 -

Empirical evaluation of the conjunct use of MOF
and OCL

Juan Cadavid1, Benoit Baudry1, Benôıt Combemale2

1INRIA, Centre Rennes – Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes Cedex, France

{juan.cadavid,benoit.baudry}@inria.fr
2IRISA, Université de Rennes 1 Triskell Team, Rennes, France

{benoit.combemale}@irisa.fr

Abstract. MOF and OCL are commonly used for metamodeling: MOF
to model the domain structure, and OCL for the well-formedness rules.
Thus, metamodelers have to master both formalisms and understand how
to articulate them in order to build metamodels that accurately capture
domain knowledge. A systematic empirical analysis of the conjunct use
of MOF and OCL in existing metamodels could help metamodelers un-
derstand how to use these formalisms. However, existing metamodels
usually present anomalies that prevent automatic analysis without prior
fixing. In particular, it often happens that both parts of the metamodel
(MOF and OCL) are inconsistent. In this paper, we propose a process
for analyzing metamodels and we report on the pre-processing phase we
went through on 52 metamodels in order to get them ready for automatic
empirical analysis.

1 Introduction

The Meta-Object Facility (MOF) [2] and the Object Constraint Language (OCL)
[4] are commonly used for metamodeling: MOF to define a domain model and
OCL to define well-formedness rules in this domain. At first glance, the roles of
both standards seem well-delimited, yet many conceptual decisions can be imple-
mented in either one, as we will demonstrate. For this reason, their combined us-
age has revealed several styles as observed in the panorama of developed mature
DSMLs (Domain Specific Modeling Languages). Systematic empirical analysis of
how these standards are combined in publicly available metamodels would help
understand their usage and propose new methodologies and techniques to assist
domain experts when building a new metamodel. Empiric analysis can be es-
tablished through the systematic collection of metrics over existing metamodels.
However, there currently exists no metrics that relate MOF and OCL and there
exists no tool to automatically compute metrics on metamodels. Another issue
is related to the lack of homogeneous formats to support the automatic analysis
of MOF/OCL based metamodels. For example, OCL well-formedness rules are
provided in various formats (txt, annotations in Ecore, OCL model). Also, be-
cause MOF and OCL parts are not always stored in the same format, both parts

MODELS'11 Workshop - EESSMod 2011

- 48 -

2 Juan Cadavid, Benoit Baudry, Benôıt Combemale

of the metamodel tend to be inconsistent. When gathering data for empirical
analysis, it is thus necessary to fix it prior to metrics computation. This paper
aims at illustrating the challenges of the conjunct usage of MOF and OCL for
metamodeling. We propose initial metric definitions and analysis methodology
to empirically understand how both formalisms are related and conjunctly used
in existing metamodels. We have collected 52 metamodels for which we have
learned a few initial lessons by manually analyzing and fixing them in order to
get them ready for automatic measurement. In particular we have found and
fixed a number of inconsistencies in OCL invariants defined in OMG (Object
Management Group) standard metamodels. Section 2 presents the motivation
for this study. Section 3 introduces the problem statement, introduces definitions
as well as the presentation of the two standards. Section 4 presents our research
process. Section 5 and 6 present the first data findings and conclusions relevant
to the first phase of our research process.

2 Motivation

This section illustrates the issues for the definition of a correct and precise meta-
model through an example. The model in figure 1, expressed in the basic version
of MOF called EMOF (Essential MOF), specifies the concepts and relationships
of the Petri net domain. A PetriNet is composed of several Arcs and several
Nodes. Arcs have a source and a target Node, while Nodes can have several in-
coming and outgoing Arcs. The model distinguishes between two different types
of Nodes: Places or Transitions.

Node
 name: EString

Transition Place
marking: EInt

PetriNet
 name: EString

Arc
weight: EInt

1 source

1 target

outgoings
0..*

0..*
ingoings

nodes
0..*

arcs
0..*

Fig. 1. MOF-based domain structure for Petri nets

This model captures every necessary concept to build Petri nets. However,
there can also exist valid instances of this model that are not valid Petri nets. For
example, the model does not prevent the construction of a Petri net in which an
arc’s source and target are only places, instead of linking a place and a transition.
Thus, the sole model is not sufficient to precisely model the specific domain of
Petri nets, since it still allows the construction of models that are not valid in this
domain. The model needs to be enhanced with additional properties to capture
the domain more precisely. The following well-formedness rules, expressed in
OCL, show some mandatory properties of Petri nets.

