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Abstract. For the elderly, falls are among the most frequent causes of
severe injuries or even death. Therefore it is highly desirable to develop
methods for early recognition. Numerous indicators have been proposed
and thoroughly validated, that allow medical staff to identify persons at
a high risk of falling. However, these indicators suffer from pragmatic
drawbacks impeding their widespread application. To overcome this, we
present the concept of a context-aware system, using low-cost accelerom-
eters to collect motion data at peoples homes, from which a fall-risk prog-
nosis is computed automatically. The underlying design principle can be
generalized to other medical settings, opening up a promising field for
the application of context-based technologies.
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1 Introduction

Severe injuries from falls rank along with well-known diseases such as cancer
or hypertension as leading causes for the hospitalization of elderly people ([1]).
As a result, therapies aiming at reducing these risks have been developed, like
special training programs. An important prerequisite for the targeted applica-
tion of these therapies is the availability of precise indicators allowing for the
early recognition of persons at an increased risk of falling (in a rather long
follow-up period, like 12 month). Apart from the obvious requirement to de-
tect as many persons in danger as possible, it is also important to reduce false
alarms in order to limit resulting costs. Accordingly, the problem of finding and
validating such indicator variables has received much attention in the geriatric
community. These include questionnaires, bio-mechanical assessments and tests
of basic physical skills. Albeit thoroughly validated, all of these indicators are
costly due to important resource requirements. This prevents their widespread
use and consequently a large part of the elderly population is not covered by
early fall-risk recognition. This yields the motivation for our proposition: A sys-
tem that uses low-cost wearable accelerometers to permanently collect motion
data at peoples homes and automatically (without interaction of medical staff)



analyses this data to establish a fall-risk prognosis. As only data sampled in par-
ticular situations is suitable for this prediction, such a system must necessarily
be context-aware, as will be outlined.
The organization of the remaining paper is as follows: We briefly review existing
work on fall-risk indicators and their drawbacks. Then we introduce our pro-
posal, motivating our choice of sensor devices for the system and presenting the
context-based key idea for the realization of the fall-risk prognosis module. Then
we give some statistical background and conclude with an outline of future work.

2 Related work on Fall-Risk Assessment

Methodologically, the de facto standard in this area are prospective studies,
comprising the following stages: First, potential indicator variables are identified
heuristically (feature selection). After that, these variables are measured for
each member of an appropriate test population. This population is then tracked
during a predefined follow-up period (one year by convention of the fall-risk
community, see [2]), during which all fall events are recorded. Finally, the data
records (features and binary target variable encoding (non-)occurrence of fall
event(s)) gained in this way are statistically analyzed (using for example logistic
regression or classification theory).

Fall-risk indicators studied in this way can be divided into the following main
categories:

• Bio-mechanical parameters
• Temporal parameters describing standardized tasks
• Gait parameters
• Cognitive Skill Tests
• Combinations of these factors

The first category comprises a variety of parameters recorded during stan-
dardized physical tasks; examples are muscle strength tests ([3]) and measure-
ment of inertial acceleration of different body parts ([4], [5], [6], [7], [8]). A
prominent instance of the second category is the time a person takes to get up
from a chair ([9]). Gait parameters ([2], [10], [11], [12]) are treated later on in
greater detail, as they provide the basis for our approach. Cognitive skill tests
comprise memory tests as well as logical ones ([13]). Finally multi-factorial ap-
proaches ([14], [15], [16], [8], [17]) consider combinations of different features,
which is plausible as falling is certainly not a mono-causal phenomenon. Never-
theless, in order to ensure practicability, it is desirable to find a small number of
features with high predictive power. As mentioned, two indicators playing a ma-
jor role for the realization of our approach will be revisited in greater detail. For
now, it suffices to summarize that these indicators suffer from major pragmatic
drawbacks: Albeit thoroughly validated in terms of accuracy and designed for
clinical use, data acquisition takes a lot of time and requires medical staff and/or
expensive equipment. In addition to that, these methods entail a considerable
impairment of targeted patients: They have to make an appointment with a



specialized institution and undergo time-consuming physical and/or mental test
procedures; unwanted psychic side-effects of this have not yet been investigated.
All these factors prevent established methods, which have the potential to save
lives, from being made available to wide parts of the population in question.
This gave rise to the approach described subsequently.

