
Modiquitous 2011

Proceedings of the 1st International Workshop on Model-
based Interactive Ubiquitous Systems

Proceedings of Modiquitous Workshop

Copyright for the whole publication, Technische Universität Dresden, 2011
Copyright of the single articles remains with the authors.

Publication Online ‐ CEUR Proceedings (CEUR‐WS.org)
CEUR‐WS Vol. 787
Publication Year 2011

V.i.s.d.P:
Jun.‐Prof. Dr. Thomas Schlegel
Junior Professorship for Software Engineering of Ubiquitous Systems
Institute for Multimedia and Software Technology
Technische Universität Dresden
01062 Dresden
Germany

CONTENTS

WORKSHOP ORGANIZERS...4

Thomas Schlegel...4

Stefan Pietschmann..4

PROGRAMME COMMITTEE...5

INTRODUCTION...6

THEME, GOALS, AND RELEVANCE...7

PROGRAM...8

ACCEPTED PAPER...9

Models Transformations for Ubiquitous System Design..9

Model‐Based Testing for the Menu Behavior of Automotive Infotainment System HMIs....15

Towards Ubiquitous Emergency Management Systems..21

A Framework for Transforming Abstract Privacy Models into Implementable UbiComp
System Requirements ..27

Ubiquitous Alignment...33

Generating consistent universal controllers for Web‐Service‐enabled appliances...............39

A Context Taxonomy Supporting Public System Design...45

Navigating the Personal Information Sphere...51

3

Modiquitous 2011 Proceedings

WORKSHOP ORGANIZERS

Thomas Schlegel

Technische Universität Dresden
01062 Dresden
Germany
thomas.schlegel@tu‐dresden.de

Thomas Schlegel is Junior‐Professor for Software Engineering of Ubiquitous Systems at the
Institute of Software and Multimedia Technology of the Technical University of Dresden. Before
he joined the University of Stuttgart as team leader for Interactive Systems, he worked as senior
researcher and research project leader at Fraunhofer IAO from 2002, where he served as
research cluster leader in the European Network of Excellence I*PROMS and led various national
and international research projects. He received his PhD in engineering from the University of
Stuttgart. He is author and co‐author of 60 scientific publications and serves as reviewer and
committee member for diverse international conferences.

Stefan Pietschmann

Technische Universität Dresden
01062 Dresden
Germany
stefan.pietschmann@tu‐dresden.de

Stefan Pietschmann is research associate and Ph.D. student at the Institute of Software and
Multimedia Technology of the Technical University of Dresden. He has been actively involved in
several research projects in the field of collaborative and context‐aware web applications. In the
project CRUISe he specifically addresses the model‐driven development of adaptive interactive
applications based on the idea of a universal service composition.

4

Modiquitous 2011 Proceedings

mailto:thomas.schlegel@tu-dresden.de
mailto:stefan.pietschmann@tu-dresden.de
http://www.iproms.org/

PROGRAMME COMMITTEE

• Uwe Aßmann, Technical University of Dresden, Germany
• Jan van den Bergh, Hasselt University, Belgium
• Birgit Bomsdorf, Hochschule Fulda, Germany
• Raimund Dachselt, Otto von Guericke University of Magdeburg, Germany
• Florian Daniel, University of Trento, Italy
• Alfonso Garcia-Frey, University of Grenoble, France
• Geert-Jan Houben, Technical University of Delft, Netherlands
• Heinrich Hussmann, Ludwig-Maximilian University Munich, Germany
• Sevan Kavaldjian, Vienna University of Technology, Austria

Programme Committee
• Gerrit Meixner, DFKI,Germany
• Philippe Palanque, University of Toulouse, France
• Fabiò Paterno, CNR-ISTI, Italy
• Michael Raschke, University of Stuttgart, Germany
• Dirk Roscher, Technical University Berlin, Germany
• Enrico Rukzio, University Duisburg-Essen, Germany
• Stefan Sauer, University of Paderborn, Germany
• Thomas Springer, Technical University of Dresden, Germany
• Gerhard Weber, Technical University of Dresden, Germany
• Anette Weisbecker Fraunhofer IAO, Stuttgart, Germany
• Jürgen Ziegler, University Duisburg-Essen, Germany

5

Modiquitous 2011 Proceedings

INTRODUCTION

Ubiquitous systems today are introducing a new quality of interaction both into our lives and into
software engineering. Systems become increasingly dynamic making frequent changes to system
structures, distribution, and behavior necessary. Also, adaptation to new user needs and contexts
as well as new modalities and communication channels make these systems differ strongly from
what has been standard in the last decades.

Models and model-based interaction at runtime and design-time form a promising approach for
coping with the dynamics and uncertainties inherent to interactive ubiquitous systems (IUS).
Hence, this workshop discussed how model-based approaches can be used to cope with these
challenges. Therefore, it covers the range from design-time to runtime models and from
interaction to software engineering, addressing issues of interaction with and engineering of
interactive ubiquitous systems.

The MODIQUITOUS workshop was intended to discuss challenges and possible solutions of the
EICS community to design and runtime aspects of interactive ubiquitous systems with a focus on
model-based approaches. It aims to bring together researchers and practitioners focused on
different problems of IUS.

6

Modiquitous 2011 Proceedings

THEME, GOALS, AND RELEVANCE

Model-based interactive ubiquitous systems form a new promising yet challenging domain within
the scope of the Engineering of Interactive Computing Systems (EICS) conference. This workshop
is intended to discuss these challenges and possible solutions of the EICS community to design
and runtime aspects of interactive ubiquitous systems with a focus on model-based approaches.

The related problem space becomes clear when looking at typical future scenarios: users will not
only carry their data but also their applications and profiles with them. This may mean switching
from planning a project on a desktop system to a collaborative setting in a meeting and further to
a mobile or public display setting where a mobile device is used for creating sketches for the first
steps in the project. Consequently, applications will evolve from device-oriented to emergent
cyber-physical and ubiquitous software in a broad sense, forming interactive and socio-technical
systems. This opens manifold possibilities, but also a number of research problems regarding
both the development process and the execution environment for those kinds of applications.

The MODIQUITOUS workshop is intended to provide a basis for discussion the adequate
solution space. Therefore, it aims to bring together researchers and practitioners focused on
different challenges of IUS, including:

• Model-driven architecture (MDA) in the context of IUS

• Advantages and potential problems of using MDA in the IUS domain

• Meta models for IUS, specifically for IUS-related aspects like interaction, different
modalities, dynamic distribution, context-awareness, etc.

• Domain-specific models for IUS

• Model-driven generation of (intelligent) IUS

• Model-to-model and model-to-code transformations for IUS development

• Model-driven development and execution architectures, i.e., runtime systems for IUS

• Tools and frameworks for supporting the model-driven development of IUS

• Concepts for context-awareness and self-adaptation of IUS on model and runtime

• Software Engineering aspects of IUS

• Human Computer Interaction aspects of IUS

All these topics are of high relevance to a big part of the EICS community as their use is not
restricted to ubiquitous systems and will show new ways for many kinds of new systems like
mobile device settings, pervasive computing and social software.

7

Modiquitous 2011 Proceedings

PROGRAM

The workshop was held in the morning of June 13, 2011 as part for the ACM EICS Symposium.

08:45 Arrival

09:00 Welcome and introductions

 Introductory statements by the organizers and brief introduction by each
participant

09:15 Paper presentations

• Emmanuel Dubois, Christophe Bortolaso and Guillaume Gauffre
Models Articulations for Ubiquitous System Design

• Linshu Duan and Heinrich Hussmann
Model‐Based Testing of Automotive Infotainment System HMIs

• Jan Zibuschka, Uwe Laufs and Heiko Roßnagel
Towards Ubiquitous Emergency Management Systems

• Ivan Gudymenko and Katrin Borcea‐Pfitzmann
A Framework for Transforming an Abstract Privacy Model into Implementable
UbiComp System Requirements

10:35 Coffee break

11:00 Paper presentations

• Florian Haag, Michael Raschke and Thomas Schlegel
Ubiquitous Alignment

• Marius Feldmann, Thomas Springer and Alexander Schill
Generating consistent universal controllers for Web‐Service‐enabled appliances

• Romina Kühn, Christine Keller and Thomas Schlegel
A Context Taxonomy Supporting Public System Design

12:00 Discussion and Topic Definition

Discussion of hot research topics and definition of topics for the groups

12:15 Group Work

Discussion of the selected topic, e.g., identification of research roadmap items

12:45 Discussion

Plenum discussion and topic integration

13:00 Lunch

8

Modiquitous 2011 Proceedings

Models Transformations for Ubiquitous System Design

Emmanuel Dubois, Christophe Bortolaso, Guillaume Gauffre
University of Toulouse - IRIT

118, route de Narbonne
31 062 Toulouse Cedex 9, France

[firstname.lastname]@irit.fr

ABSTRACT
Many different models and tools exist for supporting the
design of ubiquitous interactive systems. Each of them
deals with a different point of view. As a result designing
such systems has to involve a set of models rather than just
one. In this paper we first provide an overview on existing
models dedicated to Mixed Interactive Systems, one form
of ubiquitous systems. Then, to facilitate the elicitation of
the most appropriate model, we organize them along the
steps of the development process. Finally, to smoothly
guide the use of these different design resources along the
development process, we provide an overview of different
linking mechanisms between design models for ubiquitous
systems and highlight their characteristics.

Keywords
Interaction model, software architecture model, model
transformation, mixed interactive system

INTRODUCTION
Among the most recent forms of interactive techniques,
one aims at taking advantage of physical objects to support
the interaction with a computer system: physical artifacts
surrounding users during their activity become part of the
loop. Users’ everyday objects thus constitute an extension
of their body to communicate with the system. Such
systems are either called tangible UI, mixed or augmented
reality, etc.: we hereafter refer to them with the generic
term of Mixed Interactive System (MIS). Such systems are
emerging in many different domains, ranging from specific
application such as surgery [19] to mass market [15]. It
also comes together with the emergence of new usages and
the combination of advanced and various technologies.
Furthermore, new spaces are now opened to interaction
since the interaction is simply requiring the presence of
everyday physical objects. According to Weiser’s
definition, it is therefore a form of ubiquitous interactive
system because the interaction mechanisms “weaved
themselves into the fabric of everyday life” [25].
Nevertheless, the growing interest into the development of
such interaction forms is undoubtedly linked to the
constant exploration of new sensors, modalities and
communication channels: as a result these forms of
interaction are very different from traditional WIMP based
situations. To better understand their differences and
precisely highlight their specificities, efforts has been paid
to develop descriptive models: such models express

considerations related to the interaction [7], the physical
properties of the required entities [16], the abilities of the
modalities involved [6], etc. We observe from the diversity
of approaches that complementary aspects, relevant for the
design of MIS are addressed by different models. In the
course of the design, the designer thus has to identify, for
each step of the development, the most appropriate model,
method or tool supporting the design. Developing a MIS
thus appears to be a real challenge [21]. An optimistic
solution could rely on the use of a unique and universal
approach, aggregating all the required dimensions and
enabling the design of all kinds of MIS. However, given
the low maturity of the domain, the multiple attempts being
developed, such an approach is not yet conceivable
Rather than contributing to the creation of such a unique
reference model, we propose to compare existing models
according to their role and place in the development
process. Then, to facilitate their combined use, i.e. to
smoothly guide the use of these design resources along the
development of MIS, we explore possible linking
mechanisms between models. In this paper, we first give a
brief overview and characterization of modeling
approaches existing in the field of MIS. We then introduce
three fundamental design resources on which we have
investigated the development of different model
transformations and couplings.

EXISTING MODELS IN MIS
Designing Mixed Interactive Systems (MIS) requires
considering many specifics facets: the nature of physical
artifacts, the links between these physical objects and
digital data and the variety of devices and technologies
which can be involved. Consequently, adapted design
resources have been developed. Hereafter, we review a set
of design resources dedicated to MIS.
First, conceptual frameworks [9,12,16,22] provide a high
level of abstraction on the MIS field. They raise questions
about the generic role of the system and its place in the
physical world. They provide a big picture of the MIS field
and somehow help to lead the analysis of interactive
situation.
Taxonomies and models [6,7,23] have also been defined to
understand mixed interactive situations, the elements that
characterize them and their advantages. This second set of
approaches therefore contributes to a better understanding
of the interaction design of MIS.

E. Dubois, C. Bortolaso, G. Gauffre: Models Transformations for Ubiquitous System Design. Proc.
of 1st International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy, June 13, 2011,
http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

9

Toolkits and frameworks [13,17,21], rapid prototyping
environments [5] or runtime platforms [1,18] have been
proposed to facilitate the implementation of MIS.
Finally, many user experiments results have been published
to compare different MIS among them or against WIMP
solutions [4]. In addition, evaluation methods dedicated to
such tests are explored [24] to provide an appropriate form
of evaluation.
All these modeling approaches cover different but
complementary design considerations. Although their
levels of abstraction vary, they offer a clear definition of
the development space and constitute a common
terminology supporting interdisciplinary communication.
As depicted in Figure 1, we also highlight that the different
design models and resources, used to develop a MIS, can
be organized along the traditional phases of an interactive
software design cycle. Existing models dedicated to WIMP
can therefore easily be put in parallel with models
dedicated to MIS, and either be compared to or used in
addition to these dedicated models.

Figure 1: Existing design Models (M), Couplings (C) and

Transformations (T) for MIS development.

The main limits are however that these models and
approaches are almost exclusively usable by MIS experts
and remain highly compartmentalized. Indeed, even if
high-level resources used during the design should guide
the implementation, concrete and systematic links have not
been clearly expressed yet. To support the design through
the four development phases of a MIS and to highlight a
chain of design models and tools from the earliest design
considerations to the latest in the development process,
connections among models are required. We propose in the
following section, an overview of different linking
mechanisms we have been exploring over the past years.
We depict the goal, source and target of the links between
two models and describe the resulting overall mechanism
(see Figure 7). The presented linking mechanisms are also
positioned in Figure 1.

BASIS OF OUR INSTRUMENTED DESIGN PROCESS
The three pillars of our articulating efforts respectively
support the abstract description of the user’s interaction
with a MIS, the software level decomposition required to
implement the designed MIS and the concrete component
based implementation of the final MIS. We first summarize
these models and illustrate them on a case study: the
notepad assisted slideshow.

Figure 2: Use of the notepad assisted slideshow

For oral presentations, sequential slideshow systems like
PowerPoint are largely used. The prototype we propose is a
physical enhancement of a slideshow system: it involves
the use of a notepad as “remote control” and feedback
source, and associates each page of the notepad to one
digital slide (see Figure 2). The speaker can thus write his
own comments on the notepad and easily access to the
corresponding slide. Potential animation steps of each slide
are controlled through user’s tap on the notepad. In the
next sections, this prototype is used to illustrate the
different models used to develop this system and how they
have been linked.

Interaction model
Overview
ASUR [7] is a model which provides an abstract view on
the user’s interaction with a MIS. It describes physical and
digital entities, adapters between the two worlds and
information channels among them. It is a static
representation: it describes a snapshot of the interaction
required at a given time to perform a given task. It is also
totally independent of the technology since it relies
exclusively on an abstract description.

Goal
The goal of this model is to describe the different types of
elements and data exchange required to support the
interaction with a MIS. Both entities and channels are
further characterized by attributes such as the type of entity
(real object, adapter bridging the two worlds, etc.), the
medium and language of the channels. Additional elements
are expressible such as physical constraints among entities,
links between a physical and digital entity, etc.

Example
The model of the notepad assisted slideshow is presented in
Figure 3. The “user” interacts with the “notepad” for which
each page is detected by an adapter (“PageDetector”).
Another interaction with a second adapter detects user’s tap
(“StepDetection”). These two adapters deliver to the

10

Modiquitous 2011 Proceedings

“slideshow” some digital data from which the current slide
and step in the animation are identified. Finally, the state of
the slideshow is rendered through three different adapters
to the “user” and the “attendees”.

Figure 3: ASUR model for notepad assisted slideshow

Tools
A metamodel of ASUR has been defined [11]. Based on
this metamodel a graphical editor has been developed as an
Eclipse plug-in within the Eclipse Modelling Project [8].

Software architecture model
Overview
The ASUR-IL model is used to describe the MIS software
architecture: it defines the software’s skeleton through a
components based architecture. As for ASUR it remains
sufficiently abstract to be independent of the
implementation platform since it relies exclusively on
generic descriptions of the components.

Goal
The goal of this second model is to promote the integration
of design considerations related to component-based
specificities (port, data flow, component) and to software
architecture of interactive system (functional core, views
and controller). ASUR-IL is thus composed of two types of
sub-assemblies:
• Adapters describing the required devices and API to

implement the link between physical and digital world
• Entities describing system-dependent components;

entities are decomposed according to the MVC pattern. It
thus contains a Model, View(s) and Controller(s)

In comparison to ASUR, ASUR-IL adopts a software point
of view on the interaction with the MIS. It therefore
provides a list and description of the software bricks
required, interfaces, ports, data types, etc.

Example
Left side of Figure 4 illustrates the adapter sub-assembly
required to implement the “page detector” expressed with
ASUR (Figure 3). It involves a digital camera component
and a marker detection component. The right side of Figure
4 describes the entity sub-assembly required to implement

the “slideshow” expressed in ASUR. This sub-assembly
involves four components: two controllers, one model and
one view.

Figure 4: Detailed description of two of the ASUR-IL
assemblies involved in the notepad assisted slideshow

The ASUR-IL model which entirely covers the case study
is represented in Figure 5.

Figure 5: Two of the ASUR-IL assemblies involved in the

notepad assisted slideshow

Tools
As for ASUR, a metamodel has been defined, and a
graphical editor has been defined as an Eclipse plug-in.

Software component model
Overview
To implement the prototypes that we design with ASUR
and ASUR-IL we rely on two existing prototyping
platforms: Open Interface (OI) [20] and WComp [5].

Goal
The goal of such platforms is to allow a rapid development
of system through manipulation of component assemblies
at run-time. In association with each platform, a repository
of components is available: it consists in a set of reusable
software components ready to be integrated into new
assemblies.

Example
The Notepad Assisted Slideshow has been implemented as
an assembly of WComp components. This is illustrated in
Figure 6. Each element of the assembly corresponds to one
of the ASUR-IL element defined in the ASUR-IL model of
the system.

11

Modiquitous 2011 Proceedings

Figure 6: WComp assembly of the notepad assisted slideshow.

Tools
Metamodels of WComp and OI include the three concepts
of component based architecture: components, ports and
data flows. Each platform also offers a graphical editing
environment for creating the appropriate assemblies.

Outcomes and limitations
There are obviously links between concepts expressed in
each of these three pillars. But there is no clear constraint
that drives their respective use and it is not ensured that the
designer will conform to design recommendations made
with the other models. For example, so far interaction
design decisions expressed with the ASUR model are not
constraining the development of the software architecture
with ASUR-IL. And yet, these three pillars are required to
drive a MIS from its early specification to its final
implementation. We therefore complement them with
linking mechanisms, such as model transformations or
model coupling, in order to support the transitions between
several phases of the development process. The goal is to
better take advantage of the design choices expressed with
the different models.

ARTICULATING DESIGN MODELS
MIS models have been developed to cover different phases
of the development process: transformations and couplings
are thus required at different places in the process.

From requirement to interaction design
Overview
We explored different linking mechanisms at this level:
• Linking models resulting of a KMAD task analysis to

the ASUR interaction model [3]. It involves a unique
expert, whose role is to translate the most of a task model
into the definition of the contour of the interaction model:
concepts expressed in the task tree are mapped to
elements of an ASUR model describing an interaction
technique supporting the realization of the task.

• Stimulating creativity session with the ASUR model
[2]. A Model Assisted Creativity Session (MACS) is
based on a scenario and a set of different constraints; it
fosters the generation of mixed interaction techniques
inside a group of multidisciplinary designers. MACS
participants are invited to manipulate elements of an
interaction model, in order to augment the potential of
variations they might consider to generate ideas.

Goal
The goal of these two linking mechanisms is to ensure that
the interaction techniques proposed are really in line with
the specified task to achieve (KMAD-ASUR) and with the
design problems to solve (MACS). In both cases the result
of the linking mechanism is just a partial interaction model.

Tool
KMAD-ASUR and MACS are not so far supported by
automatic tools. KMAD-ASUR is based on a set of rules
and an algorithm describing the sequence of use: managing
the alternatives generated by this transformation is left in
charge of the designer. A MACS is composed of a set of
steps, guidelines for the facilitator and manual post-
treatments for the generated modelled ideas.

From interaction design to software architecture
Overview
This transformation, represented in the left side of Figure 7,
converts an abstract specification of the interaction
technique into a structured set of required software
components: the generation of this software components
structure is driven by the type of ASUR entity, attributes
and channels involved in the model [10].

Figure 7: Synthetic summary of the model transformations linking ASUR to an implementation.

(available as Eclipse Plugins http://www.irit.fr/recherches/ELIPSE/guideme/)

12

Modiquitous 2011 Proceedings

Goal
This transformation maintains coherence between the
interaction specification and the proposed implementation.
The software structure produced through it is only partial:
indeed information related to the type of data for example,
is not expressed in the ASUR model. This refinement of
the software architecture design is thus left to the designer.

Tool
To support this transformation, ATL rules automate part of
the transformation. It is assisted by the use of an ontology
that establishes links between parts of the interaction
design and parts of the software architecture definition: the
ontology provides additional information to choose among
existing components. A repository of already defined and
used ASUR-IL components is available. Finally a wizard
helps the designer to go through the different steps of the
transformation and suggest design options. All these
technologies have been packed into Eclipse plug-ins.

From software architecture to implementation
Overview
Translating ASUR-IL model to an implementation
produces a running prototype [10]: this transformation is
represented in the right side of Figure 7. The prototype is
therefore made of an assembly of existing components
(either from the OI or WComp platforms) and strictly
conforms to the software architecture previously expressed.

Goal
The goal of this final transformation is to concretely
instantiate the designed interactive technique. Until this
final point, there is no need to pay attention to the soft- and
hardware technologies to use. As a result, the running
prototype can easily reuse existing bricks, even if they are
not all available on the same platform: indeed
communication mechanisms among the components have
also to be specified.

Tool
To support this transformation, ATL rules, repositories of
components, ontology and an interactive wizard have been
developed. All these technologies have been packed into
Eclipse plug-ins.

From development models to evaluation
Overview
We developed this linking mechanism in order to relate
ergonomic recommendations to part of an interaction
model describing the MIS [2]. This is based on a formal
pattern describing usability recommendations: this pattern
involves elements constituting the ASUR interaction
model.

Goal
The main objective of this link between evaluation and
design model is to facilitate the identification on the model,
of part of the solution that is affecting (positively or
negatively) the usability of the system. Such links thus

potentially reduce the duration of one cycle of the four
phases development process.

Tool
So far the navigation through the recommendations is only
supported by a multiple criteria query on a web site.
Refined tools would be useful so that usability
recommendations pop out as soon as one relevant elements
of the interaction model is added or selected.