MODELS'11 Workshop - EESSMod 2011

- 49 -

Empirical evaluation of the conjunct use of MOF and OCL 3

1. noEqualNamesInv: Two nodes cannot have the same name.

context Petr iNet inv :
s e l f . nodes−>f o r A l l (n1 , n2 | n1 <> n2
implies n1 . name <> n2 . name)

2. noSameEndTypesInv: No arc may connect two places or two transitions.

context Arc inv : s e l f . source . oclType ()
<> s e l f . t a r g e t . oclType ()

3. placeMarkingPositiveInv: A place’s marking must be positive.

context Place inv : s e l f . marking >= 0

4. arcWeightPositiveInv: An arc’s weight must be strictly positive.

context Arc inv : s e l f . weight > 0

In our study we consider that the metamodel for Petri nets is the composi-
tion of the model and the associated well-formedness rules. We learn from this
example that the construction of a precise metamodel, that consistently captures
a domain, requires: (i) mastering two formalisms1: EMOF for concepts and re-
lationships; OCL for properties; (ii) building two complimentary views on the
domain model; (iii) finding a balance between what is expressed in one or the
other formalism, (iv) keeping the views, expressed in different formalisms, consis-
tent. This last point is particularly challenging in case of evolution of one or the
other view. One notable case from the OMG and the evolution of the UML stan-
dard is that the AssociationEnd class disappeared after version 1.4 in 2003, but
as late as version 2.2, released in 2009, there were still OCL expressions referring
to this metaclass [11]. In the same manner, the OCL 2.2 specification depends on
MOF 2.0, however a particular section of the specification defining the binding
between MOF and OCL [4, p.169] makes use of the class ModelElement which
only existed until MOF 1.4.

3 Research problem

3.1 Definitions

This section defines the terms we use to designate the focus of our analysis. The
relationship between a model and a metamodel can be described as shown in
figure 2 [3]. Here the conformsTo relation is a predicate function that returns
true if all objects in the model are instances of the concepts defined in the
metamodel, all relations between objects are valid with respect to relationships
defined in the metamodel and if all properties are satisfied.

1 One can notice that some properties could have been modeled with EMOF by choos-
ing another structure for concepts and relationships. However, the number of con-
cepts and relationships would have increased, hampering the understandability of
the metamodel and increasing the distance between the metamodel and a straight-
forward representation of domain concepts.

MODELS'11 Workshop - EESSMod 2011

- 50 -

4 Juan Cadavid, Benoit Baudry, Benôıt Combemale

Definition 1. Metamodel. A metamodel is defined as the composition of:

– Concepts. The core concepts and attributes that define the domain.
– Relationships. Relationships that specify how the concepts can be bound

together in a model.
– Well-formedness rules. Additional constraints that restrict the way con-

cepts can be assembled to form a valid model.

In this study, we consider metamodels defined with OMG standards. We distin-
guish two parts as defined below.

Definition 2. Metamodel under study. For this work, a metamodel is de-
fined as the composition of:

– Domain structure. An EMOF-compliant model portraying the domain
concepts as metaclasses and relationships between them.

– Invariants. Well-formedness rules that impose invariants over the domain
structure and that are expressed in OCL.

Model (M) MetaModel (MM)

conformsTo(m:M) : Bool

conformsTo ▶

0..*

Fig. 2. Model & MetaModel Definition with Class Diagram Notation

3.2 Summary of EMOF and OCL

Figure 3 displays the structure of EMOF [2]. EMOF allows to specify the
concepts of a metamodel in a Package. This Package contains Classes and
Propertys to model the concepts and relationships. The Propertys of a Class

can be either: attributes of type Boolean, String or Natural; or references to
other Classes, in this case the Property is of type another Class. Figure 4
displays the structure of OCL expressions [4] that can be used to constrain the
structure defined with EMOF. The most noticeable constructs for OCL expres-
sions are: the ability to declare Variables, whose type is a concept modeled
with EMOF; the ability to use control structures such as IfExp and LoopExp;
the ability to have composite OCL expressions, through CallExps. Figure 5 dis-
plays the connection between EMOF and OCL [4, p.169]. This figure specifies
that it is possible to define Constraints on Elements (everything in EMOF is
an Element, cf. figure 3). They can be defined as Expressions, and one partic-
ular type of expression is ExpressionInOCL, an expression defined with OCL.
The most important concept is the notion of ExpressionInOCL that binds an
Element coming from an EMOF model on one hand to an OclExpression on
the other hand. The existence of this binding between formalisms is essential
for metamodeling: this is how two different formalisms can be smoothly inte-
grated in the construction of a metamodel. This binding is also what allows us
to automatically analyze metamodels built with EMOF and OCL.