3 Permanent Low-cost Fall-Risk Assessment At Home

As mentioned in the introduction, the overall vision is to provide a cheap system,
that, by means of wearable sensor devices, permanently records data in persons
everyday lives, without any further impairment. Then, by a recurrent off-line
analysis of the gathered data (for instance once a month), a fall-risk prognosis is
to be generated automatically, as if the person had attended a clinical fall-risk
assessment.
Technically, the type of sensor devices and their positioning had to be deter-
mined, keeping in mind usability constraints. In the literature we found that
3D-accelerometers have successfully been used for a number of similar tasks (see
[18],[19]). Furthermore, a sample rate of 40 Hz is generally considered to be suf-
ficient to capture human motion ([20]). Regarding the integration respectively
positioning of such a sensor, we chose wrist-worn clock-like devices. The major
advantage of this is the high degree of familiarity persons have with that kind of
device. This familiarity is important for at least the following to major reasons:
First, user acceptance is increased and secondly, no intervention by medical staff
is needed, because persons can handle the device on their own. However, as a
fall-back solution, we keep the possibility to fix the device to a belt, more closely
to the center of mass of the human body.
So far, we have said nothing about the heart of the system, namely the fall-
risk prognosis module intended to process the raw data. Subsequently, we will
work out the challenges related to its realization and our proposed context-based
solution.

3.1 Key Idea: Context-Aware Data Collection

One might be tempted to mechanically apply the approved method of prospec-
tive study: Establishing statistical relationships between the data sampled by
the sensor device (sequences of three-dimensional acceleration vectors) and the
target variable indicating falls in the follow-up period, in order to implement
these findings in the prognosis module. However, such an approach is likely to
fail, due to the absence of an obvious hypothesis about a potential interrelation.
To point out this crucial fact, we would like to oppose our situation to rather
clear settings like the proposal of [9], measuring the time a person takes to get
up from a chair; here the reasoning ”the longer it takes”, ”the worse his con-
stitution” and hence ”the higher his risk of falling” is more than plausible and
allows for standard modeling like logistic regression.
As an answer to this challenge, we have searched for approved fall-risk indicators,
which



• have already been prospectively validated
• are potentially reconstructible from the acceleration data

With such indicators at hand, we argue that it is possible to establish fall prog-
noses in a ”transitive” way:

• Use recorded acceleration data to compute approved indicators
• Use these indicators to establish fall prognosis

As these parameters are measured under standardized conditions in appropriate
laboratories, it is right here that context comes into play. The above sketched
procedure can only be applied to data sampled during intervals where the lab-
oratory conditions were approximately met. This consideration leads to the fol-
lowing three stage process, being the conceptual backbone of our system:

• Filter out intervals conforming to (different) lab condition
• Use recorded acceleration data to reconstruct approved indicators for these

intervals
• Use these indicators to establish fall prognosis

In an obvious way, one gains a general scheme by abstracting from the concrete
setting of fall-risk prognosis. This scheme can be customized towards different
medical scenarios, involving costly laboratory-based methods. Exemplarily, we
cite early recognition of movement disorders in patients affected by multiple scle-
rosis ([21]) and motion assessment of Parkinson patients ([22]). In other words,
our proposal can be seen as a first blueprint for a promising class of applications
for context-based technologies.
However, we focus back on fall-risk assessment and proceed by briefly introduc-
ing the two approved fall-risk indicators we claim to be reconstructible from the
acceleration data.

3.2 Gait Variability

In [2], Hausdorff investigates the usage of Gait Variability as an indicator of
fall-risk. To calculate this parameter, a person is simply asked to walk at his
desired speed. Using force-sensitive insoles, for instance, the time stamps of the
respective initial ground contacts of each foot are recorded. Defining the gait
cycle times to be the differences of two subsequent time stamps for an arbitrary
but fixed foot, one can calculate the mean gait cycle time and finally the mean
deviation from this quantity. Formally, let N be the number of steps and tl(n)
the time stamp of the n-th initial ground contact of the left foot. Then the mean
gait cycle time MGC is defined by:

MGC :=

∑N−1
n=1 (tl(n + 1) − tl(n))

N − 1

Finally, the Gait Variability GV is defined as:

GV :=

√∑N−1
n=1 (MGC − (tl(n + 1) − tl(n)))2

N − 1



The confirmed hypothesis is again that a higher value of this quantity indicates
uncertainty in walking and thus a higher risk of falling.

3.3 Postural Sway

The second indicator is the so called Postural Sway (see [8]). Here, the stan-
dardized lab setting is very simple: Persons are asked to stand still and trunk
oscillation in both forward-backward and left-right direction is recorded. Then
the discrete Fourier transform of the resulting sequence is calculated and aggre-
gates of the frequency spectrum are determined (mean, standard deviation).