CONCLUSION
In this position paper we highlighted the diversity of
design-time and run-time models existing in the field of
mixed interactive system, one form of ubiquitous
interactive system. This diversity is partly explained by the
amount of design considerations to handle when it comes
to designing such systems: indeed most models covers only
one specific aspect or at the best a limited subset of
relevant considerations. However, following our analysis
of existing works, we have been able to identify for each of
these development resources one of the different phases of
a development cycle for which the development resource is
dedicated. This is thus classifying these design resources.
To go past the comparison of models through a
classification, it is required to chain one model to another.
Indeed one model provides one view on the system to
design; chaining one to another provides a support for
considering different complementary views without leaving
one aspect aside. Furthermore, one unique and integrated
design platform would be hard to propose because of the
multiplicity of options, situations, technologies and usages
potentially involved in a MIS. Chaining models to each
other allows the definition of different ways in the design
process: for example, going from A to B through a
transformation in model C (A C B), may very
flexibly be replaced by a longer transformation chain
involving two other models instead of model C (A D

E – B). The result is the same, but the specialists of
models D and E are no longer enforced to use model C.
Based on the different linking mechanisms between models
of different phases of the development process that we
have investigated, this paper showed that different forms of
transformation exist: they use repositories of partial
solutions, graphical representations, manual application of
rules, methodological principles or transformation
language. Among them, those exploiting Model Driven
Engineering (MDE) approach and tools (ASUR to ASUR-
IL to WComp/OI) appear to be the most promising: they
use a standard language; they are easily supported by tools;
they contribute to the definition and diffusion of the
metamodels; they support the generation of multiple
representations of the same model; they define
transformation mechanisms, constitute guides through the
design process; finally MDE has already proven its
efficiency in classical software engineering. However,
using MDE raised new challenges to investigate.

13

Modiquitous 2011 Proceedings

First in terms of properties, what happens to system or
interaction properties settled in one model when a
transformation is applied to the model? And more
generally, are there properties of a transformation that are
particularly important for “modiquitous” activities?
Managing retroactive loops in the design process also
raises questions: if a model B is generated from a model A,
how to ensure that modifications on B are still in line with
A? How to send back to A modifications performed on B?
Given that ubiquitous systems are still quickly evolving
and adding considerations to new dimensions,
technologies, artifacts, etc., how MDE might help
integrates these emerging new considerations? What would
be the relevant characteristic of an ubiquitous interactive
situation that could help identify the most relevant design
path among the available models and transformations?
Finally, evaluating ubiquitous systems is a challenge in
itself, but “modiquitous” activities are definitely
contributing to this challenge through the elicitation of the
most relevant design aspect of ubiquitous system, thus
emphasizing the need to base the design of ubiquitous
system on models.

REFERENCES
1. Bauer, M., Bruegge, B., Klinker, G., et al. Design of a

Component-Based Augmented Reality Framework.
ACM and IEEE ISAR’01, (2001), 45--54.

2. Bortolaso, C., Bach, C., Dubois, E., A combination of a
Formal Mixed Interaction Model with an Informal
Creative Session. EICS’11, 10 pages, 2011 (in press).

3. Charfi, S., Dubois, E., Bastide, R.. Articulating
Interaction and Task Models for the Design of
Advanced Interactive Systems. TAMODIA 2007, Vol.
4849, Springer, LNCS, p. 70-83, 2007.

4. Charfi, S., Dubois, E., Scapin, D.L., Usability
Recommendations in the Design of Mixed Interactive
Systems, EICS’09, USA, ACM, p. 231-236, 2009.

5. Cheung, D., Tigli, J., Lavirotte, S., et Riveill, M.
Wcomp: a Multi-Design Approach for Prototyping
Applications using Heterogeneous Resources. IEEE
International Workshop on Rapid System Prototyping,
IEEE Computer Society (2006), 119-125

6. Coutrix, C. et Nigay, L. An Integrated Framework for
Mixed Systems. in The Engineering of Mixed Reality
Systems - Chap 2. Springer-Verlag London, 2010, 9-32.

7. Dubois, E., Gray, P., Nigay, L. ASUR++ : A Design
Notation for Mobile Mixed Systems. Interacting with
Computers 15, 4 (2003), 497-520.

8. Eclipse Foundation. Eclipse Modeling Project. 2006.
http://www.eclipse.org/modeling/.

9. Fishkin, K.P. A taxonomy for and analysis of tangible
interfaces. PUC’04, 8, 5 (2004), 347-358.

10. Gauffre, G., Dubois, E., Bastide, R.. Domain-Specific
Methods and Tools for the Design of Advanced
Interactive Techniques. in : Models in Software
Engineering. Springer, Vol. 5002, LNCS, 2008, 65-76.

11. Gauffre, G., Dubois, E., Taking Advantage of Model-
Driven Engineering Foundations for Mixed Interaction
Design. Dans / In : Model Driven Development of
Advanced User Interfaces, Springer-Verlag, Vol. 340,
Studies in Computational Intelligence, 2011, p. 219-240

12. Gaver, B., Boucher, A., Walker, B., and al. Expected,
sensed, and desired:A framework for designing sensing-
based interaction. ACM TOCHI 12, 1 (2005), 3-30.

13. Greenberg, S. et Fitchett, C. Phidgets: easy
development of physical interfaces through physical
widgets. UIST, ACM (2001), 209-218.

14. GuideMe. Editor of MIS specific models. 2010.
http://www.irit.fr/recherches/ELIPSE/guideme/.

15. Hornecker, E., Shaer, O., Tangible User Interfaces:
Past, Present and Future Directions, in Foundations and
Trends in HCI, Vol. 2 Nr. 1-2, 2010, pp. 1-138

16. Jacob, R.J., Girouard, A., Hirshfield, L.M., et al.
Reality-Based Interaction: A Framework for Post-
WIMP Interfaces. CHI’08, ACM (2008), 201-210.

17. Kato, H. et Billinghurst, M. Marker Tracking and HMD
Calibration for a Video-Based Augmented Reality
Conferencing System. IEEE IWAR’99, (1999), 85-95.

18. Klemmer, S.R., Li, J., Lin, J., et Landay, J.A. Papier-
Mache: toolkit support for tangible input. CHI’04,
ACM (2004), 399-406.

19. Lamata, P., et al., Augmented Reality for Minimally
Invasive Surgery: Overview and Some Recent
Advances, in Augmented Reality, ISBN 978-953-7619-
69-5, (2010), p. 73 – 98.

20. Open Interface. STREP. http://www.oi-project.org/.
21. Shaer, O. and Jacob, R.J. A specification paradigm for

the design and implementation of tangible user
interfaces. ACM TOCHI, 16, 4 (2009), 1-39.

22. Ullmer, B. and Ishii, H. Emerging frameworks for
tangible user interfaces. IBM Syst. J. 39, 3-4 (2000),
915-931.

23. Ullmer, B., Ishii, H., et Jacob, R.J.K. Token+constraint
systems for tangible interaction with digital
information. ACM TOCHI 12, 1 (2005), 81-118.

24. Wang, X. Dunston, P.S., Usability Evaluation of a
Mixed Reality Collaborative Tool for Design Review,
CGIV’06, (2006), p. 448 – 451.

25. Weiser, M., The computer for the 21st century.
Scientific American, 3(265):94–104, 1991

14

Modiquitous 2011 Proceedings

Model-Based Testing for the Menu Behavior of Automotive
Infotainment System HMIs

Linshu Duan
Ludwig-Maximilians-
Universität München

and
AUDI AG

linshu.duan@audi.de

Heinrich Hussmann
Institut für Informatik
Ludwig-Maximilians-

Universität
München

heinrich.hussmann@ifi.lmu.de

Dieter Niederkorn
and

Alexander Höfer
Infotainment System

Testing
AUDI AG

dieter.niederkorn@audi.de
alexander.hoefer@audi.de

ABSTRACT
Testing the graphical human machine interface (HMI) of au-
tomotive infotainment systems has shown to be costly and
challenging due to its large function scope, high complex-
ity and multiple variants. To ensure the quality and reduce
testing costs we are working on a model-based testing con-
cept for graphical HMIs of infotainment systems. In our
work the short form ”HMI” is used for the term ”graphical
HMI”. In this paper, we present some preliminary results
of our model-based testing research. We firstly introduce
the classification and distribution of HMI errors. This statis-
tic shows that errors in the menu flow construct an essential
part of HMI errors. In this paper we focus on the detection
of this kind of errors. For this UML state machine has to be
extended to describe the menu behavior, so that valid tests
can be generated from its instances. Common coverage cri-
teria for the state machine can not produce efficient tests for
infotainment system HMIs. Therefore, we discuss some de-
fined adequacy criteria for infotainment system HMI tests.
At last we briefly introduce how we use software product-
line approaches to integrate variability into the model-based
HMI testing concept.

Author Keywords
Model-Based Testing, Test Models, HMI-Testing, Software
Product-Line, Statechart with Variability

INTRODUCTION
Infotainment system HMIs of new generations have a very
wide function scope and can contain more than 2000 menus
and 100 pop-up menus. They usually have many variants
caused by different markets, product-lines, individually con-
figurable features and equipments.
To reduce the testing costs and ensure a systematic code
coverage, we are working on a model-based and automated

testing concept specific for infotainment system HMIs. The
concept has been introduced in previous papers [5] [6]. In
this paper we present some new results of our ongoing work.
This paper is organized as follows. In order to clarify which
kinds of HMI errors can occur in practice, we have evalu-
ated some parts of a past HMI development project. We will
present our results of the error classification and a rough dis-
tribution.
UML statechart, which graphically represents a state ma-
chine, is widely used for the development and specification
of infotainment system HMIs. However, the standard UML
state machine from the OMG (Object Management Group)
[14] is not sufficient for specifying the menu behavior so that
valid and automatable tests can be generated from the spec-
ification. We firstly introduce the test-oriented HMI spec-
ification in which the menu behavior model is located and
then required extensions of the state machine for creating a
testing-ready menu behavior model.
Test generation based on common coverage criteria can not
produce adequate tests for infotainment system HMIs. We
firstly introduce the generated tests based on two chosen
common coverage criteria and then explain the specific ade-
quacy criteria for infotainment system HMI tests.
Finally, we will introduce the variability of infotainment sys-
tem HMIs and how variability handling can be integrated
into our model-based testing concept.

RELATED WORK
A number of research efforts have addressed the model-based
testing of GUI applications [17], [16], [1], [10] and [11].
The NModel framework introduced in [2] supports finite state
machine (FSM) models and automatic test generation for
GUI-driven applications. In this approach binding user data
or data exchange with external components are not consid-
ered.
In [17] a model-based software testing method for web ap-
plications is presented. This method focuses on testing the
functionalities of the front end of web applications, i.e., the
linking behavior of the links and forms, which is modeled
with statecharts. However, this method has not yet found so-
lutions to the problems of modeling the back-ends of a web
application. Without the behavior of the back-end, a gener-

L. Duan, H. Hussmann, D. Niederkorn, A. Höfer: Model-Based Testing for the Menu Behavior of Automotive
Infotainment System HMIs. Proc. of 1st International Workshop on Model-based Interactive Ubiquitous System 2011,
Pisa, Italy, June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

15

ated test only describes a possible sequence contained in the
model and does not consider the conditions. So generated
tests are usually infeasible for the test automation. For info-
tainment systems HMIs the behavior of the back-end is very
complex and error-prone. Testing this logic automatically is
a very important test purpose.
The concept described by Memon [11] does not separate the
menu flow behavior and the physical structure of the HMI,
which is inappropriate for specifying the infotainment sys-
tem HMI. Different variants of infotainment system HMIs
are usually developed in one model as one product family.
The variants in the family usually have the same or very sim-
ilar behavior but different physical HMI elements or struc-
ture. Separation of them is an important requirement in the
HMI specification.
In [10] LTS (labeled transition system) with action-word and
key-word technique is used. The concept separates the spec-
ification of the business logic and the presentation logic.
The action model contains action-words, which are abstract
events. They describe the behavior of the system. The re-
finement model contains both action-words and key-words.
Key-words are user events or menu navigation, which are
performed by concrete HMI elements. Refinement model
describes also how action-words can be refined with key-
words.
In [1] the authors extend the state machine with regular ex-
pressions to consider not only correct HMI actions but also
incorrect transitions.
In [12] and [16] some specific coverage criteria for HMI test-
ing are introduced in addition to common coverage criteria
[13] [7].
Works [18] and [9] focus on variability of SW products with
product-line approaches in the domain of SW development.
In [9] a state machine contains all potential features of all
products in the product family. The goal is to choose re-
quired sub states from the state machine, resolve the rela-
tions and generate code for a certain product. In [18] for
each feature of the product family there is a state machine
available. The task is to select the required state machines,
find the connections of them and generate code for a certain
product.

ERROR CLASSIFICATION AND DISTRIBUTION
Past infotainment system projects containing advanced and
complex HMIs are chosen for a statistical analysis. HMI
error tickets are evaluated which were created during the de-
velopment phase. Figure 1 presents the classification and
distribution of the errors.
About a quarter of HMI errors are in the menu logic, so-
called menu behavior errors. They appear in the form of
switching to an unexpected menu in response to some inputs
from the user or underlying applications. In practice of auto-
motive HMI domain, the menu behavior is usually specified
with statechart models.
More than the half of the HMI errors are in the views and
contained graphical elements. Views are usually called screens
in the automotive domain.
A view usually contains static contents such as a title and

Figure 1. Error classification and distribution

subtitle as in Figure 2, which are displayed at any time and
in any context. The error statistic has shown that an essential
part of HMI errors arise from erroneous static content such
as a missing text. They can be easily found, if menu behavior
tests are extended with sub tests verifying the static contents.
Required information for testing static contents are specified
in the presentation layer of the test-oriented HMI specifica-
tion, which will be introduced in the next section. Simple
image processing methods can be used to get the presented
texts from the display [5].

Figure 2. Static content of a menu and a mask

Infotainment system HMIs are usually available for many
languages. Language errors are either contained in the lo-
calization database or caused by erroneous linking between
entries in the localization database and representing widgets.
Errors caused by erroneous linking and representing widgets
can also be found by static content tests.
Infotainment system HMIs contain usually a lot of advanced
widgets with dynamic behavior. Dynamic widgets lead to
a lot of HMI errors. The widget behavior can also be de-
fined with statechart models. Widget behavior tests can be
generated from these models and extended to menu behavior
tests. However our prototype of a widget behavior model has
shown that modeling widgets can be very work-intensive and
time-consuming. It only makes sense to model especially
errors-prone widgets and test them automatically. Therefore
it is very important that the menu behavior and the widget
behavior are separated in different models in a HMI testing
concept.
There are many other errors, which are not in the HMI but
directly affect the HMI behavior. They are either due to the
HMI framework or underlying applications. For example,
the phone application has sent an empty string as a con-
tact name to the HMI or the switching between different

16

Modiquitous 2011 Proceedings

menus have some delay because the bus system is heavily
loaded. Modeling the behavior of underlying applications or
the whole infotainment system is infeasible for infotainment
system HMIs. This category of errors can not be found with
the concept.
Preliminary evaluation results provide only a picture of the
error classification and contribution. One can define the cat-
egories in a very different way and we believe, statistic of
other projects can deviate from current results.

TEST-ORIENTED HMI SPECIFICATION
In the last section, we have introduced that menu behavior
errors construct an essential part of HMI errors. To detect
menu behavior errors, a test model has to be available which
specifies the expected menu behavior. In our concept, such
a test model is called menu behavior model and is arranged
in the behavior layer of the test-oriented HMI specification.
A test-oriented specification [5] [6] is a HMI specification,
which contains sufficient information for testing purposes.
It’s constructed with a layered structure as shown in Figure
3:

Figure 3. Layers of the test-oriented specification

The presentation layer contains testing-relevant information
about screens and their graphical elements thus: potential
events which can be triggered by a screen and the abstract
content and structure of a screen. Data and event layers con-
tains variables and events used in other layers. The widget
behavior models describe the behavior of complex widgets.
The design layer which contains design information is op-
tional. It is only required if design tests should be performed.
This is not the focus of our work. As shown in Figure 3,
menu behavior models are separate to other models or infor-
mation. This separation provides the possibility to specify
the menu behavior and perform menu behavior tests inde-
pendently.

THE MENU BEHAVIOR MODEL
In this section we focus on the specification of the menu be-
havior and introduce some required extensions of the UML
state machine for specifying the menu behavior with testing
purposes. We introduce our extensions based on the state
machine definition from the OMG [14].

ViewState
Currently three kinds of states are distinguished in the state
machine: simple state, composite state and submachine state.
A new kind of state: ViewState has to be extended for de-
scribing the HMI menu behavior. A view state is a special
kind of simple state signifying that the current state is asso-
ciated with an abstract screen in the presentation layer. A
views state has an attribute of type string, which is the name
of the associated view in the presentation layer. When a view
state is active, the associated view has to be displayed.

PreStepsCondition
In many situations some user actions are only enabled, if
some other actions are previously performed. For example,
entering a city name as navigation destination is only en-
abled, if a country name has been entered. A test which
enters a city name and starts the guidance without to enter
a country name before is an invalid test. PreStepsCondi-
tion is extended into the state machine, which indicates this
dependency for the test generator. Transitions which need
other transitions as previous steps, have to be labeled with
a PreStepsCondition. Transitions fulfilling some PreStep-
sConditions have to be labeled with actions making these
conditions true. A PreStepsCondition contains a function,
which evaluates to a boolean value. For each PreStepsCon-
dition, there must be at least one transition labeled with an
action which makes the contained function true.

RuntimeCondition
An infotainment system HMI is not a closed application such
as a simple calender, which contains the complete behavior
logic in itself. During the runtime, an infotainment HMI
communicates with the underlying applications almost all
the time. The menu behavior is strongly dependent on the
runtime data. However at the time of creating models and
generating tests, the runtime data and consequently the com-
pletion of conditions are unknown. For example, when a
user has entered the destination completely and started the
route guidance, the screen with the map and calculated re-
sults should only be shown after that the calculation is fin-
ished. However, the calculation is performed by the under-
lying application. That means, the transition pointing the
view state associated with the map screen is only active if
a condition is fulfilled during the runtime by the underlying
application. A new type of condition ”RuntimeCondition”
has to be extended to describe this dependency. A Runtime-
Condition contains a function, which evaluates to a boolean
value. The function has to be bound with runtime variables,
from e.g. the interface between the head unit and the under-
lying application. The function can only be fulfilled by the
runtime variables.

17

Modiquitous 2011 Proceedings

Some new event types
Figure 4 show the event types defined by the OMG for the
UML state machine.

Figure 4. Event types in a UML state machine

We have defined different types of events depending on their
sources. For instance, the type ApplicationEvent is defined
for events initialized by underlying applications. An ap-
plication event can be a message event or a change event.
In events which are performed by users we distinguish two
types: GlobalEvent and ReacionEvent. Global events can be
performed via the control unit anytime and they are effective
for any HMI states. For example, for switching between dif-
ferent infotainment system functions such as radio and navi-
gation, buttons are provided in the control unit, which trigger
global events. In contrast to global events, a reaction event
can only be triggered in certain screens. Distinguishing dif-
ferent event types is very important for the test generation
and instantiation.
A lot of functions of infotainment systems require user input-
data, e.g. a phone number to dial or a destination for the
guidance. Representatives for each user input-data equiva-
lent class have to be tested. User input-data for tests should
better be separately defined independent from the test model
(not a part of the test model). In this way, to change the user
input-data for different testing purposes or phases would not
lead to some model changes. On the other hand, the sepa-
rately defined user input-data can be reused for other tests.
To bind the user input-data, ”UserInputEvent” has to be ex-
tended into the state machine. Currently we have defined
equivalent classes for correct user inputs and unexpected
user inputs.

COVERAGE CRITERIA FOR INFOTAINMENT SYSTEM HMI
TESTS
We have implemented test generation algorithms based on
some common coverage criteria in order to evaluate their
adequacy for infotainment system menu behavior testing.
As explained, the menu behavior of an infotainment system
HMI is strongly dependent on the runtime data. For an in-
fotainment system HMI with 1000 menus, up to 250 condi-

tions states are needed to model the dependency of the menu
behavior on runtime data. So we have implemented a gener-
ation algorithm based on the branch coverage, which means
all outgoing transitions of existing condition states have be
tested. Our implementation is based on the depth search and
allows currently each cycle for once. The generation results
have shown that the generated tests can cover all branches,
the number of generated tests is limited and the tests are very
short. Generated tests are very unusual user scenarios.
Infotainment systems are very function-oriented. Each func-
tion e.g. starting the route guidance is usually accessible
on one unique menu. We have implemented an algorithm,
which generates all paths to a destination menu in which a
certain function is accessible. All-path coverage could pro-
duce infinite tests. To limit the number of generated tests
we allow each cycle only once. The generated tests cover
all possible paths to the destination menu. However, most
of the tests are in the same equivalent class, which means,
the error could already be found with only one of the tests.
Execution of all tests is unnecessary and impossible in the
testing life due to very limited testing time and resources.
Evaluation of other common coverage criteria e.g. transition
coverage and HMI-special criteria as introduced in [12] and
[16] is planned.
We firstly discuss criteria of adequate and efficient tests for
infotainment system HMIs.
One of the most important requirements in premium HMIs
is a faultless textual and graphical representation. So view-
ing all existing menus for all languages at least once would
be the first criterion for infotainment HMI tests. We could
derive the ViewState-coverage from this criteria.
Reusability of menus is very common in the implementation
of infotainment system HMIs. For example a menu repre-
senting the contacts exists only once and is accessible from
both the navigation and address book context. The menu
shows different color and widgets depending on the access-
ing context. The reuse of menus could be very error-prone.
So tests accessing reused menus from different ways can be
very efficient to find errors.
We are still working on the definition of infotainment system
HMI-specific coverage criteria based on the found adequacy
criteria.
At last we would like to show a small example of a gener-
ated test, which firstly enters a destination and then starts the
route guidance. We use the syntax [] for an expected menu
name and () for a test step:
[navMain]−> (enter on widget “country”) −> (wait(5ms))
−> [navCountryList]−> (userInput selectCountry correct)
−> (enter) −> [navMain]−> (enter on widget “startRG”)
−> [navRgStarted]

INTEGRATING VARIABILITY INTO MODEL-BASED HMI-
TESTING
A software product-line (PL) [3] [8], also called system fam-
ily, is a set of software systems sharing common features that
satisfy the specific need of a particular market segment and
that are developed from a common set of core assets in a
prescribed way.