MODELS'11 Workshop - EESSMod 2011

- 51 -

Empirical evaluation of the conjunct use of MOF and OCL 5

Property
lower: Natural⊤ = 1
upper : Natural⊤ = 1
isOrdered : Boolean = false
isComposite: Boolean = false
default: String = ""

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType

Boolean String Natural

owner

⊤

Element

Classifier

Package

0..*
nestedPackage

0..*
ownedType

Fig. 3. The EMOF Core with Class Diagram Notation

OclExpression

Core::TypedElement

CallExp LiteralExp IfExp VariableExp TypeExp

FeatureCallExp LoopExp

IteratorExp

Variable

PropertyCallExp OperationCallExp

source
0..1

Core::OperationCore::Property

Core::Classifier
0..1

iterator

0..1
body

referredVariable
 0..1

referredType
 0..1

referredOperation
0..1

referredProperty
0..1

IterateExp

0..1 result

Core::Parameter

representedParameter
0..1

Fig. 4. OCL Expression metamodel

ModelElement
(from Core)

Classifier
(from Core)

Constraint
(from Core)

Expression
(from DataTypes)

ExpressionInOclOclExpression

0..*
+constrainedElement

0..*
+constraint

1 +body
0..1

+bodyExpression
1

Fig. 5. OCL and MOF binding

MODELS'11 Workshop - EESSMod 2011

- 52 -

6 Juan Cadavid, Benoit Baudry, Benôıt Combemale

3.3 Metrics

In order to understand the conjunct usage of these two standards, we aim at
defining the following metrics.

– Size of the metamodel: The number of constructs that a metamodel provides
can change dramatically from one language to the other. Such measure has
to be compared when evaluating several metamodels from diverse domains.

– Size of the invariants set: Metamodels can portray different levels of com-
plexity; highly complex domains require a large number of OCL formulae
to express their logic, whereas lesser complex domains will express their
knowledge with a lower number of constraints. With this metric we aim at
understanding the different levels of such complexity.

– Invariant complexity with respect to the underlying domain structure: Some
metamodels contain lengthy and complex well-formedness rules, while others
seem to define them using simple expressions. We measure how many EMOF
elements are used in each OCL invariant and thus the quantity of model
elements involved in a constraint.

– Invariant complexity with respect to the OCL syntax metamodel: In order
to extract the effective subset of the OCL language that is used in DSML de-
velopment, we intend to query the invariants for the specific OCL expression
types they use.

4 Analysis of MOF and OCL in metamodels

The data sets and metrics specified in the previous section are used to build a
tool to perform the computations which will provide the data to perform analysis
on a metamodel.

4.1 The Global Process for Analysis Automation

Figure 6 shows the overall process to analyze a metamodel. The process is com-
posed of three activities with their own tools:

1. If the OCL invariants are not defined in the OCL/XMI format (extension
.oclxmi in figure 6), the first activity consists in preprocessing (activity OCL

Parsing). It is performed depending on the input format of the OCL invari-
ants (extension .ocl in figure 6). We have used OclInEcore2, a textual
editor for Ecore files.

2. The next step consists in using an in-house built tool to automatically com-
pute the metrics over the metamodel (activity Metrics Computation). Such
tool would take as an input the metamodel composed of the domain struc-
ture expressed in Ecore, and the invariants expressed in OCL and produce
a CSV file containing all the metric values for the input metamodel.

2 OclInEcore, cf. http://wiki.eclipse.org/MDT/OCLinEcore/.

MODELS'11 Workshop - EESSMod 2011

- 53 -

Empirical evaluation of the conjunct use of MOF and OCL 7

3. The metric values are finally analyzed with R3 (activity Statistical Analysis).
R is an open-source language for statistical applications, which provides sev-
eral functionalities to run analysis and create plots, both one-variable and
multi-variable. We provide a set of generic scripts that could be used for any
CSV file produced with our in-house built tool. These scripts automate the
production of graphics to assist analysis.