4 Theoretical and Empirical Background

This section contains a brief sketch of the statistical modeling underlying the
system, the studies that must be performed in order to both validate these
models and evaluate the overall system.

4.1 Modeling

For the first stage, given a finite sequences of vectors recorded during a given
time interval, we must segment this interval into a finite number of subintervals
labeled with elements of a finite set of activities (concretely: ”walking”, ”stand-
ing”,”something else”).
For the reconstruction of time stamps of steps, we must further segment the
intervals labeled with ”walk” into subintervals labeled with ”Swing Phase Left”
and ”Swing Phase Right”; the desired time stamps are determined by the bound-
aries of the subintervals.
Both cases lead to the same mathematical model: Vector sequences are to be
mapped to activity traces, e.g. functions from the time interval into the set of ac-
tivities; subintervals are delimited by the discontinuity points of these functions.
As there is no intuitive way of finding a deterministic functional relationship,
the problem must be tackled statistically, for example by estimating a regres-
sion functional. Similar problems arise also in many other settings and have
received some attention in the literature (under the name of ”activity classifica-
tion/recognition”). For a systematic review, we refer to [23]. On the one hand,
we simply adopt the state-of-the art being described in [23], which makes use of
standard machine learning theories, implemented in the well-known Weka tool
kit for instance. On the other hand, we have for the first time provided a thor-
ough theoretical justification of this approach, in terms of sufficient conditions
under which the stochastic guarantees (yielded by standard theories) to find a
classifier near to the supremal accuracy carry over to the non-standard case we
are faced with. This work will be published in the near future and is out of the
scope of this contribution.
Finally, reconstruction of Postural Sway can be done by twofold numerical inte-
gration over the intervals labeled with ”standing”.



4.2 Validation Studies

The suitability of the theory sketched in the previous section must be validated
by means of patient studies, as having an estimator for finding functionals near
to the optimal accuracy with high probability does not mean that this optimum
is ”good” enough for the application at hand. To this aim, our project part-
ner Sophia AG Bamberg, who, among other services, provides technical security
equipment for elderly people, recruits elderly probands among his clients. Ex-
cluded are persons suffering from special diseases like Parkinson. This is not a
real restriction, because it is a priori known that these people are at a high risk
of falling
For the validation of the first stage, we are currently letting these probands,
wearing our accelerometer, execute everyday tasks, observed by a supervisor
who logs the actual activity traces. These samples are aggregated and ”fed into”
the learning procedures of Weka. According to our analysis conducted so far, we
can state that it is possible to reach 90-95 per cent (cross-fold evaluation) accu-
racy after an individual training phase of 15 minutes for each person. Opposed
to the great benefits of the system, this effort seems well justified.
For the validation of the step time reconstruction, persons will be asked to walk,
while being equipped with both the accelerometer and insoles like the ones used
by Hausdorff. This again yields samples for a supervised training and cross-fold
evaluation.
For validation of Postural Sway reconstruction, we will ask probands (again
equipped with the accelerometer) to stand on a special platform designed to
measure trunk oscillations. Afterwards, we can numerically process (twofold in-
tegration) the sequence of acceleration samples and appropriately compare the
reconstructed oscillation to the actual one measured directly.

4.3 Evaluation Study

After the (hopefully) successful validation and fine-tuning of the single processing
stages, an evaluation of the composite system’s fall-risk prognosis must be carried
out in the field. To this aim, a group of probands will be asked to wear the sensor
devices at home, making available large amounts of data that will be used to
compute fall-risk predictions. These will be compared to the prognoses of an
approved fall-risk assessment tool, serving as a gold standard.

5 Conclusion and Future Work

We have proposed the concept of a context-based system for fall-risk assessment
of elderly persons at home, along with a detailed outline of our development
methodology. Beyond the perspective of making fall-risk assessment affordable
for a much larger part of the elderly population than it has been achieved up to
now, our approach can be tailored towards other medical settings. In the future,
we plan to explore parametric statistic models for the key problem of activity



classification. Furthermore, in case of positive results of the planned evaluation,
it would be desirable to proceed to a prospective evaluation. For this stage, we
(resp. our project partners) are planning to come up with a fully functional pro-
totype, including wireless data transmission to a base station connected to some
suitable WAN. This prototype is supposed to serve as a basis for a commercial
product.
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