18

Modiquitous 2011 Proceedings

Infotainment system HMIs are multi-variant products. The
variability results from product series such as different gen-
erations, market variants such as for Europe or Asia, config-
uration variants such as with or without DVD player and sys-
tem variants such as standard resolution with normal display
or higher resolution with larger display. In practice many
of these variants are developed in one project due to a large
set of commonalities in features, looks and behaviors. That
means, an HMI model in such a project describes all fea-
tures, looks and behaviors potentially required for different
variants e.g. for both Europa- and Asia-market. A prod-
uct, which is created from such a model exactly satisfies one
variant e.g., a standard system with navigation feature for
the Europa market. For these reason, the model-based HMI
testing concept has to be extended to support the variability.
We reuse feature models to extend the test-oriented HMI
specification for the variability management. Feature mod-
els (FMs) allow us to describe both commonalities and dif-
ferences of all products of a PL and to describe the rela-
tionships between them. A FM configuration (FMConf) is
an instance of a FM that describes the properties and func-
tionality of a product. In [4] FM and FMConf are described
in details. We extend the in [4] defined FM and FMConf
with distinction of two kinds of children: functional features
and non-functional features. A functional feature can be e.g.
the feature radio or navigation. A non-functional feature
can be a variant feature, e.g. Europa variant or Asia vari-
ant. Usually, the relationship between functional features
is or-relation and the relationship between variant features
is alternative-relation. Figure 5 shows a strongly simplified
example: f stands for a functional feature and v stands for
variant feature.

To extend menu behavior models for variabilities, some

Figure 5. A FM with functional and non-functional features

new elements have been introduced as extensions for UML
state machines. A feature composite state is a special kind
of composite state in which the behavior of a function fea-
ture is described. A feature composite state is always re-
lated to a functional feature in the FM. An HMI allows inter-
feature activities e.g., from the feature navigation the user
can switch to the feature telephone and choose an address
of a contact as destination. Therefore, in the menu behavior
model there can be transitions between two feature compos-
ite states, which are called inter-feature transitions. Further-
more, variation points and junction points which are origi-
nally defined in [15] for activity diagrams are extended for
the state machine. Each variation point is related to a child

node which is marked with v in the FM e.g. ”system” in
Figure 5. Each outgoing transition is related to one of the
contained variant features e.g. ”standard” or ”high”. A vari-
ation point can only be used within a pair with a junction
point, which merges the distinction of the variant feature be-
haviors.
Also the presentation layer has to be extended for variabili-
ties. Parameterized inheritances are used in the abstract de-
scription both of the screen structure and events which can
be potentially triggered by the screen. Since presentation
layer is not the focus of this paper, it is thus not further dis-
cussed.
Each infotainment system test bench conforms to a valid
FMConf. For instance, a test bench is a ”high” system for
Europa with the basic feature radio and configurable fea-
ture navigation as shown in Figure 5. In a testing farm test
benches for many configurations are available. Since many
configurations share a common set of functional or non-functional
features, avoiding the redundancy is one of the most im-
portant requirements for the test generation and test execu-
tion. Therefore the test generation is composed of two steps.
Firstly, algorithms traverse the whole test model and gener-
ate partial tests for all required functional and non-functional
features. Then tests are created from these partial tests for
all required configurations. In this way redundant genera-
tion of common features are avoided. If changes are only
carried out in a sub set of the features, the test generation is
able to regenerate partial tests from the affected partial test
model and the second step has to be executed for the affected
features. Avoiding redundant test execution is especially im-
portant in industrial practice due to limited test resources.

CONCLUSION
In this paper, we introduced some preliminary results of our
model-based testing research for infotainment system HMIs.
Error statistic and some additional elements needed for mod-
eling the menu behavior were introduced. We also discussed
which tests are adequate and efficient to detect errors in our
area. Furthermore, we have briefly introduced the main ideas
how we extend the model-based HMI testing for variabili-
ties.

ADDITIONAL AUTHORS
REFERENCES
1. F. Belli. Finite-state testing and analysis of graphical

user interfaces. In ISSRE ’01: Proceedings of the 12th
International Symposium on Software Reliability
Engineering, page 34, Washington, DC, USA, 2001.
IEEE Computer Society.

2. V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and
P. L. Jones. Model-based testing of gui-driven
applications. In Software Technologies for Embedded
and Ubiquitous Systems, volume 5860/2009, pages
203–214. Springer-verlag New York Inc, 2009. 7th
IFIP WG 10.2 International Workshop, SEUS 2009
Newport Beach, CA, USA, 2009 Proceedings.

3. P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. SEI Series in SE.
Addison-Wesley, 2002.

19

Modiquitous 2011 Proceedings

4. K. Czarnecki. Generative programming: Methods,
techniques, and applications. In Proceedings of the 7th
International Conference on Software Reuse: Methods,
Techniques, and Tools, ICSR-7, pages 351–352,
London, UK, UK, 2002. Springer-Verlag.

5. L. Duan, A. Hoefer, and H. Hussmann. Model-based
testing of automotive hmis based on a test-oriented hmi
specification model. In Proceedings of the the 2nd
International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2010), August
22-27 2010, Nice, France. IEEE, Aug. 2010.

6. L. Duan, H. Hussmann, and A. Höfer. A test-oriented
hmi specification model for model-based testing of
automotive human-machine interfaces. In GI
Jahrestagung (2), pages 339–344, 2010.

7. C. Gaston and D. Seifert. Evaluating coverage based
testing. In Model-Based Testing of Reactive Systems.
Springer-Verlag New York, LLC, 2005.

8. H. Gomaa. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. The Addison-Wesley Object Technology
Series. Addison-Wesley, 2004.

9. A. Gonzalez and C. Luna. Behavior specification of
product lines via feature models and uml statecharts
with variabilities. In 2008 International Conference of
the Chilean Computer Science Society, pages 32 – 41.
IEEE Computer Society, 2008.

10. A. Kervinen, M. Maunumaa, T. Pkknen, and M. Katara.
Model-based testing through a gui. In In Proceedings of
the 5th International Workshop on Formal Approaches
to Testing of Software (FATES 2005), number 3997 in
Lecture Notes in Computer Science, pages 16–31.
Springer, 2006.

11. M. A. M. An event-flow model of gui-based
applications for testing: Research articles. Softw. Test.
Verif. Reliab., 17(3):137–157, 2007.

12. A. M. Memon, M. L. Soffa, and M. E. Pollack.
Coverage criteria for GUI testing. pages 256–267,
2001.

13. J. Offutt and A. Abdurazik. Generating tests from uml
specifications. page 76, 1999.

14. OMG. Omg uml, superstructure.
http://www.omg.org/spec/UML/.

15. S. Reis and K. Pohl. Wiederverwendung von
integrationstestfällen in der
software-produktlinienentwicklung. Inform., Forsch.
Entwickl., 22(4):267–283, 2008.

16. H. Reza, S. Endapally, and E. Grant. A model-based
approach for testing gui using hierarchical predicate
transition nets. In Proceedings of the International
Conference on Information Technology, ITNG ’07,
pages 366–370, Washington, DC, USA, 2007. IEEE
Computer Society.

17. H. Reza, K. Ogaard, and A. Malge. A model based
testing technique to test web applications using
statecharts. In ITNG ’08: Proceedings of the Fifth
International Conference on Information Technology:
New Generations, pages 183–188, Washington, DC,
USA, 2008. IEEE Computer Society.

18. N. Szasz and P. Vilanova. Statecharts and variabilities.
In P. Heymans, K. C. Kang, A. Metzger, K. Pohl,
P. Heymans, K. C. Kang, A. Metzger, and K. Pohl,
editors, VaMoS, ICB Research Report, pages 131–140,
2008.

20

Modiquitous 2011 Proceedings

Towards Ubiquitous Emergency Management Systems
Jan Zibuschka
Fraunhofer IAO

Nobelstr. 12
70569 Stuttgart

jan.zibuschka@iao.fraunhofer.de

Uwe Laufs
Fraunhofer IAO

Nobelstr. 12
70569 Stuttgart

uwe.laufs@iao.fraunhofer.de

Heiko Roßnagel
Fraunhofer IAO

Nobelstr. 12
70569 Stuttgart

heiko.rossnagel@iao.fraunhofer.de
ABSTRACT
This contribution introduces an emergency management system
design based on platform-independent multi-touch technology as
an interactive, ubiquitous front-end technology for pervasive
sensor and communication components. This combination aims at
supporting decision making and analyses during all phases of the
emergency management process. From stakeholders providing
planning information beforehand to end users communicating via
their mobile phones or even distributed sensor networks, the
system taps into a wide range of data sources and offers a
comprehensive, digestible view on the data using multi-touch
surfaces in the operations centre. In order to integrate legacy data
sources and to keep the system open for the integration of
additional data sources in the future, a model based approach is
used. Demonstration versions of the system’s components based
on current multi-touch frameworks and hardware as well as
mobile apps and communities are also presented.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input Devices and Strategies; D.2.11
[Software Architectures]: Domain-specific Architectures;

General Terms
Design, human factors, software engineering.

Keywords
Multi-touch, emergency management, crisis response, mobile.

1. INTRODUCTION
In emergency situations, the stakeholders responsible for the
organization and execution of the emergency management have to
cope with complex situations and short time frames for reaction.
Therefore, they often have to make quick decisions based on the
data available to them. Emergency management systems (EMS)
provide the capability to provide crucial information support and
to enable disaster forces to manage disaster events, including
detection and analysis of incidents [10].

According to [35] the lifecycle of a crisis or emergency comprises
of several stages:

(1) a pre-event stage allowing the development of strategy
and plans;

(2) a stage immediately before or after a crisis or disaster
occurs which requires the implementation of strategies
to deal with its impacts;

(3) continued implementation of strategies to control or
reduce the severity of the crisis/disaster; and,

(4) a long term recovery or resolution phase allowing for
evaluation and feedback into future prevention and
planning strategies for destinations and businesses.

Emergency management systems that utilize ubiquitous
components can provide relevant information during all phases of

the emergency lifecycle that can contribute to saving human lives.
In this contribution we propose a system design for ubiquitous
emergency management that addresses these potentials. We base
our approach on pervasive information gathering components that
are connected to ubiquitous monitor devices handled by e.g. first
responders.

We start with a short review of related work in section 2. We
outline our overall approach in section 3 and discuss its
implementation in section 4, before we summarize our results.

2. RELATED WORK
There has been a lot of work on supporting crisis control rooms
with visualization and interaction on large displays, e.g. [20] [40],
including multi-touch solutions [14]. Multi-touch has also been
used in related disciplines such as IT security for visualizing the
outputs of intrusion detection systems [17], as interface to large
scale simulation in the context of astrophysics [16], or as front end
for sensor networks [27].

Such systems are often used in this context as visualizing spatial
information is one of the technology’s strengths [39]. An
overview of spatial information and geographic information
systems in the context of emergency management is given in [12].

Micire et al. [28] offer a broad set of technologies integrated into
a multi-touch interface for disaster response. Similarly, the
German SoKNOS project has developed a broad visualization and
data integration approach [13] for supporting “the response and
the recovery from natural and socio-technical disasters” [31].
SoKNOS also provides planning components, and integrates web
services and sensors. We envision a system where planning and
learning from past events are more central, and which is able to
data mine web communities, as well as provide real time
information from integrated mobile apps.

Zibuschka et al. [42] present a multi-touch design aimed at
supporting the planning stages of emergency management. The
presented design integrates information provided by the individual
stakeholders to provide a common picture to support planning of
large public events. We extend this approach by adding additional
support for the after-event stages, and integrate a broader set of
data sources, such as mobile apps and web sites such as social
networks or news sites.

Nóbrega et al [29] present a system which simulates the
propagation of disaster such as floods, and can visualize the
scenarios on an interactive display for operative briefings.
Simulation is not currently our main focus, but the visualized
scenarios are similar.

Generally speaking, none of the systems presented offer support
for the full emergency management life cycle. They often focus
on the operations during a disaster, neglecting the planning and
learning phases before and after the event. This is especially
relevant as in case of disaster, it may not be prudent to rely on the
availability of a technical system too much; much less its

J. Zibuschka, U. Laufs, H. Roßnagel: Towards Ubiquitous Emergency Management Systems.
Proc. of 1st International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy,
June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

21

established ubiquitous components such as mining of external
information or collection of information from end-users. Our
contribution aims to fill this gap.

3. APPROACH
Our approach is built on three main ideas:

 Disaster management involves a lot of spatial
information, and it makes sense to build an overarching
information integration framework around this information [18],
to improve communication possibilities and awareness of
information from other stakeholders or from the field, which are
key issues in emergency management [34].

 Multi-touch interfaces are very well suited for
visualizing [27] and interacting with [15] spatial information.

 As already pointed out in the related work, we feel that
disaster management systems should focus more on the pre-event
and resolution phases [35], as infrastructure failures can knock out
the system infrastructure for information integration [26].

Realizing a system built on these basic ideas, we try to meet the
basic requirements for emergency management systems identified
by Scherner et al. [38]. They are:

 system effectiveness

 reliability

 cost efficiency

 smooth service integration

 multilateral user interaction

 availability

 security.

To address these factors, we build on the reference architecture
given by Roßnagel et al [37].

3.1 Vision
Our vision is to make emergency management systems truly
ubiquitous in nature, combining mobile and/or pervasive sensors
(in the broadest sense) and mobile terminals in general with
ubiquitous Roomware [32] approaches supporting the staff in the
crisis control centre. The components are tied together by a
model-driven data integration engine fusing data from various
sources (Figure 1).

In the field, sensor networks pervasively collect information. In
the current implementation, those are mainly mobile clients
handled by end users or first responders, but the future vision
includes sensor networks (including “smart dust”, appliances for
detection of e.g. explosives and similar systems).

In addition, the system is also able to retrieve information from
arbitrary web sites, e.g. third party news sites and communities,
using a web mining approach. In the future, this component may
leverage the ontologies used in the data integration for full-
fledged reasoning on the Semantic Web or similar large-scale data
integration approaches, but it is useful for monitoring social media
and news even as is. In addition, interfaces for relevant
information systems at involved organisations can be provided,

Figure1: Deployment Overview

22

Modiquitous 2011 Proceedings

allowing for integration of data like property and liability
information from the local administration, or event reports from
first responder organisations. The data collected this way makes
the emergency management system immediately useful to its
users [7].

The incoming information is digested using a data integration
back-end that is built on ontologies, bringing the heterogeneous
inputs into a form that can be displayed as spatial data on a map.
For cases where this is not sensible, additional UI ontologies can
be supplied to configure specific display modes for the
information.

The visualization is performed on interactive displays back at the
crisis control centre, providing a more complete picture of the
situation in the field during operations and later during after-event
briefing. The same visualizations may also be used by pervasive
screens in e.g. first responder vehicles or mobile clients. For this,
it is very beneficial to use a portable multitouch API solution
supporting all common operating systems [24], including on
mobile terminals.

Personnel at crisis control centres can benefit from collaborative
interaction to improve information sharing and communication,
especially during the pre-event and event resolution phases of the
lifecycle [42].

In large part, this vision is similar to what is presented (purely as a
video illustrating the vision) in [33], which is a work by
collaborators. However, the system we envision has an additional
focus on pre-event and event resolution support [35]. We can also
offer a realization of the system based on today’s technologies,
described in the next sections.

3.2 Current Realization
To realize this vision today, we implement a system using current
multi-touch surfaces, such as tables and tablets, as a front end,
with a back-end consisting of on the one hand customized apps on
mobile phones distributed by the stakeholders in various contexts
(e.g. large public events [37]) and on the other hand with broad
data integration capabilities, for deployment at e.g. control
centres. As we are focussing on the post- and pre-event phases,
we are not so much focussed on the communication interface to
first responders in the field, instead focussing on interfaces to
information systems at the involved organisations, as well as
collecting input from users that were/are connected to the internet
during the event, or reports acquired using data mining
components from e.g. news sites post-event. An overview of this
approach is given in Figure 1.

So, the system integrates several of the ubiquity aspects given in
the vision. Mobile phones have a market penetration of more than
100% in the EU [30], and people are using them to push
information about their surroundings all the time. We leverage
this by integrating contemporary mobile apps with an information
integration component and a collaborative multi-touch
visualization that can also be brought to the small displays of
mobile devices using the portable MT4j framework [24], as
described in the next section.

4. IMPLEMENTATION
Earlier versions of the multi-touch and mobile components were
developed in national project VeRSiert, but integration is still
ongoing. In addition, the components are recontextualized in
relation to the disaster management life cycle, covering more
phases, specifically post-event support.

The mobile communities within the system are based on the
design presented by [38] [37], offering both value-added services
in the context of tourism/large public events/transportation and
emergency services such as emergency notifications.

4.1 Mobile Services
The mobile service platform utilized in our current mobile service
infrastructure is presented in [36]. It can be utilized for emergency
management and commercial mobile value-adding service as
described in the previous section. It offers modular basic services
that were identified based on the value-adding event management
and emergency services [36]. These basic services include:

 chat platform

 micro-blogging platform

 localization of users

 multicast and broadcast messages

 mobile ticketing

 mobile payment

As the same underlying technologies can be used for both value-
added and emergency management services economies of scale
significantly reduce the associated costs. In addition, by offering a
service platform implementing those building blocks, a quick
development of value-adding mobile services can be achieved
[36].
We have implemented a system prototype, based on customized
Open Source components for the server side, and using Google’s
Android [1] platform for implementation of the client application
[36].

On the server side, we use StatusNet’s Laconica micro-blogging
service [2] (providing support for persistent, asynchronous,
bidirectional communication between stakeholders such as end
users and emergency managers). To also offer a synchronous,
non-persistent communication channel allowing for group
communications, we use the OpenFire [3] server implementing
the eXtensible Messaging and Presence Protocol (XMPP) [36].

On the client, components like routing, chat client, micro-
blogging connector and friend finder have been implemented
using the Android API, in part based on additional online services
like Google Maps [4] and components of the mobile phone, e.g.
the Global Positioning System (GPS). Further basic services can
be implemented as modular components. A rebranding of the
client application was integrated, to allow for additional
distribution channels, and enabling the system to reap the benefits
associated with strong brand names in the context of new product
deployment [36] [41].

23

Modiquitous 2011 Proceedings

Figure 2:Prototype screenshots (widget and app, running app)
In addition to the app, we implemented a widget component for
quick access to the emergency functionality (see Figure 2).

4.2 Pervasive Sensors
Another interesting type of data provider for emergency
management is distributed sensor units. These devices can provide
information e.g. about fire, toxic gasses or radiation. Furthermore,
camera based systems can e.g. be used as a sensor for the
detection of unusual large crowds [21]. While at the current state
of the art, extensive use of sensors is quite expensive and difficult,
the large amount of research activity in this area may provide
cheaper and better suited solutions in the future.

At the current state of implementation, we use Sun SPOT devices
[5] (Figure 3) as an example of mobile distributed sensor devices.
It contains several on-board sensors and it provides breakouts
which can be connected to external sensors. The device
communicates via radio transmission as well as via a USB
interface. While the device is still quite expensive and much
bigger than sensors in the vision of smart dust, the device behaves
similar regarding the way it communicates and the data that it
produces.

Figure 3: Sun SPOTs as mobile sensor devices

4.3 Data Extraction
Within the World Wide Web already a lot of structured or semi-
structured information exists which can be queried using
standardized interfaces. For example, the Open Search interface
[6] provides access to several content management systems,
blogging systems and search engines and can be used to retrieve
information from many existing sources in the web. Information
sources without a dedicated external interface often can also be
accessed using bots and parsers with additional effort for
interfacing, extraction and additional maintenance efforts in case
of changing structures of the information sources.

4.4 Multi-touch User Interface
The multi-touch front-end provides an integrated view of the
available emergency management information. This includes
information provided by the stakeholders as well as information
from the other components of the overall system (sensors, mobile
services and data extracted from the WWW). Location-dependent
data is visualized on a map. There are several kinds of maps that
can be used, e.g. aerial shots or roadmaps.

Figure 4: Screenshot prototype (Multi-touch application
visualizing different kinds of location based information)
The multi-touch user interface is realized using “Multi-touch for
Java” (MT4j), which is an open source framework for rapid
development of multi-touch applications on the Java platform
[24]. MT4j runs on Microsoft Windows, Linux and Mac OSX. It
supports several multi-touch input protocols such as
WM_TOUCH [23] on Windows 7 or the platform independent
open source protocol standard TUIO [22]. In the meantime, a first
alpha version of MT4j exists for Google’s Android platform so
that future versions of our multi-touch application can also be run
on Android Tablets. Currently, we also think about an adaption of
the application’s user interface to the smaller display dimension of
Android smartphones.

For collaborative use during the pre-event and event resolution
phases [30], a 42 inch multi-touch terminal is used. The terminal
runs on Windows XP. On the terminal, multi-touch motion data is
transferred via the TUIO protocol. Stakeholders can also run the
application on any windows or Linux PC. If the hardware is not
capable of multi-touch, the application can also be controlled
using traditional input devices like keyboard and mouse or a track
pad. This allows the stakeholders to use the application on their

24

Modiquitous 2011 Proceedings

normal PC and to contribute e.g. planning information directly via
the application.

The application manages the underlying data using the relational
database system HSQLDB [19]. Multi-media content like images,
videos or 3D models are stored as files and referenced from the
database. Since all data including the database itself and all multi-
media content is stored in one file system folder, it is possible to
store the whole data in a single archive file. Since the system
allows importing database archives in read-only mode, there is a
simple way to merge data from the different stakeholder’s
systems.

4.5 Model Based Data Integration
Within the overall system, different kinds of information have to
be collected and managed. Against the background of proprietary
implementations and heterogeneous data structures as well as
semantic differences in the data provided by the various data
sources, a model based approach is used. We use ontologies to
describe the data sources as well as the information provided by
the various platform-internal and external data sources. This
approach has already proven to be purposeful, especially in
heterogeneous environments [8] [9]. For the realization of the
description models, we decided to use the web ontology language
(OWL) [25]. OWL is a XML-based ontology description
language which is built upon the less expressive W3C standards
RDF [7] and RDFS [11]. OWL itself offers three variants that
contain different subsets of the OWL syntax. While OWL lite is
focussed on simple classifications and restrictions OWL DL and
OWL full offer much more expressiveness but also increase the
complexity. We decided to use OWL DL because OWL lite is not
expressive enough and OWL full does allow complex definitions
on which no formal decision making is possible.

In order to allow operating on a defined data structure, a unified
data model is used. It describes all the information, the system can
operate with. In a data source description model, meta-
information about the specific data sources is stored. A
visualization model for each data source allows the customization
of the user interface. It describes which specific information is
visualized and how it is presented. This leads to a high
configurability of the front-end to end-user requirements while
minimizing costs for minor changes.

A data source connector for each data source has to be
implemented. It accesses the data using the given mechanism
depending on the specific data source. For example, the data
provided by the mobile services is stored in a RDBS and queried
via SQL by the connector. A data management module provides
scheduling functionality for data fetching. It fetches data using the
data source connectors. The management module is also
responsible for the storage of the fetched data.

5. CONCLUSION
In this contribution, we presented a ubiquitous emergency
management system design, based on the integration of mobile
and multi-touch components in the front end with sensor fusion
and data mining capabilities in the back end. As we derived our
system from evaluated designs from literature, we hope to address
the requirements given in [38].

6. ACKNOWLEDGMENTS
This work was in part supported by the VeRSiert project;
however, it represents the view of the authors only. The authors

would also like to acknowledge their colleagues from VeRSiert,
who offered invaluable feedback on the earlier versions of the
mobile services and multi-touch.