OCL pre-process

Compute metrics

Run statistical analysis

 .oclxmi

 .ocl

 .ecore

.oclxmi available?

 .csv

 Graphical analysis

Metrics
Computation Tool

R

yes

 no

Fig. 6. SPEM Process for Metamodel Automatic Analysis

Currently our research has accomplished the encircled parts of the diagram,
performing the preparation of the data of the metamodels presented in the next
section.

5 Data setup and preprocessing

Understanding the use of EMOF and OCL requires a sample containing data
from repositories in diverse backgrounds. The sample subjects must come from
standard bodies, academia and industry altogether.

5.1 Experimental data setup

Table 1 details a list of standard specifications coming from different sources,
defining domain-specific languages. The first two columns contain the name and
source; the first group comes from the OMG. The following group presents meta-
models taken from academic research; first a metamodel for the B language cre-
ated at IMAG; SAD3 is a software architecture component model created at

3 R, cf. http://www.r-project.org/

MODELS'11 Workshop - EESSMod 2011

- 54 -

8 Juan Cadavid, Benoit Baudry, Benôıt Combemale

ENSTA Bretagne. In the last group, metamodels MTEP and XMS are meta-
models created by Thomson Video Networks for encoding standards for video
hardware. SAM is a metamodel from the Topcased open source software project.
The third column counts the number of metamodels. In the OMG group, specifi-
cations define large modeling languages, normally structured in packages, there-
fore we treat each one of these as a separate metamodel. In the remaining cases,
each specification contains only one metamodel. The fourth column mentions the
formalism used to express well-formedness rules. As expected, we chose specifi-
cations using OCL. The fifth column shows the different standards that exist to
specify the domain structure. Of our main interest, Ecore is a lightweight imple-
mentation of EMOF [5], providing equally an XMI-based persistence mechanism.
The sixth column presents the format for expressing invariants in OCL. These
are found either as separate .ocl text files or embedded in .ecore as annota-
tions. Availability of the Ecore format and some of the mentioned forms of OCL
invariants are necessary to enable the automation of the metrics computation.

Table 1. Specifications containing sample metamodels.

Name Source Meta-
models

Expression of
Constraints

Domain Struc-
ture format

OCL invariants
format

UML OMG 13 Text and OCL Ecore Annotations in
Ecore

CCM OMG 4 Text and OCL Ecore Text in docu-
mentation

OCL OMG 4 Text and OCL Ecore Text in docu-
mentation

MOF OMG 2 Text and OCL XMI .ocl text file

CWM OMG 21 Text and OCL Ecore Text in docu-
mentation

DD OMG 3 Text and OCL XMI Annotations in
Ecore

B language Academic
Research

1 Language specifi-
cation and OCL

Ecore .ocl text file

SAD3 Academic
Research

1 OCL Ecore .ocl text file

MTEP Industry 1 OCL Ecore .ocl text file

XMS Industry 1 OCL Ecore .ocl text file

SAM Industry 1 OCL Ecore .ocl text file

5.2 Preprocessing data for analysis

The preprocessing step is based on an automated Java program that takes an
Ecore/XMI metamodel with associated OCL invariants stored in their available
format for each metamodel and its OCL invariants, according to table 1 and
produces as output an Ecore/XMI metamodel with OCL/XMI invariants, where

MODELS'11 Workshop - EESSMod 2011

- 55 -

Empirical evaluation of the conjunct use of MOF and OCL 9

all the OCL invariants that remain are syntactically correct (parse without errors
using the Eclipse OCL parser [1]). The OCL/XMI format presents the abstract
syntax tree of each OCL expression. At the end of the preprocessing step, every
metamodel can be automatically analyzed for metrics computation. The metrics
computation tool will be able to compute metrics on the MOF structure and
the OCL invariants, and consequently analyzable data is emitted as output.
Throughout this process we have observed the following issues.

Different storage formats Ecore is the de-facto standard based on the XMI
format used to express the domain structure of a metamodel, yet there is no ev-
idence of such a format to store OCL expressions for a metamodel. Besides OCL
text files, invariants are also added as annotations; however these only consist of
maps of string-to-string entries, which can themselves present different schemas.
Our preprocessing program automatically detects the format and proceeds to
parse and produce the previously mentioned output.