7. REFERENCES
1. Android.com. http://www.android.com/.
2. StatusNet. http://status.net/.
3. Ignite Realtime: Openfire Server.

http://www.igniterealtime.org/projects/openfire/.
4. Google Maps. http://maps.google.com/.
5. SunSPOTWorld - Home. http://www.sunspotworld.com/.
6. Home - OpenSearch. http://www.opensearch.org/Home.
7. Ankolekar, A., Krötzsch, M., Tran, T., and Vrandecic, D. The

two cultures: Mashing up Web 2.0 and the Semantic Web.
Web Semantics: Science, Services and Agents on the World
Wide Web 6, 1 (2008), 70-75.

8. Bügel, U. and Laufs, U. Einsatz innovativer Informations- und
Kommunikationstechnologien. In Fokus Technologie.
Chancen erkennen, Leistungen entwickeln. Hanser, München,
2009.

9. Bullinger, H.-J. Fokus Technologie. Carl Hanser Verlag,
München, 2009.

10. Carver, L. and Turoff, M. Human-computer interaction: the
human and computer as a team in emergency management
information systems. Communications of the ACM 50, (2007),
33–38.

11. Celino, I., Valle, E., and Cerizza, D. From Research to
Business: The Web of Linked Data. In Business Information
Systems Workshops. 2009, 141-152.

12. Cutter, S.L. GI Science, Disasters, and Emergency
Management. Transactions in GIS 7, 4 (2003), 439-446.

13. Döweling, S., Probst, F., Ziegert, T., and Manske, K. Soknos
— An Interactive Visual Emergency Management
Framework. In GeoSpatial Visual Analytics. 2009, 251-262.

14. Flentge, F., Weber, S.G., and Ziegert, T. Designing Context-
Aware HCI for Collaborative Emergency Management. Int’l
Workshop on HCI for Emergencies in conjunction with CHI,
(2008).

15. Forlines, C. and Shen, C. DTLens: multi-user tabletop spatial
data exploration. Proceedings of the 18th annual ACM
symposium on User interface software and technology, (2005),
119–122.

16. Fu, C.-W., Goh, W.-B., and Ng, J.A. Multi-touch techniques
for exploring large-scale 3D astrophysical simulations.
Proceedings of the 28th international conference on Human
factors in computing systems, (2010), 2213–2222.

17. Guenther, J., Volk, F., and Shaneck, M. Proposing a multi-
touch interface for intrusion detection environments.
Proceedings of the Seventh International Symposium on
Visualization for Cyber Security, (2010), 13–21.

18. Herold, S., Sawada, M., and Wellar, B. Integrating geographic
information systems, spatial databases and the internet: a
framework for disaster management. Proceedings of the 98th
Annual Canadian Institute of Geomatics Conference, (2005),
13–15.

19. HyperSQL. HSQLDB. http://hsqldb.org/. http://hsqldb.org/.
20. Ijsselmuiden, J., van de Camp, F., Schick, A., Voit, M., and

Stiefelhagen, R. Towards a Smart Control Room for Crisis
Response Using Visual Perception of Users. Poster at
ISCRAM 2004, (2004).

21. Junker, O., Strauss, V., Majer, R., and Link, N. Real-time
video analysis of pedestrians to support agent simulation of

25

Modiquitous 2011 Proceedings

people behavior. Fifth International Conference on Pedestrian
and Evacuation Dynamics (PED 2010), NIST (2010).

22. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Constanza, E. TUIO: A protocol for table-top tangible user
interfaces. 6th International Gesture Workshop, (2005).

23. Kiriaty, Y. MultiTouch Capabilities in Windows 7. msdn
magazine, 2009, http://msdn.microsoft.com/en-
us/magazine/ee336016.aspx.

24. Laufs, U., Ruff, C., and Zibuschka, J. MT4j - A Cross-
platform Multi-touch Development Framework. Engineering
Patterns for Multi-Touch Interfaces 2010 - Workshop at the
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, ACM (2010).

25. McGuinness, D. and van Harmelen, F. OWL Web Ontology
Language Overview. http://www.w3.org/TR/owl-features/.

26. Meissner, A., Luckenbach, T., Risse, T., Kirste, T., and
Kirchner, H. Design challenges for an integrated disaster
management communication and information system. The
First IEEE Workshop on Disaster Recovery Networks (DIREN
2002), (2002).

27. Merrill, D., Kalanithi, J., and Maes, P. Siftables: towards
sensor network user interfaces. Proceedings of the 1st
international conference on Tangible and embedded
interaction, (2007), 75–78.

28. Micire, M.J. and Yanco, H.A. Improving disaster response
with multi-touch technologies. Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on,
(2007), 2567-2568.

29. Nóbrega, R., Sabino, A., Rodrigues, A., and Correia, N. Flood
Emergency Interaction and Visualization System. In Visual
Information Systems. Web-Based Visual Information Search
and Management. 2008, 68-79.

30. Paul Meller. EU report: More mobile phones than citizens -
Computerworld. 2007.
http://www.computerworld.com/s/article/9014938/EU_report_
More_mobile_phones_than_citizens?taxonomyId=15&taxono
myName=mobile_and_wireless.

31. Paulheim, H., Döweling, S., Tso-Sutter, K., Probst, F., and
Ziegert, T. Improving usability of integrated emergency
response systems: the SoKNOS approach. Proceedings

“Workshop zur IT-Unterstützung von Rettungskräften”, LNI
Vol. 154, (2009), 1435–1449.

32. Prante, T., Streitz, N.A., and Tandler, P. Roomware:
computers disappear and interaction evolves. Computer 37, 12
(2004), 47-54.

33. PrecisionInformation. Precision Information Environments�»
Blog Archive�» VISION VIDEO.
http://precisioninformation.org/?p=32.

34. Quarantelli, E.L. Disaster crisis management: A summary of
research findings. Journal of Management Studies 25, 4
(1988), 373–385.

35. Ritchie, B.W. Chaos, crises and disasters: a strategic approach
to crisis management in the tourism industry. Tourism
Management 25, 6 (2004), 669-683.

36. Roßnagel, H., Zibuschka, J., and Junker, O. EVALUATION
OF A MOBILE EMERGENCY MANAGEMENT SYSTEM
– A SIMULATION APPROACH. AMCIS 2010, (2010).

37. Roßnagel, H., Zibuschka, J., Muntermann, J., and Scherner, T.
Design of a mobile service platform for public events -
Improving visitor satisfaction and emergency management.
Joint proceedings of ongoing research and projects of IFIP
EGOV and ePart 2010, Trauner (2010), 193-200.

38. Scherner, T., Muntermann, J., and Rossnagel, H. Integrating
value-adding mobile services into an emergency management
system for tourist destinations. ECIS 2009 Proceedings,
(2009).

39. Schöning, J. and Krüger, A. Multi-modal navigation through
spatial information. adjunct Proc. of GIScience 2008, (2008).

40. Stasch, C., Daiber, F., Walkowski, A.C., Schöning, J., and
Krüger, A. Multi-Touch- und Multi-User-Interaktion zur
Verbesserung des kollaborativen Arbeitens in
Katastrophenstäben. Geoinformatik 2009, ifgi prints (2009).

41. Tauber, E.M. Brand franchise extension: New product benefits
from existing Brand Names. Business Horizons 24, 2 (1981),
36-41.

42. Zibuschka, J., Laufs, U., and Engelbach, W. Entwurf eines
kollaborativen Multi-Touch-Systems zur Planung und
Abwicklung von Großveranstaltungen. GI Jahrestagung (1),
GI (2010), 825-830.

26

Modiquitous 2011 Proceedings

A Framework for Transforming Abstract Privacy Models
into Implementable UbiComp System Requirements

Ivan Gudymenko
Faculty of Computer Science

Dresden University of Technology
ivan.gudymenko@gmail.com

Katrin Borcea-Pfitzmann
Faculty of Computer Science

Dresden University of Technology
katrin.borcea@tu-dresden.de

ABSTRACT
During the development of UbiComp systems, privacy and
security issues often come into play only after the design
process is complete. The main development effort is typi-
cally concentrated on the direct functionality of the system,
which too often results in immaturity of privacy compliance
of the end product. This is one of the main burdens on the
way to acceptance of such systems among potential users
and to commercial success thereof as a consequence.

We claim that ensuring privacy and security in any UbiComp
system should be taken into account already at the system
design stage and should continue throughout all steps of the
development of a UbiComp system. In this paper, we focus
on privacy issues of UbiComp, namely we consider a frame-
work which enables for consistent transformation of abstract
privacy models into a set of implementable system require-
ments. A general approach to creating an abstract privacy
model, which takes into account social, legal, and functional
issues, is outlined. The further transformation of the model
into a set of system-specific and platform-independent re-
quirements is described.

Author Keywords
Ubiquitous Computing, Privacy, Privacy Model

ACM Classification Keywords
K.6.5 MANAGEMENT OF COMPUTING AND INFOR-
MATION SYSTEMS: Security and Protection—Privacy

General Terms
Design

INTRODUCTION
Marc Weiser, one of the pioneers in the area of Ubiqui-
tous Computing (UbiComp), outlined this concept as ”The
idea of integrating computers seamlessly into the world at
large [...]” [21]. Frank Stajano in his book [18] described
UbiComp as ”[...] a scenario in which computing is om-
nipresent, and particularly in which devices that do not look
like computers are endowed with computing capabilities.”
According to him, UbiComp does not imply ”the computer
on every desk” but rather embodying the computational
power into different parts of the surrounding environment
(clothes, household appliances, etc.), that normally are not
considered to be equipped with it thus making them ”smart”.

Whereas UbiComp introduces a set of tangible benefits for
the user1, it also raises serious privacy concerns. The reason
for this is that the advances of sensing technology and mem-
ory amplification have provided UbiComp systems with
qualitatively new opportunities of covert surveillance. Marc
Langheinrich claimed in [11] that ”ubiquitous devices will
per definition be ideally suited for covert operation and il-
legal surveillance, no matter how much disclosure protocols
are being developed”.

Privacy concerns of the users can impede the development
and especially the deployment of UbiComp systems. To give
an example, alongside its intended purpose, Smart Grid sys-
tems may pave the way to privacy violation scenarios (see
[8, 13] for more details.)

That means, that deploying a UbiComp system in a privacy-
preserving manner will increase the likelihood of its accep-
tance among potential users and broaden the target audience.
Moreover, having created the infrastructure of a UbiComp
system, it is relatively easy to deliver the end product to cus-
tomers (to deploy the system, e.g. accompany individuals
with respective sensors) since ”individual investments pay
off immediately” [14]. Due to this fact and because of the
higher acceptance among customers, a system with decent
privacy management mechanisms is more likely to be com-
mercially successful.

In this paper, we outline how a UbiComp system can be
designed in a privacy-preserving way. Namely, a concept,
which describes how privacy requirements can be elaborated
and how respective privacy mechanisms can be ”woven” into
UbiComp system’s functionality, is considered. This ap-
proach enables for privacy to be inherently built into the
UbiComp system under development, which should facili-
tate privacy management in the deployed system and make
it more efficient.

USED TERMINOLOGY
Privacy is a broad notion and defining it is a difficult task
due to the substantial difference of privacy perception among
individuals. However, in order to avoid ambiguity and not to
confuse the reader, we present our own understanding of this
notion.
1For example, unobtrusiveness of the devices with respect to their
size and operation mode, ability of the user to concentrate on the
specific (business) tasks without having to pay much attention to
the management of the underlying technical system, etc.

I. Gudymenko, K. Borcea-Pfitzmann: A Framework for Transforming Abstract Privacy Models into
Implementable UbiComp System Requirements. Proc. of 1st International Workshop on Model-based
Interactive Ubiquitous System 2011, Pisa, Italy, June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

27

The widespread ways of understanding privacy are ”the right
to be let alone” [20] and also ”the right to be forgotten” [19,
5]. One of the common delusions is that the ”more” pri-
vacy the individual has, the better his identity is protected.
However, privacy does not have a monotonic behavior. The
optimum is situated in the vicinity of the ”golden middle”
because individuals live in society and therefore experience
the need for social interaction. This implies exchanging of
certain pieces of private information between communicat-
ing entities. We claim, however, that individuals, without
fully realizing it, need adequate and appropriate privacy.
Managing privacy implies constant processes of negotiation
between the parties involved and also with the person2 con-
cerned of which personal information of that individual is
given out in which situation and enforcing that his/her pri-
vacy policy is being followed. Thus, in order to take the
aforementioned issues into account, we adhere to the fol-
lowing definition of privacy, elaborated in [3]:

DEFINITION. Privacy of an entity is the result of negotiat-
ing and enforcing when, how, to what extent, and in which
context which data of this entity is disclosed to whom.

This definition takes into account the communication part-
ner, the context, in which the communication takes place,
and the negotiation processes, which are needed to flexi-
bly manage privacy. This is necessary to reason which per-
sonal information an individual is willing to disclose to get
which kind of service and to solve possible conflicts, which
might arise due to the contradiction of privacy goals of dif-
ferent individuals. The concept of multilateral security [1,
15] provides for a flexible and effective way of negotiating
such conflicts in a privacy-respecting environment. More-
over, which personal data is disclosed, its granularity, and
the enforcement of an individual’s privacy requirements are
also considered in the definition above.

MAKING PRIVACY INHERENTLY BUILT INTO THE UBI-
COMP SYSTEM’S FUNCTIONALITY
In order to provide for a privacy-respecting and secure Ubi-
Comp system, the process of ensuring privacy and security
should begin already at the system design stage, the concept
of which is known as ”privacy by design”, and it should con-
tinue throughout all the other steps of system development.

It is clearly impossible to predict the security and privacy
requirements of all potential users and also their variations
in response to future context changes during the system de-
sign stage. In order to provide for flexibility and extensi-
bility, a concept of special extension/variation points (so-
called hooks) for unforeseeable extensions/variations of pri-
vacy and security requirements can be utilized.

Thus, the process of ”weaving” privacy and security mech-
anisms into the UbiComp system’s functionality can be di-
vided into the following steps, depicted in Figure 1:

1. During the system design stage, generic (i.e. foreseeable)
2In each situation an individual is constantly performing reasoning
about what he/she is willing to disclose to get which kind of service.

privacy and security requirements are considered. In or-
der to provide for flexibility in future, a concept of exten-
sion/variation hooks with respect to privacy and security
requirements is used.

2. At initialization time, an instantiation of generic require-
ments considered during the first step is carried out. Also,
the so-called binding3 of extension/variation hooks is per-
formed.

3. At run-time, the previously implemented privacy and se-
curity management mechanisms are used. In order to
provide for dynamic adaptation (e.g in response to con-
text changes), the concept of dynamic extension/variation
hooks may be exploited.

System
Design Stage

Initialization Run-time

● considering generic
security/privacy
requirements

● security and privacy
extensibility/variability
hooks (allows for
flexibility in future)

● instantiation of generic
privacy and security
requirements

● implementing
security and privacy

extensions/variations
(via the corresponding
hooks binding)

● adding all the extensions
and variations to the list of
generic privacy and security
mechanisms

● active use of previously
implemented requirements

● dynamic adaptation
mechanisms should
be considered
(e.g. via dynamic privacy/
security extension/variation
hooks)

Figure 1. The process of making privacy requirements inherently built
into the UbiComp system’s functionality.

PRIVACY IN UBICOMP: PECULIARITIES
In order to provide for effective privacy management in Ubi-
Comp systems, it is sensible to explore which peculiarities
privacy issues have in this domain.

The pervasive nature of UbiComp may impose certain con-
straints on the users of the system in that it might be hard for
them to actually refuse to use it. This problem raises privacy
concerns and is called ”the disability to opt-out” [7], where
the following example was stated: it would be extremely dif-
ficult if not impossible to refuse to use the Ubiquitous RFID
system in case ”such devices [RFID tags] get affixed to bank
notes, ID cards, and every item that one can buy in a store”.
If opt-out is nevertheless made possible, the following prob-
lems might arise:

• much inconvenience caused by opt-out (e.g. postal mail
of a check instead of a credit card payment);

• opt-out can look suspicious (a denial to give away cer-
tain data in particular situations may look suspicious, e.g.
switching the location sensor off during the time when a
crime was committed, etc.)

Another privacy problem specific to UbiComp is a constantly
rising likelihood that intimate conversations might become
3The term is adopted from programing. It basically means that
the corresponding hooks are being directly used, i.e. exten-
sion/variation has taken place via the hook.

28

Modiquitous 2011 Proceedings

publicly available. The authors of [7] call this problem ”the
loss of ephemeral communication”. Similarly, Schneider
states: ”The moral is clear: If you type it and send it, pre-
pare to explain it in public later”. In this case, the problem
of violation of contextual integrity arises. It was described in
[4] as ”falsifying the context in which information has been
communicated” by ”putting it into a wrong context”. For in-
stance, consider an example of a debating club: a person re-
ceives a topic ”Should foreigners be allowed to work in Ger-
many?” and should state arguments against it. If his speech
is put into another context later on (e.g. shown at the TV)
without specifying the original context, the speaker’s reputa-
tion might be dramatically spoiled (i.e. the ”decontextualiza-
tion of communicated information” has turned ”innocuous”
information into the ”mortifying” one [4]).

In [14], it was outlined that the privacy of an individual in
UbiComp could be enhanced by changing the main direc-
tion of information flow to ”infrastructure→ user” and ap-
plying filtering in order to avoid overload or annoyance of
the user. This change of information flow ”enables a quan-
tum leap in privacy by avoiding the possibility to gather huge
amounts of personal data”. In this case, the infrastructure
might also broadcast security and privacy advices (e.g. pos-
sible options, etc.) to the user if it appears to be of mutual
interest to both, the provider(s) of the infrastructure and the
users.

Thus, in order to provide for a privacy-respecting UbiComp
system, the following issues have to be taken into account:

1. Provide for support of opt-in/opt-out according to the in-
dividual’s choice. At the same time, mechanisms against
irresponsible behavior should be taken into account (i.e.
non-repudiation of performed actions)4.

2. Anonymization and encryption techniques for resource-
constrained devices should be carefully considered in or-
der to mitigate the problem of disclosure of the content of
intimate conversations to public.

3. Mechanisms for protecting contextual integrity of data
should be provided (especially in case of voice/video
recording services, personal communication services,
etc.) For example, attaching a special protected tag to
data, which will specify the original context and protect
the information from decontextualization, should be con-
sidered. The tag itself can be authenticated by the indi-
vidual who owns the information or by the group of in-
dividuals to whom the data is relevant (using multi-party
authentication, for instance).

4. It is also highly advisable to design a UbiComp system
adhering to the concept of reverse information flow (”in-
frastructure→ user”) where possible.

4Consider an example of an ”Ambient Coffee Machine” service
in the organization, where users are able to drink coffee without
being obliged to pay for it at the spot but required to do so at the
end of the month. An irresponsible user might want to be using
such a service for several weeks and then decide to opt-out ”due to
privacy reasons” without paying. In this case, authentication and
legal enforcement, for instance, can be used to prevent such case
from happening.

SE PE

A Set of Security and Privacy Requirements

Negotiation, team work

Mechanism of Merging
the Requirements:

●Merging the Requirements
● Conflict Resolution
● Consistency check

FE

A Set of Direct Functionality System Requirements
with Privacy and Security Requirements woven into it

Mechanism of Merging
the Requirements:

● Merging the Requirements
● Conflict Resolution
● Consistency check

Figure 2. A process of joint development of privacy and security re-
quirements for a UbiComp system.
SE = Security Engineer.
PE = Privacy Engineer.
FE = Direct Functionality System Engineer.

DESIGNING PRIVACY AND SECURITY REQUIREMENTS
IN A JOINT FASHION
Privacy and security are closely connected to each other. Im-
portant is to understand that neither of them is a byproduct
of the other one. Only if having considered both, privacy and
security, can the developed UbiComp system be regarded as
privacy-respecting and secure.

For this reason, we suggest that privacy and security require-
ments are elaborated in a joint fashion by two cooperative
entities: the Privacy Engineer (PE) and the Security Engi-
neer (SE) (see Figure 2). These entities are responsible for
the whole design process of privacy and security policies re-
spectively as well as for administrating and managing pri-
vacy and security in the deployed system. The process of
designing policies for a privacy-respecting and secure Ubi-
Comp system should be carried out in the presence of col-
laboration between the PE and the SE. Further negotiation
with the Functionality Engineer (FE), who is responsible for
the design of the direct functionality of the system, should be
considered as well. The reason for this is that it is expected
that the requirements elaborated by the PE and the SE along
with the ones of the FE may not be free of conflicts. That
is why conflict resolution mechanisms should be considered
during the process of merging the requirements. In order to
ensure that the requirements are consolidated in a consistent
way (i.e. specific requirements of each area after the merg-
ing conform to the ones before the merging), consistency
checks should also be performed after the merging.

PRIVACY MODELING
In order to provide for privacy requirements, which are go-
ing to enable for efficient privacy management in the de-
ployed system, we suggest that a corresponding model of
privacy for the target domain of UbiComp is created. The
respective requirements can be inferred from the model later
on. Here, with the term ”abstract privacy model” we refer

29

Modiquitous 2011 Proceedings

to a high-level model, which takes into account social, legal,
and functional issues and enables the developer to perform a
combination of privacy issues from different fields in an in-
terdisciplinary manner. Having an abstract privacy model in
the first step will facilitate the process of taking various and
often illusive privacy issues and considerations of the Ubi-
Comp area into account and make the approximation to the
real world scenario more accurate.

Modeling privacy is not a trivial task. Existing privacy mod-
els are often abstract and difficult to transform into a set of
system requirements. For instance, the model introduced in
[12] deals with the concept of ”crossing personal borders”,
i.e. privacy violation occurs when ”personal borders” of an
individual are crossed. The author provides for a classifi-
cation of privacy-violation scenarios, analyzes the privacy
concerns of the individuals and also considers the impact
of technological advance on privacy. However, the model
is described in a loose and nontechnical way, which might
impede its adoption for the process of inference of privacy
requirements.

Another model was introduced in [17], which focuses on the
activities that invade privacy: information collection, infor-
mation processing, information dissemination, and invasion.
The model consists of the data subject (the individual) and
the data holders (who collect, process and disseminate pri-
vate information). Similarly to the above mentioned model,
it provides for a rather notional description of privacy issues
and does not specify how the respective requirements can be
inferred and further implemented.

Moreover, new approaches to modeling of privacy should
also be considered because of the rapid evolution of technol-
ogy. For instance, Shapiro in [16] gives an example of Fair
Information Practices that have been commonly used for un-
derstanding informational privacy. However, he claims that
”As more things become digitized, informational privacy in-
creasingly covers areas for which Fair Information Practices
were never envisioned” (e.g. genetics, biometrics, etc.).

UbiComp definitely introduces a serious challenge regarding
privacy modeling, translating a model into a set of system re-
quirements and implementing it. It is of little help just hav-
ing a good model of privacy if it can not be adopted into tech-
nical schemes of privacy regulation and thus be used within a
UbiComp system. Provided that a decent and implementable
model of privacy is available, respective privacy mechanisms
should be woven into the UbiComp system functionality at
the system design stage to allow for designing inherently
privacy-respecting systems.

Therefore, it would be helpful to consider a framework which
will enable for consistent transformation of an abstract pri-
vacy model into functional requirements of a UbiComp sys-
tem, which in turn can be implemented.

Privacy Modeling Framework
The concept of the Privacy Modeling Framework is similar
to the meta-modeling approach used in programming (e.g.

meta-metamodel → metamodel → model, see [2] for more
details). The task of providing for a consistent privacy model
and transforming it into a set of implementable system re-
quirements is within the competence of the Privacy Engineer
(cf. Figure 2).

This approach implies several steps, which are depicted in
Figure 3.

1. The Privacy Engineer entity (that might be a group of pri-
vacy experts in practice) creates an abstract privacy model.
This implies the following steps:

• investigating the privacy area of the future UbiComp
system deployment, i.e. determining individuals’ pri-
vacy concerns, possible privacy threats, taking into
account various cultural differences in perception of
privacy, etc.;
• reviewing the current status of legal basis in the area

of interest (i.e. finding out which privacy-related laws
apply to the future UbiComp system deployment, how
the situation is legally regulated and determining the
weak sides of it);
• creating the joint picture of privacy-related issues in

the field;
• on the aforementioned basis, an abstract pri-

vacy model is created (system- and platform-
independent).

2. Next, a consistent transformation of the abstract privacy
model created during the first step into a set of system-
specific requirements is carried out. If some of the model
preferences can not be transformed, a possible refinement
of the abstract model should be considered. The result of
the second step is a set of implementable system require-
ments.

3. The last step is the actual implementation (”weaving” of
privacy mechanisms into the UbiComp system’s function-
ality).

An abstract Privacy Model
(System- and Platform- independent)

System Privacy Requirements
(System-specific, Platform-independent)

Implementation
(System- and Platform- specific)

Transformation

Transformation

Figure 3. A general structure of a framework for transforming abstract
privacy models into implementable requirements.

The above mentioned approach introduces a set of challenges:

1. Merging the individual privacy requirements with legal is-
sues in the area of interest (step one) is a difficult task.

30

Modiquitous 2011 Proceedings

The reason for this is that the former is elusive and not
easy to specify. The latter is well specified but coarse-
grained and hence inflexible. For example, suppose it is
written in the privacy law that location of the individual is
private information and any exposure of this information
to a third party is subject to law violation. The situation
when the individual is willing for his location to be known
to some of his friends at certain times, is not considered,
however. Moreover, the legal part strongly depends on the
region, which raises the question of international interop-
erability and aggravates the outsourcing problem, i.e. the
privacy-sensitive data that is governed by law in one coun-
try, might be under threat of violation in the other one.
This happens due to the absence of a unified international
law protection system of privacy-sensitive data.

Having managed to specify privacy requirements of the
individual and taken the legal prospective into account,
the consistency of the joint abstract model should be con-
sidered.

2. The second step (transformation of abstract privacy model
into a set of requirements) implies the existence (or cre-
ation) of a mature language that will enable to express
the abstract model in a standardized, ready-to-implement
format. To the best of our knowledge, only a few ef-
forts have been made in this direction by now. The au-
thors of [9] described their privacy model using a pri-
vacy control language that ”includes user consent, obli-
gations, and distributed authorization”. In [10], a privacy-
specific access control language was used to manage pri-
vacy in the environment of so-called ”Platform for En-
terprise Privacy Practices (E-P3P)”, which defines tech-
nology for privacy-enabled management and exchange of
customer data. The authors in [6] showed how a privacy
policy can ”be specified and implemented according to
the Generalized Framework for Access Control (GFAC)-
approach”. In order to successfully complete the second
step, it should be decided by which means the abstract
model should be specified in the most comprehensive and
consistent way (e.g. which language to choose or even to
introduce a new one).

3. Along with privacy-specific questions, general framework-
related issues arise:

• The framework is described in an abstract way. That
is why the ways of its implementation should be out-
lined. Moreover, it should also be considered, which
degree of automation of the transformation process
can be achieved.

• Next, the consistency of the performed transforma-
tion should be carefully considered. Surely, certain
trade-offs are going to arise. Their impact on the ac-
curacy of the implemented privacy model should be
assessed.

CONCLUSION AND FUTURE WORK
The paper has presented an approach to designing an inher-
ently privacy-respecting UbiComp system. We claim that

it is not possible to provide for a full-fledged support of pri-
vacy management, having considered this issue after design-
ing the direct functionality of a UbiComp system, i.e. build-
ing privacy on top of the system. That is why the process
of ensuring privacy and security has to begin at the system
design stage and it should continue throughout all the other
steps of system development.

Thus, an approach to making privacy inherently built into the
UbiComp system’s functionality was considered. In order to
provide for dynamic privacy management (e.g. to enable
the consideration of unforeseeable extensions towards pri-
vacy requirements), a concept of special extension/variation
points can be utilized while designing a system.

Providing for efficient privacy management requires the ex-
ploration of the peculiarities of privacy in the target domain.
Also, respective recommendations for developing appropri-
ate privacy policies should be formulated. Having consid-
ered this issue, we presented our concept of designing pri-
vacy and security requirements in a joint fashion. The reason
for this is that privacy and security are closely connected and
mutually affect each other. According to this concept, pri-
vacy and security requirements should be considered by two
cooperative entities: the Privacy Engineer (PE) and the Se-
curity Engineer (SE). Moreover, further negotiation with the
designer of the direct functionality of the system (Function-
ality Engineer) is considered along with conflict resolution
mechanisms.

The creation of an abstract privacy model was suggested to
enable effective development of privacy requirements, which
take various privacy issues and considerations of the Ubi-
Comp area into account and provide for a better approxima-
tion to the real world scenario. Respective privacy require-
ments can be further inferred from the model. This can be
done within our Privacy Modeling Framework, which con-
siders the creation of an abstract, domain-specific privacy
model by the PE entity, further inferring respective require-
ments from it, and, lastly, implementing them into the Ubi-
Comp system’s functionality.

Having described our conceptual view on ensuring privacy
in a UbiComp system, more concrete ways of creating an ab-
stract privacy model, means of specifying the requirements
and necessary recommendations towards their implementa-
tion are to be elaborated. Finally, applying the concept to a
particular real use case scenario is to be realized.

ACKNOWLEDGEMENT
The authors would like to express their gratitude to a great
researcher and friend Andreas Pfitzmann who passed away
in September 2010. He was not only a highly qualified pro-
fessional but also a very kind and responsive person who
inspired the people around him on their way to scientific ex-
cellence.

This paper is to a large extent influenced by discussions with
Andreas and is written in commemoration of him.

31

Modiquitous 2011 Proceedings

REFERENCES
1. Andreas Pfitzmann. Multilateral Security in

Communications. Addison-Wesley-Longman, 1999,
ch. Technologies for Multilateral Security, 85–91.

2. Assmann, U., Zschaler, S., and Wagner, G. Ontologies,
Meta-models, and the Model-Driven Paradigm.
Ontologies for Software Engineering and Software
Technology (2006), 249–273.

3. Berg, M., and Borcea-Pfitzmann, K. Implementability
of the Identity Management Part in Pfitzmann/Hansen’s
Terminology for a Complex Digital World. In
Proceedings of PrimeLife / IFIP Summerschool on
Privacy and Identity Management for Life,
S. Fischer-Hübner, M. Hansen, P. Duquenoy, and
R. Leenes, Eds., IFIP Advances in Information and
Communication Technology, Springer (2011).

4. Borcea-Pfitzmann, K., Pfitzmann, A., and Berg, M.
Privacy 3.0 : = Data Minimization + User Control +
Contextual Integrity (Privatheit 3.0 : =
Datenminimierung + Nutzerkontrolle + Kontextuelle
Integrität). IT - Information Technology 53, 1 (2011),
34–40.

5. Dou, E. EU proposes online right ’to be forgotten’,
Nov. 2010. Accessed online on 05.04.2011. Reuters.
http://www.reuters.com/article/2011/03/17/us-eu-
internet-privacy-idUSTRE72G48Z20110317.

6. Fischer-Hübner, S., and Ott, A. From a formal privacy
model to its implementation. In National Infromation
Systems Security Conference (Oct. 1998).

7. Henrici, D. RFID Security and Privacy. Springer, 2008.

8. Herold, R. SmartGrid Privacy Concerns, Sept. 2009.
Accessed online on 03.04.2011.
http://www.privacyguidance.com/files/SmartGridPrivacy
ConcernsTableHeroldSept 2009.pdf.

9. Karjoth, G., and Schunter, M. A privacy policy model
for enterprises. In Computer Security Foundations
Workshop, 2002. Proceedings. 15th IEEE (2002),
271–281.

10. Karjoth, G., Schunter, M., and Waidner, M. Platform
for enterprise privacy practices: Privacy-enabled
management of customer data. Springer (2002), 69–84.

11. Langheinrich, M. Privacy by Design – Principles of
Privacy-Aware Ubiquitous Systems. In Ubicomp 2001:
Ubiquitous Computing, G. Abowd, B. Brumitt, and
S. Shafer, Eds., vol. 2201 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2001, 273–291.

12. Marx, G. T. Murky conceptual waters: The public and
the private. Ethics and Inf. Technol. 3 (Sept. 2001),
157–169.

13. Pentland, W. Why Smart People Are Suspicious of
Smart Me-
ters, Dec. 2010. Accessed online on 01.04.2011. Forbes.
http://blogs.forbes.com/williampentland/2010/12/10/why-
smart-people-are-suspicious-of-smart-meters.

14. Pfitzmann, A. Accompanying Ambient Intelligence
(AAmI) – Why You should take your Sensors with
You. A Sketch on the Future of privacy-aware, secure
Ambient Intelligence., Apr. 2010.

15. Rannenberg, K. Multilateral security: A concept and
examples for balanced security, 2000.

16. Shapiro, S. S. Privacy by design: moving from art to
practice. Commun. ACM 53 (June 2009), 27–29.

17. Solove, D. J. A taxonomy of privacy. University of
Pennsylvania Law Review 154, 3 (Jan. 2006), 477 pp.
GWU Law School Public Law Research Paper No. 129.

18. Stajano, F. Security for Ubiquitous Computing. John
Wiley & Sons, LTD, 2002.

19. Warman, M. EU proposes online right ’to be forgotten’,
Nov. 2010. Accessed online on 05.04.2011. The
Telegraph.
http://www.telegraph.co.uk/technology/internet/8112702/EU-
proposes-online-right-to-be-forgotten.html.

20. Warren, S. D., and Brandeis, L. D. The right to privacy.
Harward Law Review 4, 5 (Dec. 1890), 193–220.

21. Weiser, M. The Computer for the 21st Century.
Scientific American (Feb. 1991).

32

Modiquitous 2011 Proceedings

Ubiquitous Alignment

Florian Haag, Michael Raschke

Visualization and Interactive Systems Institute

(VIS)

University of Stuttgart

Universitätsstraße 38

70569 Stuttgart, Germany

{haag, raschke}@vis.uni-stuttgart.de

Thomas Schlegel

Institute of Software and Multimedia

Technology

Technische Universität Dresden

Nöthnitzer Straße 46

01062 Dresden, Germany

Thomas.Schlegel@tu-dresden.de

ABSTRACT

Ubiquitous thinking means designing human-computer

interaction in a fundamentally new way. The perceived

distance between ubiquitous systems and their users

decreases while the heterogeneity of modalities increases

compared to classical human-computer interaction. The

initiation of work phases becomes less formalized. Instead

of explicitly declaring the start of an interaction by
activating a computing device, the interaction starts

gradually and sometimes implicitly based on an estimation

of the user’s needs. For bridging the gap of initiation, in

this article we present the ubiquitous interaction concept

“Ubiquitous Alignment”. It comprises of the three steps

recognition, sparking interest and start of collaboration.

The Ubiquitous Alignment concept is based on a

comparison between traditional human-computer and

human-human interaction. Finally, two examples show the

applicability of the Ubiquitous Alignment concept.

Keywords

Ubiquitous systems, interaction concepts, mixed initiative,

interaction initiation, Ubiquitous Alignment

INTRODUCTION

Traditionally, the boundaries of human-computer

interaction are clearly defined. The interface to the

computer is defined by peripheral input and output devices

and does not extend beyond them. Work with a computing

device starts after it has been switched on by the user.

When the work is done, the user switches the device off

again. This applies to desktop computer systems just as

much as any other technical device. From a more semantic

point of view, the interaction starts when the user turns

toward the terminal or concentrates on it in any way, and it

stops when the user leaves the workplace or concentrates

on something else.

The next step in the development of computing systems is

ubiquitous computing – an environment where computing

devices are, often seamlessly, integrated into everyday

objects and activities in such a way that users do not need

to be aware of them in order to interact [23]. There are two

important aspects of how to approach that objective.

One is the integration of computational capabilities in

objects that are usually used for non-computing purposes.

This can refer to both fixed and portable objects. In the case

of fixed objects, the computing equipment can, for

example, be built into buildings or parts thereof. Whole

buildings may be equipped with linked computers and

sensors for specific goals, such as minimizing energy

consumption [19], or for general-purpose support in a

variety of tasks performed by the people within the

building [11]. Likewise, parts of buildings, such as the floor

[14] or doorplates [20], can be enhanced with ubiquitous
computing technology. Computing and sensor devices in

portable objects can refer to so-called smart furniture [12]

or wearable computing [18], amongst others. They can be

used for similar tasks or even linked with devices

embedded in fixed objects using wireless networks.

The other important aspect to consider in ubiquitous

interfaces is how the interaction begins. The necessity to

use specific computing devices should be avoided, as

happened by integrating computer equipment into everyday

objects. Still, computer-specific tasks such as activating a

device or looking at (after possibly walking to) the display

to gather some information pose an obstacle for a natural

interaction with the systems [13]. Particularly, the devices

should act proactively in certain situations while still

appearing unobtrusive. For this purpose, we introduce a

concept of how interaction between a human user and a

system in a ubiquitous computing environment can be

initiated. This refers to both the first contact with the

ubiquitous technology as well as later, single interaction
sessions. The goal of this concept is a description of how

the system gradually approaches the user and gets his or her

attention. System and user align themselves to each other in

order to communicate and collaborate without any

obstacles. Therefore, we refer to this concept as Ubiquitous

Alignment.

After discussing related work, we will first analyze how

interaction between humans and other humans (human-

human interaction) as well as between humans and

computers (human-computer interaction) usually starts,

then highlight differences between the two situations.

Subsequently, we will describe our concept of Ubiquitous

Alignment, explain where it differs from human-computer

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

F. Haag, M. Raschke, T. Schlegel: Ubiquitous Alignment. Proc. of 1st International Workshop on Model-based
Interactive Ubiquitous System 2011, Pisa, Italy, June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

33

interaction and identify parallels with human-human

interaction. Finally, we will present two example scenarios

in which the concept can be applied.

RELATED WORK

There has been a large amount of work to provide

computing devices with additional sensors to perceive an

arbitrary range of signals from the outside world. To name

only a few, sensor systems to detect human means of
expression such as pointing at something with the hand [8]

or showing different facial expressions [24] are being

developed. Sensors for other contextual parameters, such as

the room temperature [17], are also being integrated into

computer systems. In order to further improve the

evaluation of data received from sensors, some research

tries to recognize or model human emotions, which may

give systems a better understanding of the intentions of

users [4] [16]. On a wider scale, Pantic and Rothkrantz

present their ideas of how a great number of sensors can

enable multiple modalities of input [15]. Similarly, the

concept of Perceptual User Interfaces aims for a natural

interaction between users and devices [21]. The EasyLiving

project focuses on the technical side on coupling a variety

of sensors and other devices to form a complete system [2].

In a general notion of ubiquitous computing, Rhodes points

out some design objectives for wearable computing in his

article [18] that are also useful in other types of ubiquitous

systems. Works such as the classroom-related scenarios
described by Bravo et al. assume that the system is already

there and do not take into account a phase during which

users get acquainted and used to it [1].

The behavior of user interfaces that sometimes act

proactively and sometimes leave the control to the user is

called mixed initiative. There has been much research on

this topic over the course of the past few decades. It focuses

on ways to achieve and employ mixed initiative [10] [22]

[9]. With its close resemblance to human-human

interaction, mixed initiative systems sometimes aim at

generating a verbal dialogue between user and system

which works the same way as a conversation between

people [6]. Chu-Carroll and Brown distinguish dialogue

and task initiative, which allows for a more accurate

dialogue model as it distinguishes which interaction partner

is guiding the current interaction and which one is deciding

what will be done [3].

TRADITIONAL INTERACTION STYLES

This section describes two examples of starting an

interaction between humans and other humans and between

humans and today’s computers, respectively. Both

examples are chosen in a way that the participants of the

interaction do not have any prior knowledge about each

other or are not yet collaborating. Thus, the situations are

analogous to the interaction between a user and ubiquitous

devices as described further below.

Human-Human Interaction

As an example of human-human interaction, we have

chosen a customer in a self-service store and a sales

assistant. This scenario was selected because it closely

resembles a situation where ubiquitous technology might

come into play. Basically, the customer could manage well

without any additional help. Generally, for a comfortable

shopping experience, the sales assistant should not behave

in a pushy way by insisting on helping the customer against

his wish. The assistant may however indicate that she is

available and ready to help if help is required, and the

customer may decide on his own to start a more thorough

interaction.

Initially, the customer is examining the items in a shelf,

reading the information given on the labels and the price
tags. The sales assistant is waiting nearby. In order to not

appear obtrusive, she should not wait right next to the

customer or in front of the shelf, as this might make the

customer feel controlled. Still, it is important not to express

disinterest or lack of attention. This can be achieved by

displaying an initial sign of responsiveness, such as

greeting the customer when he enters the store, or by

explicitly offering help when the customer has been

browsing the products for a while.

At the least, when the customer has picked up some items

and placed them in his shopping cart, the sales assistant

may carefully indicate that she is willing to start a

conversation. This can be expressed by a single casual

remark about one of the products or by pointing out an

alternative. At this point, it is important to note that the

information given is not among that which the customer

has likely already seen. Instead, he may be pointed to a

feature that is not evident from the labels or to an item that

is not currently located on the same shelf. In this way, the
customer will perceive the assistant as helpful rather than

merely reiterating known facts.

If the customer desires to receive more information

afterward, he will ask the assistant. The assistant can

inform the customer about what information she is able to

provide, while the customer gets a feeling of how reliable

the information received from that assistant is.

Human-Computer Interaction

Due to the lack of proactivity in most of today’s software,

the gradual start of an interaction as seen in the example of

human-human interaction cannot be customarily found in

human-computer interaction. Assuming that the computer

is already switched on and the user has logged into her

account, she starts for the first time the new application she

would like to use.

The application displays a default set of options and

commands. Guides to the most important features can be

provided. An example location would be a welcome screen.

Nevertheless, the user has to start exploring the interface

right away. After taking a few steps in the user interface,
the application tries to estimate what the user is trying to do

and displays hints accordingly. The application can only

evaluate the user input and does not possess any additional

sensors. Hence, it cannot take into consideration any

contextual information about the user and her environment.

The estimation of the user’s intentions is accordingly

imprecise; therefore, the displayed hints occasionally fail to

Modiquitous 2011 Proceedings

34

be of any help, which in turn makes the user dissatisfied

with the application.

Once the user has gathered some experience with the

application, she will actively customize the user interface

and create templates and macros for repeating tasks. Due to

bad experience with the automatic input analysis, she might

eventually choose to completely disable the automatic

adaptation of application behavior. Even though this means

some additional effort for the user in that some settings

have to be done manually, she values the absence of

distracting hints that do not provide any helpful information
higher than saving some time by allowing the software to

automatically adapt itself.

Comparison

Despite being basically equivalent scenarios of starting an

interaction with a previously unknown partner, these two

descriptions of human-human and human-computer

interaction sport substantial differences. First of all, in

human-computer interaction the user has to know and

launch the application she wants to use. The application is

not just there and ready by default, as it is the case with the

sales assistant. By launching that application, the computer

user also explicitly declares the start of the interaction, as

opposed to the gradual process found in the interaction

between the customer and the sales assistant.

As mentioned above, the lack of variety of input channels

available to the system results in a lack of knowledge about

the overall behavior and context of the user. Thus, any

estimation about the current intentions of the user can at
most be a rough guess. Accordingly, helpful clues can only

be given based on the experience with average users or by

trying to find repeating patterns in the behavior of the

current user. The same applies to input interfaces such as

menus: Even though some software manufacturers have

attempted to automatically restructure menus, a user study

suggests that any such change is likely to confuse the user

rather than support her [5]. That lacking additional

information about the user is, however, available to the

assistant concerning her customer, as she can see and

consider where the customer is located and what he is

doing. Thus, she is also capable of quite reliably assessing

the customer’s current intentions and wishes. This enables

her to take over or give away the initiative in the interaction

process at the right time. The computer application is not

able to provide this degree of mixed initiative in the

described scenario.

UBIQUITOUS ALIGNMENT

In order to make human-computer interaction more like

human-human interaction, one can take advantage of the

special capabilities of ubiquitous computing technology.

The additional data gathered by the sensors in a ubiquitous

computing environment allows for a more natural initiation

of collaboration between users and systems [2].

The Ubiquitous Alignment concept assumes that a user is

going to perform a particular task in an environment

equipped with ubiquitous computing devices. The user does

not yet have sufficient knowledge about those devices to

explicitly trigger any operations. He may or may not be

aware that his environment is equipped with ubiquitous

computing systems at all. In order to achieve collaboration,

the three steps recognition, sparking interest and start of

collaboration are performed (cf. Fig. 1).

Step 1: Recognition

The user recognizes the system in a pleasant rather than a

pushy way. A pleasant ubiquitous system remains in the

background until the user wishes to start an interaction. In

this phase, the system is still largely ignorant of what the

user intends to do. This matches the behavior of the

assistant from the human-human interaction example, who

remains passive. Any other behavior might annoy or scare

away the other person or the user, respectively. The

ubiquitous system visibly exhibits a certain level of

proactivity only when it is absolutely certain that an

intervention is desired by the user. Otherwise it remains
largely invisible, except for some unobtrusive hints that it is

there and ready.

Any other operations the ubiquitous system performs go

unnoticed by the user, who gets the impression that he is

just using everyday objects. Automatic locks that secure

lids of boxes unless the user actually attempts to open

them, the adaptation of fridge power to cool down newly

inserted warm items or the temporary dimming of lights

while the user is not in the room do not require any active

input. That is also why no new interface concepts need to

be considered at this point. The ubiquitous devices do not

have any new input controls. They can be used just like

their non-ubiquitous counterparts.

Fig. 1. User and ubiquitous system gradually intensify

their interaction in three steps of the Ubiquitous

Alignment concept: At first, they barely know of each

other, then they start to interact and intensify that

interaction further on.

Modiquitous 2011 Proceedings

35

Step 2: Sparking Interest

User and system begin to communicate with each other. As

the user finds out what the system is or is not capable of,

the system output at this point must particularly strive for a

high reliability. This concerns both the information

provided and the estimations made. This step corresponds
with the customer becoming acquainted with the sales

assistant and vice-versa.