Different OCL syntaxes Different parsers allow or reject certain OCL con-
structs [7]. To enable automation analysis of the OCL expressions, such vari-
ations must be streamlined to satisfy the precise syntax required for Eclipse
OCL; this was performed by replacing the unrecognized constructs by its ac-
cepted equivalents; for example, the use of the minus “-” operator to exclude
elements from a collection, instead of the exclude operation.

Errors in invariants In many cases, OCL invariants are added to a metamodel
with the sole purpose of documentation and might not be checked for correct-
ness. The studied sets of invariants from the selected specifications contained
incorrect OCL expressions, containing errors from syntax (invalid use of OCL
constructs) or semantics (references to non-existent model elements from the
domain structure). Table 2 presents trivial errors and thus capable of being cor-
rected, as well as those that could not be fixed, since it would require knowledge
from the domain expert.

6 Conclusions

In this article we have illustrated several issues that arise when metamodeling
with the MOF and OCL formalisms. Our purpose is to learn how these for-
malisms are used in existing metamodels, in order to assist metamodelers in
the future. The rest of the paper discusses a set of metamodels that we have
gathered from different sources (OMG, open source project, industry) and the
lessons we have learned while manually analyzing and fixing these metamodels
to get them ready for automatic analysis. Most of the problems to automate the
analysis over the metamodels are that OCL well-formedness rules first are pro-
vided in a variety of formats and secondly are often inconsistent with the MOF
domain model. The next step for this work is to build a tool that can automat-
ically analyze metamodels. This tool should compute a set of metrics about the

MODELS'11 Workshop - EESSMod 2011

- 56 -

10 Juan Cadavid, Benoit Baudry, Benôıt Combemale

Table 2. Corrected errors in OCL invariants.

Corrected errors Frequency

Missing parenthesis 94

Notation for enumeration literals 51

Missing variable in forAll body 30

Missing mandatory typecast (oclAsType()) 22

Typos in pointers to metaclasses and properties 15

Typos in OCL operations invocation 13

Use of ’-¿’ instead of ’.’ for non-collection properties 10

Use of ’.’ as a shortcut for ’collect’ 9

Use of unescaped OCL keywords 6

’if’ expression without ’else’ and ’endif’ 5

Use of ’notEmpty’ and ’isEmpty’ for non-collection properties instead of
oclIsUndefined()

4

Treating of boolean values as literals ’#true’ and ’#false’ 3

Use of ’union’ instead of ’concat’ to concatenate strings 2

Errors remaining incorrect Frequency

Pointers to nonexistent properties/operations 133

Invariants with a context metaclass in an outside metamodel 2

Reference to undefined stereotypes 1

conjunct use of MOF and OCL. These metrics will be the basis for our empirical
investigation. Such empirical work will lead to complement existent guidelines
for metamodelers [8, 9, 6, 10] suggesting an appropriate use of MOF and OCL.

References

1. Eclipse ocl, http://www.eclipse.org/modeling/mdt/?project=ocl
2. Omg meta object facility core, v2.0 (2006)
3. A Framework to Formalise the MDE Foundations. In: TOWERS. pp. 14–30 (2007)
4. Omg object constraint language, v2.2 (2010)
5. Budinsky, F., Merks, E., Steinberg, D.: Eclipse Modeling Framework 2.0. Addison-

Wesley Professional (2009)
6. Garcia, M.: Efficient integrity checking for essential mof+ ocl in software reposito-

ries. Journal of Object Technology 7(6)
7. Gogolla, M., Kuhlmann, M., Büttner, F.: A benchmark for ocl engine accuracy,

determinateness, and efficiency. In: MoDELS. LNCS, vol. 5301, pp. 446–459 (2008)
8. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design

guidelines for domain specific languages. In: The 9th OOPSLA workshop on DSM
(2009)

9. Kovari, P.: Explore model-driven development (mdd) and related approaches: Ap-
plying domain-specific modeling to model-driven architecture. IBM Developer-
works (2007)

10. Loecher, S., Ocke, S.: A metamodel-based ocl-compiler for uml and mof. Electron.
Notes Theor. Comput. Sci. 102, 43–61 (November 2004), http://dx.doi.org/10.
1016/j.entcs.2003.09.003

11. Selic, B.: Uml 2 specification issue 6462. http://www.omg.org/issues/issue6462.txt
(2003), updates dating until 2008.

MODELS'11 Workshop - EESSMod 2011

- 57 -

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