In order to not appear overzealous at communicating with

the user where no communication is desired, a good

strategy is to continue giving small hints of the presence

and features of the system, just as the sales assistant will try

to be supportive without flooding the customer with

information. In particular, those hints should spark the

interest of the user/customer and motivate him or her to

find out what kind of support can be obtained. At the same

time, the ubiquitous devices may be able to catch some

clues as to how the user behaves or reacts and what kind of

output inspires him to further interact with the system, just

as the sales assistant will adapt his behavior to suit the

customer’s preferences to a certain degree.

Step 3: Begin of Collaboration

After the computer system has been recognized by the user
and he has indicated that he is willing to collaborate with

the system, the system can become more active. As the user

has become interested in the system, he is likely to try and

explore further capabilities of the ubiquitous devices. This

behavior can be encouraged by facilitating the exploration

process. Amongst others, options related to the current

operation that have not yet been employed by the user can

be recommended to him. Likewise, any means of

discovering and learning about unknown system features

must be easy to find. A human sales assistant will too, in a

comparable situation, express what information he is able

to provide to the customer.

While interacting with the user, a system that follows the

Ubiquitous Alignment approach has gathered and is still

gathering an increasing amount of information about the

user and his behavior. This allows for better estimates of

the current intentions of the user and thus provides the

system with the means to support the user in an optimized

way.

How Ubiquitous Alignment helps improve HCI

Ubiquitous Alignment reflects the gradual process used to

establish contact between two humans with the goal of

collaboration. These parallels hold true both for situations

where the actors do not have any prior knowledge about

each other as well as for cases where they do. In the former

case, the steps explained serve for the initial contact

between two strangers, just as for the initial contact

between a future user and a network of ubiquitous devices.

In the latter case, the participating persons already know

each other, so the objective is collaboration on a given task.

The actors do not yet know whether the collaboration will

actually turn out to be beneficial, which is why they use the

same approach of gradually initiating their interaction.

Likewise, a user might already know some parts of a

ubiquitous system, but he is not sure yet whether the

system is helpful with a new kind of task. At the same time,

the system should not behave in a paternalistic way and

insist on collaboration in this particular new task just

because the user makes frequent use of the system on other

occasions.

To sum up, the main advantages of ubiquitous computing

systems over traditional computing systems at

approximating human-human interaction are their greater

variety of input channels and their integration into everyday

objects. The additional input channels in the form of a

variety of sensors allow for a more accurate and complete
perception and evaluation of the user, his behavior and his

context. By integrating system parts into appliances

previously known to the user, the handling of the

ubiquitous system does not have to be learned right from

the start on; instead, some features can be used by

manipulating appliances the usual way, so the prospective

user can gradually extend his knowledge to encompass the

additional system features that require any special input.

POSSIBLE APPLICATIONS OF THE UBIQUITOUS
ALIGNMENT CONCEPT

To underline that the Ubiquitous Alignment concept can

indeed be used in ubiquitous computing scenarios, we
describe two example scenarios in which our Ubiquitous

Alignment concept is applied.

One example of a ubiquitous system that uses mobile

computing devices is the ActiveClass system described by

Griswold et al. [7]. ActiveClass is a system which allows

students’ mobile devices to connect to a central component

while in a lecture hall. Using the ActiveClass system,

students can publicly and anonymously ask questions.

Without the ActiveClass system, both the size of the lecture

hall and the lack of anonymity may pose obstacles to

actually ask questions. When applying the Ubiquitous

Alignment approach to a situation where a student does not

yet know the ActiveClass system, the first step might

present unobtrusive hints about the system. For example,

the student’s mobile device might display an access icon of

the ActiveClass system in the main menu while the student

is attending a lecture. In the second step, ActiveClass might

display a button for posting a question whenever the

student starts searching for an explanation about something
which is being discussed by the lecturer right then. In the

third step of Ubiquitous Alignment, which starts once the

student has begun to actively use ActiveClass, the system

provides access to its options menu. There, the other

features such as polls, class feedback and votes can be

found.

In the second example, we consider a table that is aware of

what objects are placed on the tabletop (cf. Fig. 2). This

awareness can be achieved through a variety of means,

such as load detection, image analysis or tracking of object

locations (assuming that each object is tagged in some

way), or a combination thereof. In addition, some means of

tracking what the user is doing is available. The knowledge

about object positions can be used to guide a user by

indicating where on the table to find a particular item. This

can be used for workbenches or interactive cookbooks, to

Modiquitous 2011 Proceedings

36

name only two examples. In the first step of the Ubiquitous

Alignment approach, the user may be using the table just as

a table, placing objects on top of it. The system performs its

minimum default function, inserting positional indicators

such as “on the left” or “next to ...” in the instructions for

the user. Only when the user keeps searching for something

for a longer time, does the system clarify its output,

providing more information in an additional message. If the

user responds by locating objects faster based on those

hints, step two of the Ubiquitous Alignment concept has the

system highlight any references to objects in the displayed

instructions (or, in the case of voice output, make clear

what is highlighted in text in some other way), pointing the

user to the possibility of finding out more about the
respective items. Eventually, in the third step the system

may display additional information right away as the user

requires it, and offer some options to modify how much

and what kinds of information the user wants to be

displayed about objects referred to in the work instructions.

These examples show how the concept of Ubiquitous

Alignment can be applied to scenarios where a user starts

getting to know a ubiquitous system or one of its features.

In all described scenarios and examples, the user had had a

certain resistance to using the system, or at least he or she

was not assumed to spend a lot of initial effort to learn how

to use the system. This is where Ubiquitous Alignment is

particularly beneficial. Users who take the time to read a

manual first do not require the same degree of gradual

initiation of interaction. Nonetheless, striving for a display

of reliability towards that kind of users and not annoying

them with frequent messages or other possibly undesired

output retain their importance.

CONCLUSION AND FUTURE WORK

In this work, we have examined some exemplary situations

of human-human and human-computer interaction. In an

effort to make human-computer interaction more alike to

human-human interaction, we have described the

Ubiquitous Alignment concept. It defines how

collaboration between a human user and a computer system

can be initiated in a way that closely resembles the

interaction between humans, taking advantage of the

possibilities found in ubiquitous computing devices. As

seen in the comparisons of the Ubiquitous Alignment

approach with the previous examples of human-human and

human-computer interaction, our approach has a strong

resemblance to the former. The main reasons for the

differences were found to be the additional sensor input

and, similarly, the additional input modalities which can

totally match the normal manipulation of everyday objects,
as opposed to handling specialized devices such as mice or

keyboards to provide input to traditional computers.

As this work presents a concept of how a ubiquitous system

should behave, a future goal is the implementation of this

concept. Thereby, we hope to show how the Ubiquitous

Alignment concept works in practice and how it can be

implemented in detail. Also, we expect this to be a starting

point for defining processes for the development of

ubiquitous software components and for gathering a better

understanding of the user’s behavior. A model system will

not need to incorporate all of the described attributes. With

the incorporation of additional sensors, the system could

gradually come closer to the ideal form of the Ubiquitous

Alignment concept.

Fig. 2. Ubiquitous devices embedded into a kitchen allow

for displaying the current instruction from a recipe in

relation to the current state and location of ingredients on

the table where the food is being prepared. Depending on

the Ubiquitous Alignment phase in which the interaction

is taking place, additional information is displayed: hints

about the position in step 1, an explicit offer to provide

more information in step 2, and further suggestions in

step 3.

Modiquitous 2011 Proceedings

37

ACKNOWLEDGMENTS

This research was funded through the IP-KOM-ÖV project

(German Ministry of Economy and Technology (BMWi)

grant number 19P10003N). Also, we would like to thank

our students Thomas Bach, Steffen Bold and David Kruzic.

REFERENCES

1 Bravo, J., Hervás, R., and Chavira, G. Ubiquitous

Computing in the Classroom: An Approach through

Identification Process. j-jucs, 11, 9 (2005), 1494-1504.

2 Brumitt, B., Meyers, B., Krumm, J., Kern, A., and

Shafer, S. Lecture Notes in Computer Science -

EasyLiving: Technologies for Intelligent Environments.

Springer Berlin/Heidelberg, 2000.

3 Chu-Carroll, J. and Brown, M. K. An Evidential Model

for Tracking Initiative in Collaborative Dialogue

Interactions. User Modeling and User-Adapted

Interaction, 8, 3 (1998), 215-254.

4 Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis,

G., Kollias, S., Fellenz, W., and Taylor, J. G. Emotion

recognition in human-computer interaction. Signal

Processing Magazine, IEEE, 18, 1 (Jan 2001), 32-80.

5 Findlater, L. and McGrenere, J. A comparison of static,
adaptive, and adaptable menus. In Proceedings of the

SIGCHI conference on Human factors in computing

systems (Vienna, Austria 2004), ACM, 89-96.

6 Graesser, A. C., Chipman, P., Haynes, B. C., and Olney,

A. AutoTutor: an intelligent tutoring system with

mixed-initiative dialogue. IEEE Transactions on

Education, 48, 4 (Nov 2005), 612-618.

7 Griswold, W. G., Shanahan, P., Brown, S. W., Boyer,

R., Ratto, M., Shapiro, R. B., and Truong, T. M.

ActiveCampus: experiments in community-oriented

ubiquitous computing. Computer, 37, 10 (Oct 2004), 73-

81.

8 Guan, Y. and Zheng, M. Real-time 3D pointing gesture

recognition for natural HCI. In 7th World Congress on

Intelligent Control and Automation (2008), 2433 -2436.

9 Hearst, M. A., Allen, J. F., Guinn, C. I., and Horvitz, E.

Mixed-initiative interaction. IEEE Intelligent Systems

and their Applications, 14, 5 (Sept/Oct 1999), 14-23.

10 Horvitz, E. Principles of mixed-initiative user interfaces.

In Proceedings of the SIGCHI conference on Human

factors in computing systems: the CHI is the limit

(Pittsburgh, Pennsylvania, USA 1999), ACM, 159-166.

11 Intille, S. S. Designing a Home of the Future. IEEE

Pervasive Computing, April-June (2002), 76-82.

12 Ito, M., Iwaya, A., Saito, M. et al. Smart Furniture:

Improvising Ubiquitous Hot-Spot Environment.

International Conference on Distributed Computing

Systems Workshops, 0 (2003), 248.

13 Ley, D. Ubiquitous Computing. Emerging Technologies

for Learning, 2 (2007).

14 Orr, R. J. and Abowd, G. D. The smart floor: a

mechanism for natural user identification and tracking.

In CHI '00 extended abstracts on Human factors in

computing systems (The Hague, Netherlands 2000),

ACM, 275-276.

15 Pantic, M. and Rothkrantz, L. J. M. Toward an affect-

sensitive multimodal human-computer interaction.

Proceedings of the IEEE, 91, 9 (Sept 2003), 1370-1390.

16 Picard, R. W. Affective Computing. 1997.

17 Ranganathan, A. and Campbell, R. H. A middleware for

context-aware agents in ubiquitous computing

environments. In Proceedings of the

ACM/IFIP/USENIX 2003 International Conference on

Middleware (Rio de Janeiro, Brazil 2003), 143-161.

18 Rhodes, B. J. The wearable remembrance agent: A

system for augmented memory. Personal and

Ubiquitous Computing, 1, 4 (1997), 218-224.

19 Schor, L., Sommer, P., and Wattenhofer, R. Towards a

zero-configuration wireless sensor network architecture

for smart buildings. In Proceedings of the First ACM

Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings (Berkeley, California, USA

2009), ACM, 31-36.

20 Trumler, W., Bagci, F., Petzold, J., and Ungerer, T.

Smart doorplate. Personal Ubiquitous Comput., 7, 3-4

(July 2003), 221-226.

21 Turk, M. and Robertson, G. Perceptual user interfaces

(introduction). Commun. ACM, 43, 3 (March 2000), 32-

34.

22 Walker, M. and Whittaker, S. Mixed initiative in

dialogue: an investigation into discourse segmentation.

In Proceedings of the 28th annual meeting on

Association for Computational Linguistics (Pittsburgh,

Pennsylvania, USA 1990), ACL, 70-78.

23 Weiser, M. Hot topics-ubiquitous computing. Computer,

26, 10 (Oct 1993), 71-72.

24 Zhang, Z., Lyons, M., Schuster, M., and Akamatsu, S.

Comparison between geometry-based and Gabor-

wavelets-based facial expression recognition using

multi-layer perceptron. In Third IEEE International

Conference on Automatic Face and Gesture

Recognition (1998), 454 -459.

Modiquitous 2011 Proceedings

38

Generating consistent universal controllers for
Web-Service-enabled appliances

Marius Feldmann, Thomas Springer, Alexander Schill

Technische Universität Dresden

Fakultät Informatik

Professur Rechnernetze

Germany

{marius.feldmann, thomas.springer, alexander.schill}@tu-dresden.de

ABSTRACT

Today, an increasing number of home and office appliances

that we interact with contain embedded Web Servers.

Making available Web Services for remote access to their

functionality is just a small step. In this paper, we present a

multi-platform, model-based generation approach enabling

efficient and low-cost development of interactive

applications for accessing Web-Service-enabled appliances.

The results are not stand-alone, monolithic elements of

software but are capable of being integrated into a

consistent host application ad-hoc during runtime. Thus, a

heterogeneous and dynamic infrastructure of appliances

from different manufacturers can be accessed via single

control applications. The approach has been proven to be

applicable for generating interactive applications for

various target platforms including mobile devices.

Keywords

Web Services, Model-based User Interface Generation,

Dynamic Service Infrastructures

INTRODUCTION AND MOTIVATION

Web Services are software components offering their

functionalities via a well-defined interface. This interface is

described by a functional interface description language

such as the Web Service Description Language (WSDL).

Nowadays, Web Services are an accepted and widely used

means for offering remote functionalities. Various tools are

available for managing the whole lifecycle of Web Services

starting from creating, via testing, to deploying and

managing them. However, the field of developing user

interfaces for Web Services has not been covered in a

satisfactory manner yet. Though some approaches have

been specified during the last years enabling the

development of user interfaces for static Web Service

infrastructures, no approach exists that makes it possible to

extend an interactive application fully automatically

depending on the associated set of Web Services the

application interacts with. The necessity for such an

interactive application becomes obvious in the case of the

selected use case: Within an automated home, a set of

appliances can be controlled via a universal control

application available on different platforms. In the sketched

scenario in Figure 1, three appliances (Light Control

System, Music Control System and a Router) can be

accessed via their offered Web Services by using either a

universal control application for a mobile device or a

Web-based universal control application. If a new device

(DVB-T device) is added to the device infrastructure, a user

interface has to be made available dynamically within the

two universal control applications. Developing these user

interfaces for various target platforms usually tends to

constitute a time consuming and expensive task.

Figure 1. Sketch of the home appliance scenario

In order to solve these problems, this paper presents an

approach to generate the user interfaces of the

Web-Service-enabled appliances fully automatically from

functional interface descriptions. Due to the fact that

without further input, the generation result would be of low

quality, so called Service annotations [8] are applied as

platform independent modeling approach for defining user

interfaces.

The results of the generation chain named interactive

components can be embedded in the universal control

applications dynamically during runtime. Without stopping

this application, they appear in their navigation menu and

can directly be used to remote control the appropriate

device. Due to the possibility to parameterize the

generation of interactive components by using layout and

style descriptions, they can be visually adapted to different

appearances of the embedding universal control

applications. Thus, a consistent visual representation is

achieved.

The remainder of this paper is structured as follows. In the

second section an overview of the state of the art in the

addressed domain is provided. The third section defines the

concept of interactive components and points out their

central characteristics. In the fourth section the assumed

development approach is described. The fifth section

M. Feldmann, T. Springer, A. Schill: Generating consistent universal controllers for Web-Service-enabled
appliances. Proc. of 1st International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy,
June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

39

introduces the steps for generating interactive components

from the results of the development approach. The sixth

section describes the technical realization of the mentioned

appliance control scenario and an end user study applied

using the prototypical implementation. The paper is

concluded by a summary and outlook on future work.

STATE OF THE ART

Creating user interfaces for home appliances is a topic

covered in the HCI community already for years (e.g. [3]).

As well the specific goal to create consistent user interfaces

for controlling different devices has been addressed [4].

However, these approaches do not focus in any way on

Web-Service-enabled appliances. Thus, the possibility to

generate user interfaces from functional interface

descriptions is not discussed. The only approach exploring

Web Services in the field of universal appliance control

applications exploits a task-driven development approach

to create consistent user interfaces [5]. Though the

efficiency of this approach may be increased by using

Service annotations [6], it still takes various manual steps

to develop a user interface for different target platforms.

Furthermore, the resulting user interfaces cannot be

embedded automatically into a host application during

runtime. Extending the focused research and development

field to ad-hoc UI generation approaches for

Web-Service-based interactive applications, we discovered

a set of ten approaches. They usually take either a

functional interface description or additionally Service

annotations as input and create stand-alone markup-based

UIs as output. An example for this category of approaches

is described in [7]. The results have a low quality and do

not address the generation of consistent UIs enabling the

interaction with various underlying Web Services as it is

demanded within the home appliance scenario.

To summarize our efforts, we realized an intensive

state-of-the-art analysis searching for approaches that make

it possible to generate automatically user interfaces for

Service-based interactive applications and that create

results which can be included ad-hoc into a running host

application. To the best of our knowledge, no comparable

approach like the one presented in this paper exists.

INTERACTIVE COMPONENTS

Interactive components are a domain-specific solution for

user interfaces of Service-based interactive applications.

Due to their characteristics, they solve the identified

problems of dynamic integration of ad-hoc generated user

interfaces into a hosting interactive application.

Interactive components contain all information necessary

for registration purposes within a host application. They

offer a user interface for providing input values and

displaying output values of Web Service operations and

contain all information needed for enabling the interaction

of a human user with a remote Web Service. After an

interactive component has been generated, it is transmitted

to a host application (such as the universal appliance

control application) via an application specific directory

Service.

As soon as an interactive component is physically available

on a target device, it runs through the following steps:

1. Registration: The interactive component

communicates the information needed for its execution

to the host application. The registration information

covers:

a. Identifier: In order to identify a component and to

replace old versions on a target platform, a unique

identifier is assigned to every interactive

component.

b. Component Dependencies: An interactive

component may demand functionality that has to

be provided by the host application. This includes

for example functionality to determine the current

geolocation or specific data storage facilities.

c. Input-/Output-Data: An interactive component

may interact with a host application via

exchanging data. To identify the data needed as

input and returned as output, references to data

described within the associated functional

interface description is used.

d. Context information: Every interactive

component may be generated for a concrete usage

context such as a specific language, a specific

target platform or a selected geographical location.

A context description is expressed as a set of

context type and value information.

e. Information for visualization purposes: An

interactive component is included dynamically

into the navigation menu of a host application so

that a user can activate it. For visualizing the

component, data such as a label text or an icon is

communicated to the host application.

If a host application accepts the registration

information and fulfills the requirements (thus it can

offer the necessary components (b) and the appropriate

input data (c)), the registration is successful. If the

interactive component is not registered successfully, it

is removed from the host application.

2. Activation: After an interactive component has been

registered successfully and the current application

context conforms to the context the component is

intended for, the component can be activated by a user.

The host application hands over the input parameters

demanded by the interactive component during the

registration procedure.

3. Usage: After a successful activation of the interactive

component, a user can input data via the user interface

and invoke remote Web Service operations. The

operation results are being visualized in the user

interface.

4. Deactivation: The interactive component can be

deactivated at any time by the host application or the

user. After the deactivation has been triggered, its user

interface is not visible anymore. During deactivation of

Modiquitous 2011 Proceedings

40

an interactive component, it returns the output data

specified during the registration process to the host

application.

We have specified a Meta-model named Service-based

Interactive Component Model (SBIC) for representing

interactive components during the generation process. The

structure of the model is sketched in Figure 2. The SBIC

has been developed as a model representing an interactive

component in a way close to a runtime representation.

Thus, a model-to-code transformation mapping a SBIC

instance to a platform specific interactive component can

be implemented with little effort.

Besides the registration information, the SBIC describes the

structure, navigation flow and data flow of the user

interface. Furthermore, it contains layout and design

information that is weaved into the model during the

generation process. Thus, the layout and design of a

generated interactive component can be adapted to the

layout and design of a host application.

DEVELOPMENT APPROACH

As aforementioned in the state-of-the-art analysis, the

development of Service-based interactive applications for

various target platforms is currently a time-consuming task

involving huge manual effort. Our approach is

characterized by the novel idea to only use Service

annotations for modeling user interfaces. As the

state-of-the-art does not offer any Service annotation model

enabling the specification of application-specific aspects

such as navigation or data flows, we introduced new

annotation types.

To not reinvent the wheel, these types were introduced into

the annotation model originating from the ServFace project

[8]. Besides others, the following annotation types have

been specified and included into an extension of the

ServFace annotation model:

1. Navigation Flow: Enables the possibility to define a

navigation flow between the user interfaces derived

from different Service operations. With every specified

navigation flow, a data flow may be associated.

Figure 2. Structure of interactive component Meta-model

2. Bundling: Renders it possible to merge the user

interfaces of different operations into one user

interface. Furthermore, the view for input and output

of one operation might be merged in one view.

3. Provided by Host: Marks an input parameter of a

Service operation as input to the interactive component

provided by the host application.

4. Returned to Host: Marks output parameters to be

returned to the host application when the interactive

component is deactivated.

5. Component Dependency: Defines dependencies to

functionalities the host application has to provide.

6. Initial Operations: A subset of the operations defined

in a functional interface description may be marked as

initial. These operations can be accessed directly from

the host application. Every initial operation is an entry

point to activate the interactive component. After

activating it, the user interface for the appropriate

initial operation is visualized.

In order to specify these annotations, an authoring tool

named Interactive Component Editor (ICE) [2] has been

created. One of the views of the ICE is shown in Figure 3.

After importing one or more functional interface

descriptions into the tool, the tree structure of these

descriptions is visualized. The nodes on the various levels

(Service, operation, input/output parameters, data types) of

the tree representation can be included into the modeling of

the interactive component.

The screenshot in Figure 3 shows various navigation flows

and data flows in a specific editor view during modeling an

interactive component for a DVB-T device. The editor

makes it possible to specify any of the annotations defined

within the ServFace project and of the abovementioned

extensions. Thus, a full featured development approach has

been created enabling the model-based specification of

interactive components solely with annotated functional

interface descriptions.

After the modeling has been realized, the resulting

annotations are serialized to a file and transferred to a

remote annotation repository.

GENERATION APPROACH

The generation of interactive components is triggered on

demand once an interactive component has to be embedded

into a host application. In the case of the automated home

scenario, the generation chain is activated as soon as a new

device and thus a new annotated Web Service appears in

the home infrastructure. Due to the usage of platform

independent Meta-models and the platform specific

parameterization of the generation approach, it can be

reused for various target platforms and different host

applications. The platform and host specific parameters

have to be provided only once for every host application.

The target specification can be reused during the generation

of each interactive component that should be embedded

into this host application.

The generation chain is summarized in Figure 4.

Modiquitous 2011 Proceedings

41

Figure 3. Screenshot of the Interactive Component Editor

In a first step, the functional interface description and the

annotation file fetched from an annotation repository are

parsed and merged together into a common model. For this

purpose the Annotated Service Model (ASM) has been

developed. It enables the representation of all ServFace

annotations and the mentioned extensions. An ASM

instance contains, on the one hand, the tree representation

of the functional interface description with the different

hierarchies (Service, operation, input/output parameters,

data types) and, on the other hand, the annotations

referencing a subset of the tree’s nodes. This subset has

been determined during the development approach applied

e.g. by using the ICE.

After the ASM has been instantiated, a basic structure of

the user interface with all its interactors is inferred in a first

model-to-model transformation step. For representing the

structure of the UI, a domain-specific model named

Intermediate Service Frontend Model (ISF) adapted to the

generation chain has been developed.

For instantiating the ISF, the ASM instance is traversed. By

default for every Service operation one container for all

input parameters and one container for all output

parameters are derived and embedded into the ISF instance.

This default behavior may be modified by annotations of

the Bundling type (see previous section).

In a next step, appropriate interactors are derived from all

input and output parameters passed during traversing of the

ASM instance. They are embedded into the containers

created in the previous step.

As the selected interactors are described within the ISF

using platform specific vocabulary, this step is

parameterized by a set of inference rules which determine

which interactor should be selected under which condition.

Besides the data types of an input or output parameter, the

decision depends particularly on the set of annotations

referencing this parameter.

Figure 4. Generating interactive components from annotated functional interface descriptions

Modiquitous 2011 Proceedings

42

Figure 5. Usage of the generation approach within the home appliance scenario

In a second model-to-model transformation step, an

instance of the SBIC Meta-model mentioned above is

created from the ISF instance. Just as the transformation

steps before, the implementation of this step can be reused

for various target platforms due to the parameterization of

the transformation. The provided parameters contain

especially layout and design information for adapting the

appearance of the interactive component to the appearance

of a host application. This information can be made

available a-priori and updated as soon as the layout and

design of the host application is modified.

Finally, every SBIC instance is transformed to a platform

specific interactive component that can be made available

via a component repository to a host application. For every

supported platform a model-to-code transformation has to

be provided that takes an SBIC instance as input and

returns a packaged and deployable interactive component

as output.

The described generation chain builds the core of the home

appliance scenario introduced above. Figure 5 shows the

different steps used to make interactive components

available in different universal control applications.

The approach runs through the following seven steps:

1. A device (e.g. a DVB-T device) is newly introduced

into the infrastructure of Web-Service-enabled

appliances. As soon as it is switched on, it is registered

by transmitting the Uniform Resource Identifier (URI)

of its functional interface description plus a reference

to an annotation file to a device repository.

2. The device repository is monitored by a specific

system component named Activator. As soon as this

component detects a new device registration, it

forwards the functional interface description

referenced by the URI plus the annotation file to the

generation chain described above.

3. The generation chain parses the functional interface

description and the annotation file and transforms it

first to an ISF and then to a SBIC instance.

4. Using platform-specific model-to-code transformations

(named platform adapters) for all desired target

platforms, the SBIC instance is transformed to

platform specific interactive components.

5. These components are forwarded to a repository that is

checked in fixed intervals by the used universal control

applications for updates.

6. As soon as a new interactive component is available

within the repository, it is downloaded to the target

platform and registered in the universal control

application.

7. After a successful registration of an interactive

component it can be used to interact with the remote

Web Service thus enabling device control.

REALIZATION AND EVALUATION

The approach has been implemented and evaluated using

two heterogeneous target platforms as shown in Figure 5.

As proof-of-concept for mobile devices, a universal control

application and a platform adapter for the smartphone

platform Android has been realized and as proof-of-concept

for Web applications, the same parts of software have been

implemented using the Apache Wicket framework. The

repository for devices has been realized as a simple

relational database. As technology for the repository for

interactive components Subversion (SVN) was used. SVN

has the central advantage that no additional mechanism for

versioning of interactive components had to be introduced.

Figure 6 shows a screenshot of the prototypically

implemented Web-based universal control application. As

it is depicted in the figure, interactive components are

embedded once they are registered in this application into

its navigation menu shown on the left side. The initial

operations (see fourth section) of each interactive

component are displayed by a navigation option each. As

soon as a user selects one of these options, the appropriate

user interface is displayed in the center of the Web page.

Modiquitous 2011 Proceedings

43

Figure 6. Prototype for the Web-based universal control application

The approach has been evaluated based on the prototypical

implementation within an end user study. 25 people in the

age between 19 and 31 years have used the two universal

remote controllers to interact with a set of simulated home

appliances. After fulfilling several minor tasks, the users

participated either in a questionnaire or in an interview to

get an insight into their experiences with the generated

interactive components. Summarizing the results, the

interactive components have been reviewed as easily and

efficiently usable. All users stated that the user interface

makes a consistent impression and looks like a monolithic

application. No user criticized any form of inconsistency of

the user interface. Thus, the component-based nature of the

user interface is not recognized by end users.

SUMMARY AND OUTLOOK

This paper presented an approach to generate consistent

universal controllers for Web-Service-enabled home

appliances fully automatically. The approach is based on

the idea to generate so-called interactive components from

annotated functional interface descriptions. These

components can be embedded dynamically during runtime

into a host application. The applicability of the approach

has been demonstrated by implementing the home

appliance scenario using a Web-based universal control

application and an appropriate application for a smartphone

platform. The implementation has been evaluated in an end

user study which confirmed the good quality and usability

of the resulting user interfaces and their consistency. The

control application made the impression to be monolithic

though it consists of components provided for every

available device.

Future work will focus in first place on improving the

underlying development approach sketched in the third

section. In this area it will be analyzed, how the

provisioning of Service annotations may be simplified, e.g.

by suggestion functionalities. Furthermore, implementing

support for further target platforms is intended.

REFERENCES

1. Christensen, E., Curbera, F., Meredith and G.,

Weerawarana, S. Web Services Description Language

(WSDL) 1.1. W3C Note. March 2011.

2. Feldmann, M., Martens, F., Berndt, G., Spillner, J.,

Schill, A. Rapid Developed of Service-based Interactive

Applications using Service Annotations. In:

Proceedings of IADIS International Conference

WWW/Internet 2010.

3. Nichols, J. Automatically generating high-quality user

interfaces for appliances. In CHI ’03 extended abstracts

on Human factors in computing systems, pp. 624-625,

ACM Press, 2003.

4. Nichols, J., Myers, B. A., Rothrock, B. UNIFORM:

Automatically Generating Consistent Remote Control

User Interfaces. In Proceedings of CHI'2006, pp.

611-620, Montreal, Canada , 2006.

5. Paternò, F., Santoro, C., Spano, L., D. Designing usable

applications based on Web services. In: 1st Workshop

on the Interplay between Usability Evaluation and

Software Development, pp. 67 - 73. CEUR, 2008.

6. Paternò, F., Santoro, C., Spano, L. D., Exploiting Web

service annotations in model-based user interface

development. In: EICS'10 - 2nd ACM SIGCHI

Symposium on Engineering Interactive Computing

Systems, pp. 219 - 224. ACM, 2010.

7. He, J., I. Yen, T. Peng, J. Dong und F. Bastani: An

Adaptive User Interface Generation Framework for

Web Services. Proceedings of IEEE Congress on

Services Part II, Seiten 175–182, 2008.

8. ServFace-Konsortium: Deliverable 2.9 - Models for

Service Annotations, User Interfaces, and Service-based

Interactive Applications (final version). Technical

Report, SAP AG, Lyria S.A., Consiglio Nazionale

Delle Ricerche, The University of Manchester,

Technische Universität Dresden, 2010

Modiquitous 2011 Proceedings

44

A Context Taxonomy Supporting Public System Design

Romina Kühn, Christine Keller, Thomas Schlegel
Technische Universität Dresden

Nöthnitzer Str. 46, Dresden
{Romina.Kuehn, Christine.Keller, Thomas.Schlegel}@tu-dresden.de

ABSTRACT
Context awareness is the basis for a system’s ability to adapt
to changing conditions of its environment. This ability is es-
pecially important in the public domain where a variety of
systems is used, so-called public systems. Public systems
perform in public spaces and are available to all people, in-
stead of focusing on specific user groups. They also often in-
tegrate many different devices. Thus, they need to be highly
context-adaptive in many ways. However, it is very difficult
to determine what context is. None of the existing defini-
tions can serve as a guideline throughout the whole process
of system development. Context relevant features need to be
determined from scratch for each new system, making sys-
tem design error-prone, costly and time-consuming. To sup-
port easy development of context-aware systems and appli-
cations, we propose a reusable taxonomy of context features
for the public domain.

Author Keywords
Context taxonomy, Context awareness, Public system

INTRODUCTION
Ubiquitous technologies are highly applicable in spaces, where
many people need to access certain services. The first vi-
sion of ubiquitous systems by Mark Weiser introduced the
idea of an pervasive work environment, where many people
can work together, supported by invisible and intelligent sys-
tems that surround them [23]. But the “smart office” is not
the only application of ubiquitous technologies. Recent re-
search efforts explore the usage of ubiquitous systems in the
public, like hospitals, public transport systems or other pub-
lic spaces [9, 5, 7]. In public spaces, many people have to
access many different services, different data and use differ-
ent devices to do so, like personal mobile device or public
displays. Ubiquitous technologies can be used to integrate
those different devices and the different services that are pro-
vided in public space. Such ubiquitous public systems have
to be context-aware and to adapt to the requirements of many
different kinds of users or environments.

To do so, the context of usage must be captured and then
correctly classified. Based on the captured context, the sys-
tem then must be able to adapt the interaction with the user.
Depending on his location, a user for example needs differ-
ent data and based on his abilities, he needs to interact using
speech based interfaces, for example if he is blind. Based
on this context classification, the system’s behaviour can be
modeled. In our previous work, we have developed a method
to model interactive systems on the basis of the technique of
Use Cases. Our method allows to model interactive compo-
nents and to modify the provided interactions according to
context. In this paper, we want to describe a context taxon-
omy that models contexts and context criteria of ubiquitous
public systems. We also describe how these context criteria
can be substantiated for different kinds of public systems.

Related Work
Most of the existing information systems that perfom in pub-
lic systems are concerned with public transportation, often
specialized for example, for the blind people [5, 2]. Another
kind of public system is focusing on tourists [11, 13]. As
ubiquitous technologies became popular, they were also ap-
plied in the public domain, for example integrating public
displays and mobile devices or stationary information termi-
nals [17, 21].

The idea of modeling context for ubiquitous systems is not a
brand new topic [8]. Early context-aware systems are mostly
location based or consider location and additionally physi-
cal conditions as a system’s possible context [22, 4]. In re-
cent years, the view on “context” has changed from a mainly
physical to a broader view. Some choose to consider tasks
or activities of a user as the system’s context to take into ac-
count, too [18, 16]. In public systems, all of these variations
of context have to be considered, but there are additional
views on context that can become relevant. There is, for
example, also a social context that may be important for the
usage of public systems. We developed a reusable taxonomy
of context criteria that are typically found in the public do-
main and we therefore consider essential for public systems.

This paper is organised as follows. In the next chapter, we
want to present the aforementioned method for modeling in-
teractive public systems we developed in our previous work.
We will describe how this method allows to easily model
such systems in a context-adaptive way. The following chap-
ter then describes, how we modeled our context taxonomy.
First, we want to describe our perception of context and the

R. Kühn, C. Keller, T. Schlegel: A Context Taxonomy Supporting Public System Design.
Proc. of 1st International Workshop on Model-based Interactive Ubiquitous System 2011,
Pisa, Italy, June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

45

terms we use to derive specific context types from relatively
abstract context criteria. We then present the user-centered
context taxonomy we developed. We also present exemplar-
ily modeled Interaction-Cases that builds on our context tax-
onomy. We conclude the paper discussing our approach and
describing work that is planned for further research efforts.

MODELING INTERACTIVE UBIQUITOUS PUBLIC SYSTEMS
In order to support the seamless integration of various de-
vices and services in ubiquitous public systems, these sys-
tems must be properly designed and modeled. Persona and
scenarios can serve as a basis to define the user’s require-
ments and the system’s behaviour [12, 1]. Based on infor-
mally described scenarios, Use Cases can be derived that de-
scribe the system’s behaviour from a user’s perspective. Use
Cases describe the system’s requirements in a more formal
way.

In our previous work, we proposed the method of Interaction-
Cases for modeling interactive systems [20]. Interaction-
Cases can be used to describe the interaction between user
and system in a semi-formal way. Types of Interaction-Cases
can be predefined, they are therefore reusable. Interaction-
Cases can already be defined when requirements are deter-
mined in early phases and then be substantiated up to a very
specific level, that can be linked directly to Use Case dia-
grams and code fragments.

In order to develop context-aware ubiquitous systems, the
contexts must be modeled in advance and depending on these
contexts, the context-adaptive behaviour of the system needs
to be modeled, too. We therefore refined our Interaction-
Case method, allowing these Interaction-Cases to be context-
adaptive [19]. In early design stages, an Interaction-Case
can be marked as context-adaptive to a certain context. The
Interaction-Case and the context definition may be very coarse-
grained at first. In those early phases, the specific context
features that lead to system’s adaptations may not be known,
but the general context criteria that influence the interaction
process between system and user can already be anticipated.
Therefore, it should be possible to refine the context criteria
as the specification of the system proceeds.

Using context-adaptive Interaction-Cases, it is possible to
define the interaction process between system and user in a
different way for different situations. If the system observes,
for example, that the ambient noise level is very high, it can
adapt its audio volume. Another example is, that if the user
is blind, it is necessary to switch to audio interaction instead
of visual.

The development and modeling of interactive ubiquitous pub-
lic systems becomes easy and less time-consuming using
Interaction-Cases. The method depends, however, on a prop-
erly modeled context hierarchy, that serves as a basis for
development of context-adaptive scenarios and interactions.
We therefore propose a context taxonomy for contexts in
ubiquitous systems. It models contexts that can occur in the
public domain and are of possible interest for public sys-
tems. The structure of the taxonomy reflects the usage of the

context criterions in the iterative development of Interaction-
Cases and allows step-by-step refinement of contexts from
coarse-grained contexts to fine-grained context types. We
will describe this structure and the context taxonomy for
ubiquitous public systems in the following.

A CONTEXT TAXONOMY FOR THE PUBLIC DOMAIN
The public domain has special requirements towards infor-
mation systems and a variety of contexts are possible. There
are different users with a different background, different cul-
ture, knowledge etc. and a wide range of devices such as
mobile devices, public displays, but also stationary informa-
tion terminals. In order to capture the possible contexts that
influence the interaction between a user and the ubiquitous
public system, we focused on the user and the situations that
can arise in ubiquitous public systems. We do not claim that
our context taxonomy is complete, but it can serve as a start-
ing point for further refinement. Which contexts are relevant
and which are not depends on the system’s characteristics,
its structure and its purpose. The structure of our context
taxonomy supports easy refinement of the contexts that are
relevant for the task at hand.

Structure of the Taxonomy
We based our perception of context on the definition given
by Dey and Abowd [8]:

Context is any information that can be used to charac-
terize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the inter-
action between a user and an application, including the
user and applications themselves.

For the usage of context with Interaction-Cases and for iter-
ative refinement of relevant contexts, we describe context as
different context criteria that are organized in a hierarchical
taxonomy. These can be used as a first overview on possible
context dimensions for public systems. We then describe dif-
ferent context types, that can be specified and derived from
a certain context criterion [14]. Context specifications can
then be substantiated from context types by allowing a sys-
tem’s architect to subsequently define values or value ranges
for which certain context types are laid out in his system’s
context design. A possible structure of such a hierarchy is
shown in figure 1.

• Context is information that characterizes situations or cir-
cumstances of an entity like a person, a place or an object
[8]. The complete context a system is able to capture in
a specific situation, is most likely combined of different
types of context features and different values of these fea-
tures. A complete system’s context can, for example, be
combined from a temperature of 20 degrees celcius, the
availablility of visual and audio output and a certain time
and location.

• Context criteria are different categories in which context
can be defined. The context criteria are criteria that may
influence a system’s context and are defined on a rela-
tively abstract level. Context criteria can be hierarchi-

Modiquitous 2011 Proceedings

46

cally organized. Examples of context criteria are “Cli-
mate” and “Temperature” but also “Perceptive Context”
and “visual”.

• A context type is a sub-category of a context criterion.
From context criteria on an abstract level, several context
types can be derived that describe features of this context
criterion on a specific level. As an example, from the con-
text criterion “visual”, a system designer can define the
context types called “blind” and “visually impaired”.

• Context types can be specified directly by defining values
or value ranges. These are called context specifications.
A context specification for the context type “visually im-
paired” may be a value range capturing vision from 20%
- 70% or from 71% - 99% as shown in figure 1.

Interaction Context

Perceptive Context Criterion

visual

blind

20 % - 70 %
vision

71 % - 99 %
vision

visually impaired

Context Level

Context Criterion
Level

Context Type
Level

Context
specification

Level

Figure 1. Example of a specific context including context criteria, types
and specifications

CONTEXT IN UBIQUITOUS PUBLIC SYSTEMS
Central to the description of context in ubiquitous public sys-
tems is the user, as shown in figure 2. These systems adapt to
the context they perceive in order to provide an optimized in-
terface for the many different users that use them. We there-
fore started to collect the requirements of users in public sys-
tems. Based on these requirements, we differentiated sev-
eral contexts that can be useful in modeling context-aware
ubiquitous public systems. These context served as starting
points for further refinement. In the following sections we
will therefore explore these categories and the possible use
in modeling interactions in ubiquitous public systems.

Interaction context
By modeling context-adaptive Interaction-Cases, it is pos-
sible to model the interaction processes a ubiquitous public
system provides. Our first step is therefore to capture con-
text criterions that directly affect the interactive process be-
tween users and systems. Ubiquitous public systems consist
of different devices that provide different interaction modali-
ties. The user may have different abilities to interact with the
system, too. We modeled the different context criteria that
are involved in interaction context by mapping the interac-
tion process on part of the system and on part of the user as
shown in figure 3. The system possesses input options and

Socio-technical Context

User

Interaction Context

Temporal Context Spatial Context

Task Context

Physical Context

Figure 2. User-centered context

output options. In between these steps, the system processes
the given input. According to this, our context criteria for
the system’s interaction context are the following:

• Input: For the context criterion of input, context types can
be defined that describe the abilities of the system to get
input at all. Some devices used in public systems, for
example like tourist information terminals in cities, are
equipped with keyboards and sometimes even a mouse-
like device. Many public information systems nowadays
use touch screens, sometimes in addition to keyboards
[15]. From the input context criterion, it is possible to de-
rive context types that can be used to classify the possible
inputs of a system.

• Processing: The main task of an information system is to
process data. The processing context criterion can capture
the circumstances of processing in ubiquitous public sys-
tems that may influence the system’s interaction towards
the user. Small devices, like mobile phones, have less
processing power than devices connected to a processing
server, for example. The processing capabilities affect the
possible interactions with the user and can therefore be
modeled using the processing context criterion.

• Output: The output context criterion captures the abilities
of the system to pass information to the user. In public
systems, all kinds of public displays are known [10, 6].
Thus, most ubiquitous public systems have visual output
abilities. But additional output modalities are also possi-
ble, for example speech output or haptic output interfaces.

Interaction on part of the user begins with perception. The
perception abilities of the user may require the ubiquitous
public system to adapt and, for example, provide different
output modes. After perceiving information, a user pro-
cesses the information, just like the system itself does. The
user also acts in order to input information to the system or
to request information from the system. We therefore cap-
tured the interaction context on the part of the user using the
following context criteria:

Modiquitous 2011 Proceedings

47

• Perception: This context criterion captures how a user can
perceive input. A person can perceive using his senses.
Regarding the interaction with computer systems, sight,
hearing and touch are the main perception channels. Con-
text types derived from this context criterion can grasp the
perceptive abilities of a user.

• Cognitive: The cognitive abilities of a user can be grasped
using the cognitive context criterion. Children, for ex-
ample, have other cognitive abilities than adults. A sys-
tem can then adapt to these cognitive abilities, if they are
known, and present information, for example, in simpler
form.

• Action: The abilities of the user to act towards the system
can be modeled using the action context criterion. A user
can act using gestures, voice, facial expression or move-
ment. The cognitive context criterion can be used to cap-
ture the acting abilities of a user, analogous to his percep-
tive abilities.

Interaction Context

Perceptive Context Criterion

Input Context Criterion

Output Context Criterion

Processing Context Criterion

Cognitive Context Criterion

Acting Context Criterion

Figure 3. Interaction context

The different sides of interaction context are comparable.
From a certain point of view, the input context criterion and
the acting context criterion capture the same type of context,
for example, speech input. The same is true comparing out-
put and perception context, capturing, for example, visual
input. We distinguished a system’s interaction context from
the user’s interaction context. Using two different “sides” of
interaction context means, that it is possible to perceive that
the user is blind, which is a context type deriving from the
perception context criterion. At the same time, it is possi-
ble that the system is only able to give visual output (output
context criterion). This situation can only be observed us-
ing a perceptive context that is distinguished from an output
context.

Socio-technical context
Another interesting aspect of context is the socio-technical
context in figure 4. We identified four socio-technical con-
text criteria [19] which we divided, depending on their focus,
in user and system modelling context criteria. The following
social-technical context criteria are user-centered.

• Sociological context criterion: With the sociological con-
text criterion we describe the rules which people in pub-
lic systems are following. These rules allow us to model
possible scenarios for different sociological contexts and
so affect the usage of ubiquitous computing in public sys-
tems. For example, it is a common rule not to disturb other
people in surroundings like churches with mobile phones
or other devices or to request people’s personal data where
others can see it.

• Organizational context criterion: The organizational con-
text criterion describes a third party like organizations which
are somehow involved in public systems. This context cri-
terion can model the different conditions and possibilities
of, for example, public transport organizations, supplier
or other organizations that are associated with public sys-
tems.

Besides the user-centered context criteria there are two sys-
tem’s socio-technical context criteria which are described as
follows:

• Operational context criterion: In public systems there is
a multitude of processes, procedures and activities which
are not directly visible to a user. These operations can be
summarized in the operational context criterion. For ex-
ample, activities or procedures like to operate the turnout
in a control center can affect this criterion.

• Technical context criterion: Another system centered cri-
terion is the technical context criterion. It includes all
technical abilities of a system, for example, the ability to
show real-time data or just data which can not be updated
automatically.

Socio-technical Context

Technical Context Criterion

Operational Context Criterion

Organizational Context Criterion

Sociological Context Criterion

Figure 4. Socio-technical context

Further contexts
Beside the contexts we described above, there are some fur-
ther contexts that affect the usage of ubiquitous systems in
the public domain. We briefly characterize these in the fol-
lowing paragraphs.

Modiquitous 2011 Proceedings

48

Physical context
Physical context of ubiquitous public systems captures, for
example, temperature, humidity, ambient noise level or bright-
ness. The context criterion “ambient noise level” can be rel-
evant, for example, for adapting the output volume of speech
output as the ambient noise level raises.

Task context
There are several approaches to capture task or activity based
context [18]. The task the user wants to complete, does in-
fluence the interactions he pursues. We therefore plan to
capture different task-based contexts for public systems in
our future work.

Spatial context
The spatial, or location-based, context is described in other
projects and papers e.g. by Bauer et al. or Bellavista et al.[3,
4]. Spatial context can, for example, capture the location of
a user but also the user’s movements, which means whether
the users walks or stands.

Temporal context
As already described in our previous work, the temporal
context contains absolute and relative time [19]. Time as-
pects can, for example, affect the presentation of data both
on a mobile device and public displays. Further contexts re-
lated to time are conceivable. We will explore these aspects
and their possible use in ubiquitous public systems in future
work.

USAGE OF CONTEXT FOR MODELING INTERACTION
In this section, we want to give a short example of the usage
of context-adaptive Interaction-Cases. Given the context hi-
erarchy in figure 1, the input of data in a public system can be
modeled in different ways. Our example of a public system
is a public transport system. In such a setting, people want
to retrieve information on timetables of buses or trains. We
therefore modeled the Use Case retrieveTimetable-
Information, as displayed in figure 5. In order to request
information on a timetable, the user needs to specify the lo-
cation and time of departure. The Use Case thus contains an
Interaction-Case enter departure information.

Figure 5. Use Case retrieveTimetableInformation and associ-
ated first Interaction-Case

The system we modeled as an example should adapt to the
perceptive abilities of its users. The Interaction-Case enter
departure information is therefore modeled context-
sensitive. It can be adapted regarding the context criterion
“visual”. We modeled two Interaction-Cases that implement
the given Interaction-Case for two different context criteri-
ons. The first is the “normal” Interaction-Case that uses key-

board input to acquire the departure information. It is shown
in figure 6 on the right.

Figure 6. General Interaction-Case and context-adaptive derivation

However, if the user of the system is blind, he is not able to
use a normal keyboard to provide the departure information.
In this case, the system should switch to audio interaction.
The Interaction-Case in figure 6 is therefore modeled for the
context-type “blind” and the system adapts the input modal-
itiy to audio. Using this modeling technique and our context
taxonomy for public systems, it becomes possible to model
context-adaptive interactive ubiquitous public systems eas-
ily, already beginning in early design phases using pen and
paper.

CONCLUSION AND FUTURE WORK
In this paper we presented a structure for a context taxonomy
that supports modeling and development of context-aware
ubiquitous public systems. Using a context taxonomy for
the public domain as a basis and implementing the method
of modeling Interaction-Cases, it becomes possible to de-
fine interactions between system and user in an iterative way.
The structure of context we proposed also supports the step-
by-step refinement not only of Interaction-Cases, but also
of the involved contexts, as shown exemplary in the previ-
ous section. We also presented a context taxonomy for the
public domain that can be used as a starting point to model
contexts for ubiquitous public systems.

Our goal is to enlarge the taxonomy we described above and
to refine the context criteria in the future. It is, for exam-
ple, possible, to refine the input context criterion within the
interaction context with respect to the data type that can be
entered via the different input channels. Some input chan-
nels may, for example, only be relevant or active for input
of special data types. We also want to explore the possibil-
ities of deriving context-adapted Interaction-Cases automat-
ically using rule-based substitution of certain Interaction-
Steps. We hope to further improve the modeling method and
the underlying context taxonomy and therefore to improve
and facilitate the development of ubiquitous public systems.

ACKNOWLEDGEMENTS
Part of this work has been executed under the project IP-
KOM-ÖV funded by the German Federal Ministry of Eco-
nomics and Technology (BMWi) under the grant number
19P10003O.

Modiquitous 2011 Proceedings

49

REFERENCES
1. Aoyama, M. Persona-scenario-goal methodology for

user-centered requirements engineering. Requirements
Engineering, IEEE International Conference on 0
(2007), 185–194.

2. Banaı̂tre, M., Couderc, P., Pauty, J., and Becus, M.
Ubibus: Ubiquitous computing to help blind people in
public transport. In Mobile Human-Computer
Interaction - MobileHCI 2004, S. Brewster and
M. Dunlop, Eds., vol. 3160 of Lecture Notes in
Computer Science. Springer, Berlin / Heidelberg, 2004,
535–537.

3. Bauer, M., Becker, C., and Rothermel, K. Location
models from the perspective of context-aware
applications and mobile ad hoc networks. Personal and
Ubiquitous Computing 6 (2002), 322–328.
10.1007/s007790200036.

4. Bellavista, P., Corradi, A., Montanari, R., and
Stefanelli, C. A mobile computing middleware for
location- and context-aware internet data services.

5. Bertolotto, M., O’Hare, G. M. P., Strahan, R., Brophy,
A., Martin, A. N., and McLoughlin, E. Bus catcher: a
context sensitive prototype system for public
transportation users. In WISE Workshops, B. Huang,
T. W. Ling, M. K. Mohania, W. K. Ng, J.-R. Wen, and
S. K. Gupta, Eds., IEEE Computer Society (2002),
64–72.

6. Brignull, H., and Rogers, Y. Enticing people to interact
with large public displays in public spaces. In In
Proceedings of the IFIP International Conference on
Human-Computer Interaction (INTERACT 2003)
(2003).

7. Cheverst, K., Davies, N., Mitchell, K., and Friday, A.
Experiences of developing and deploying a
context-aware tourist guide: the guide project. In
Proceedings of the 6th annual international conference
on Mobile computing and networking, MobiCom ’00,
ACM (New York, NY, USA, 2000), 20–31.

8. Dey, A. K., and Abowd, G. D. Towards a better
understanding of context and context-awareness. In
Computer Human Intraction 2000 Workshop on the
What, Who, Where, When, Why and How of
Context-Awareness (2000).

9. Favela, J., Rodrı́guez, M., Preciado, A., and González,
V. M. Integrating context-aware public displays into a
mobile hospital information system. IEEE Transactions
on Information Technology in Biomedicine 8, 3
(September 2004), 279–286.

10. Greenberg, S., Boyle, M., and Laberge, J. Pdas and
shared public displays: Making personal information
public, and public information personal. Personal and
Ubiquitous Computing 3 (1999), 54–64.

11. Hristova, N. Ad-me: A contextsensitive advertising
system. In University of Maynooth (2001), 10–12.

12. Kazman, R., Abowd, G., Bass, L., and Clements, P.
Scenario-based analysis of software architecture. IEEE
Software 13, 6 (1996), 47–55.

13. Klante, P., Krösche, J., and Boll, S. Accessights - a
multimodal location-aware mobile tourist information
system. In Computers Helping People with Special
Needs, K. Miesenberger, J. Klaus, W. Zagler, and
D. Burger, Eds., vol. 3118 of Lecture Notes in
Computer Science. Springer, Berlin / Heidelberg, 2004,
627–627.

14. Korpipää, P., and Mäntyärvi, J. An ontology for mobile
device sensor-based context awareness. In Modeling
and Using Context, P. Blackburn, C. Ghidini, R. Turner,
and F. Giunchiglia, Eds., vol. 2680 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2003,
451–458.

15. Maguire, M. A review of user-interface design
guidelines for public information kiosk systems.
International journal of human-computer studies 50, 3
(1999), 263–286.

16. Ni, H., Zhou, X., Zhang, D., and Heng, N.
Context-dependent task computing in pervasive
environment. In Ubiquitous Computing Systems,
H. Youn, M. Kim, and H. Morikawa, Eds., vol. 4239 of
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, 119–128.

17. Peterson, M. P. Pervasive and ubiquitous public map
displays. In ICA UPIMap2004 (Tokyo, 2004).

18. Prekop, P., and Burnett, M. Activities, context and
ubiquitous computing. Computer Communications 26,
11 (2003), 1168–1176.

19. Schlegel, T., and Keller, C. Model-based ubiquitous
interaction concepts and contexts in public systems
(2011).

20. Schlegel, T., and Raschke, M. Interaction-cases:
Model-based description of complex interactions in use
cases. In Proceedings of IADIS International
Conference Interfaces and Human Computer
Interaction (Freiburg, Germany, 2010).

21. Storz, O., Friday, A., Davies, N., Finney, J., Sas, C.,
and Sheridan, J. Public ubiquitous computing systems:
Lessons from the e-campus display deployments. IEEE
Pervasive Computing 5, 3 (2006), 40–47.

22. Want, R., Hopper, A., Falcao, V., and Gibbons, J. The
active badge location system. ACM Transactions on
Information Systems 10, 1 (1992), 91–102.

23. Weiser, M. The computer for the 21st century.
Human-computer interaction: toward the year 2000
(1995), 933–940.

Modiquitous 2011 Proceedings

50

Navigating the Personal Information Sphere

Simon Thiel

Fraunhofer IAO

Nobelstraße 12

70569 Stuttgart, Germany

Andreas Schuller

Fraunhofer IAO

Nobelstraße 12

70569 Stuttgart, Germany

Fabian Hermann

Fraunhofer IAO

Nobelstraße 12

70569 Stuttgart, Germany

ABSTRACT

A major trend in information society is integration of

personal information from different sources. Digital data

about persons, their behavior, their content and their social

structure is merged into the personal information sphere; a

multi-dimensional space containing information related to a

person. In the research project di.me
1
, funded by the EC, a

userware is developed to support the user managing it's

personal sphere on multiple platforms.

Main requirement for the userware is to help the user

keeping an overview on his personal data, while giving a

powerful tool for changing all kind of aspects, like e.g.

changing access rights, merging information from different

sources and structure it according to his mental model. For

this an easy to understand, but rich visualization of

information and relations is required. A user-interface

concept describes, how a user can navigate through his

information sphere and which artifacts support managing it.

This paper describes the user-interface concept within the

di.me userware, giving special focus on navigation and

visualization of the personal information sphere.

Keywords

Personal Information Sphere, Context-Awareness,

Intelligent User Interfaces, Augmented Identity

INTRODUCTION

Social networks play an increasing role in the online

community. To stay connected with colleagues, friends and

family (multiple) accounts on various social network

platforms are quite common. Keeping track on the various

accounts, updates and changes, however becomes more and

more difficult. One goal of di.me is to integrate several of

these platforms into one personal information sphere that is

controlled by the user. Assembling the profile information

with files and information stored locally on the desktop

helps to compile a rich semantic model of the user’s

personal information sphere. An easy to use, multi platform

user interface enables the user to manage his personal

sphere and to keep control on the information he shares.

1
 di.me = "digital.me: Userware for the Intelligent,

Intuitive, and Trust-Enhancing Management of the User s

Personal Information Sphere in Digital and Social

Environments"

Approach

General approach of di.me project describes the

development of a userware consisting of a private service

and several clients for accessing it. The private service can

be installed on a private server or hosted at a third-party

(e.g. cloud-) provider. The user can access the private

service via the di.me client running on his desktop

computer or by using a mobile application.

Personal Information Sphere

Core concept in di.me is the Personal Information Sphere

(PS). The metaphor of a sphere (Figure 1) containing

references to all information related to a person has been

established in previous projects of Fraunhofer IAO

[Schu09]. Information in the PS is structured along a

semantic model containing meta-information about each

information artifact. The meta-information covers classical

elements (e.g. known from file systems) like access rights,

information about the owner, date-of-creation and date-of-

last-edit. But also further history information about changes

of ownership is assigned to the artifact. In the semantic

model the concepts (e.g. information artifacts) are

interlinked by relations. These give indication about

instance, composition, aggregation, or general association

relationship between two concepts. For management of the

personal information sphere, it’s important to categorize

and cluster the user’s information artifacts. Humans require

structure to control and oversee large amounts of

information artifacts. This structure can be predefined

following some reasonable default categorization or can be

defined by the user following his mental model. In the best

case a general default structure can be expanded and

adapted by the user. This higher level of abstraction the

user reaches by categorization enables him to control larger

amounts of artifacts, keeping track of granted permissions

and navigating through his data.

Figure 1: di.me Personal Information Sphere

S. Thiel, A. Schuller, F. Hermann: Navigating the Personal Information Sphere. Proc. of 1st
International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy, June 13, 2011,
http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

51

A straight forward representation of this categorization can

be implemented by establishing concepts for each category

(or tag) aggregating the referring information artifacts or

sub categories. Details about the implementation of the

di.me semantic model are beyond the scope of this paper

and will be discussed in separate publications. For

describing the user interface, two lines of categorization are

of particular interest: Categorization of persons or contacts

into “Groups” and categorization of content and profile

information objects as “Information Categories”. (Figure 2)

Figure 2: Conceptualization of UI-concepts

Sharing the Personal Information Sphere

di.me supports mechanisms for sharing information with

persons known to the user. To give the user maximum

flexibility in defining, who should be able to access a

specific resource on the one hand, but on the other hand

provide functionality for rich structuring and reach a high

usability, the sharing mechanism allows for sharing

information objects to single persons, but also supports

sharing whole categories to groups (see Figure 3).

However, it’s clear that assigning single pieces of

information to single persons will lead to a strong

fragmentation of the access model and there is a high risk

for the user to loose track of the permissions granted.

Therefore one challenge for the UI-concept is to encourage

the user using groups and categories for setting access

rights. Also the system should come up with suggestions

about rearranging existing groups, creating new groups or

to aggregate a set of information objects in a new

Information Category.

Recommendations from di.me

Helping the user to structure his personal information

sphere is one application of recommendations coming from

the system. Central concept of di.me userware is to

establish a powerful tool, enforcing the user to manage his

personal data and avoiding to restrict the user’s actions. So

the system will not change (the structure) of the PS

proactively, but give recommendation that the user is free to

accept, adapt or deny. Within his daily schedule a user will

typically have some time-slots, when he for example enjoys

browsing his social networks, sorting persons into groups

and photos into categories. So, recommendations don’t

force themselves to the user, but are supporting him when

there is time for it.

di.me gives recommendations regarding to aspects as

follows:

• Organizing persons in groups: adding persons to

groups, splitting groups, merging groups, etc.

• Organizing information objects in Information

Categories, e.g. via tagging: adding information

objects to categories, merging categories, splitting

categories, structure categories, etc.

• Detection of not yet specified situations

• Sharing information objects/categories with peers/

groups

• Disclose or hide status updates

To produce these kinds of recommendation, the semantic

model in di.me is required to provide semantic for all

information objects, categories, groups and situations. In a

continuous process the recommendation engine is reasoning

on the various aspects of the personal information sphere

and produces recommendations accordingly.
2

Figure 3: Categories and Access Rules

Integration of Services

Internet communities are broadly using social networks

with many platforms [Bloch10], according to [Meek10] the

usage of social networking exceeds the usage of email since

2009. A main target for di.me userware is to provide a

platform for integration of existing user accounts for many

social network platforms. For this, external services can be

accessed via di.me. Personal information provided on a

social network platform is presented as part of the personal

information sphere in di.me. To avoid redundancy and

provide convenient synchronization, artifacts like name,

address, etc., relevant on many platforms are automatically

merged and can be managed in a single place. It’s clear that

not all external platforms support APIs for editing data, but

wherever it is available, automatic updates of personal

information should be provided.

Another aspect of social third-party services is that they

provide a rich variety of channels for communication. A

concept of di.me is to support communication with a person

by use of the known channels shared with this person. An

example: As a result of merging his Skype contacts with

di.me, Max knows that Peter is reachable via Skype,

however he also knows Peter’s email address. So, when

2
 Details about this recommendation engine will also be

subject of further publications.

52

Modiquitous 2011 Proceedings

sending a message to Peter, Max get’s the choice: whether

he wants to send it via Skype or email it.

Personal History

For all external services di.me is able to access, it will also

capture status information and messages or updates coming

in. The presentation of these updates is the central entry

point for the user. These updates (form the system or from

other users) are shown on the home view of di.me. An

implementation of such a view has to provide rich filtering

options to give the user control on which information to be

displayed. Filtering is not only to be done manually, but

generally set according to the situation the system

recognizes. (Recognition of situations will be explained in

the following paragraph.) Depending on the filter setting

some of the updates won’t be displayed when incoming.

However, all incoming updates are stored in the personal

history. The history is a timeline that refers to updates and

events collected by di.me. So, di.me provides a view to

browse and search the personal history. Again, rich filtering

and sorting options allow following different aspects of

personal history. Such aspects can be persons,

communication channels or abstract life spheres. Filtering

can also take place according to situations.

Context Sensitive UI & Situations

For further control of the client behavior in di.me, particular

in the mobile context, the client is able to perceive

environmental and activity information, which is assembled

in the user’s personal context. Following rules set up by

default or specified by the user, situations are derived from

life content information. These situations and particularly

the change of situations are a source for triggering multiple

reactions in di.me. The change of situation may cause the

system to:

• Change the configuration of updates shown to the

user, and how they will be alerted

• Update specified contacts about this situation

change.

• Update external services about change of situation.

(E.g. a service tracking persons and showing

people around.)

• Provide access to information to specified persons

or groups.

• Show recommendations about potential actions.

Following the specified rules, the user interface adapts

according to changes of the situation recognized. This

mainly concerns the set of data accessible to the user. The

recommendation feature allows for interacting with the

user. The simple principle of: suggestion, accept, adapt and

deny, lays a basis for improving the recommendation

mechanism by reinforcement learning technologies.

Implementation

The di.me project started in November 2010. Therefore

development is still in a conceptual phase. However, UI

prototypes showing approaches for navigation and

visualization have been developed and will be introduced in

the following section. The di.me approach covers clients for

desktop and mobile devices. Within this paper, navigation

aspects will be shown for a mobile scenario, while an

example for visualization of the personal history is given

for a desktop context.

Navigation

For mobile application development of di.me client is

subject technical restrictions: The client has to comply with

limited processing power and a rather small display. Thus

the UI is required to restrict each view to a minimum

number of details shown at a time. Nevertheless, the

challenge is to give the user as much (useful) information as

possible. So, the mobile scenario is most interesting from a

UI-design perspective.

For the main navigation of the di.me client six items and

correlating top-level views have been specified: (Figure 4)

• Home

• MySphere

• People

• Timeline

• Situations

• Settings

Since, on a smart phone, the display size is quite restricted,

“Situations” and “Settings” are reachable via a “more”

menu item.

The Home view serves as navigation cockpit for the di.me

client application. It consists of two views “Updates” and

“Tips”, where by default the updates view is shown when

the application gets activated. Depending on the (filter)

settings and the situation currently detected, the scope of

updates to be shown is determined. Each of the updates

shown in the list can be selected to see more details of the

update, containing the full text, the sender as well as some

timestamp. This detail view also serves as starting point to

jump to the senders profile or to give direct reply on the

update. In the “Tips” view, recommendations coming from

the di.me system get displayed. Selecting a tip again opens

a detailed view on the recommendation. Here the user can

chose to follow (accept) the recommendation, adapt or

ignore it.

53

Modiquitous 2011 Proceedings

Figure 4: Home-Screen (Design Prototype)

As discussed in the approach, recommendations can contain

a suggestion to restructure the groups of a personal

information sphere. Managing groups on a small display

can easily become a confusing task. When showing the

people view, the user can switch into management mode by

turning the phone by 90 degrees. (Figure 5) In this view, the

landscape format is split into two columns showing persons

and groups at the same time. The user can now perform

drag and drop operations to add persons to groups or

remove them accordingly. Filter mechanisms for both

columns can be set separately, reducing number of persons

and groups respectively shown in the lists. This

management view is provided also for structuring

information categories for the view MySphere.

Figure 5: Organizing Groups (Design Prototype)

MySphere allows the user to browse and search the

personal information sphere. Again, rich filtering

mechanisms allow for reducing the amount of information

shown in this view. On the top of the view a search field

allows for searching arbitrary information objects or

categories.

In Situations the user is able to control and define the

situations recognized and to specify the client’s behavior

accordingly.

Timeline shows a simple visualization of the personal

history quite similar to a calendar application.

Visualization

The UI design for the desktop client of di.me adopts the

look and feel that was introduced with the mobile platform.

Also the main menu is structured following the six main

menu items. Since the design of the navigation is not very

much restricted, on the desktop challenges for visualization

are of particular interest. As an example this paragraph

introduces the visualization of the personal history

(Timeline) on the desktop UI.

Figure 6: Visualization of History (Design Prototype)

As described previously, di.me userware is collecting

incoming updates and upcoming events in the personal

history. Updates are coming from various sources and over

time a vast amount of items get collected. Providing an easy

to use, intuitive UI for browsing such a history is one main

challenge for visualization in di.me.

Figure 6 shows the current design prototype for

visualization of the personal history. The timescale is

shown on the bottom of the page, zoomed in the middle to

the highest granularity selected. When approaching the

borders of the view, the timescale is zoomed out, showing a

whole year as a horizon. Swim lanes with horizontal

orientation describe groups that have been senders or

receivers of communication acts (updates received/sent).

Bubbles situated within these swim lanes indicate acts of

communication sharing a close semantic relationship. The

user can browse through the history by scrolling right or

left, zoom in and out at the current position, select a topic to

54

Modiquitous 2011 Proceedings

follow it through his history or jump into a bubble to read

the details of each update.

Related Work

Related work for di.me can be found in many different

aspects. Social network mash-up tools are a fast evolving

field with some prominent examples. Diaspora [Diaspora]

providing the possibility of hosting personal data on a

private server shares some general ideas with di.me. Other

approaches integrate social networks into the web browser.

Examples are [Flock] and [Rockmelt]. Personal information

manager cover another aspect of di.me, a technology well

established, however typically restricted to email, chat and

calendar functions. The di.me functionality of mining a

personal sphere, in terms of a semantic desktop search, is

based on related work resulting from the NEPOMUK

project [Groz07].

Concerning the UI-aspects of di.me a survey to the general

topic of augmented identity can be found in [Herm09].

Related work concerning visualization of social networks

was done by [Fre00]. Visualization of timelines and

personal history has been discussed by [Plai98] with focus

on medical logs. Fundamental considerations about scaling

and zooming within a timeline can be found in [Bade2004].

Summary

Main goal of di.me userware is to establish a tool for

integration of personal information from local sources as

well as from social network platforms into the personal

information sphere. For this information about persons,

their behavior, their content and their social structure is

merged into a semantic model, where it can be browsed,

searched and managed. The di.me userware client supports

the user, when accessing his personal information sphere,

giving him a powerful tool to control his personal data. For

further support the di.me system gives recommendations

about restructuring groups and categories and sharing

information with interested contacts. To give orientation to

the user, an easy to understand, but rich visualization of

information and relations is described. A user-interface

concept illustrates, how a user can navigate through his

information sphere and which artifacts support managing it.

This paper described the basic concepts of dime and gave

insight into the navigation of the di.me user-interface

prototype for the mobile platform. Visualization aspects

have been discussed on the example of visualizing the

personal history on the desktop platform.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Union Seventh Framework Program

(FP7/2007- 2013) under grant agreement n° 257787

REFERENCES

[Fre00] Visualizing social networks; Freeman, L.C.;

Journal of social structure, 2000

[Bloc10] E. Bloch, The 2010 Social Networking Map,

http://www.flowtown.com/blog/the-2010-social-

networking-map

[Diaspora] Diaspora project ;

http://blog.joindiaspora.com/what-is-diaspora.html

[Rockmelt] Rockmelt, social media web browser;

http://www.rockmelt.com/

[Meek10] Internet Trends - Presentation from CM Summit;

M. Meeker, Scott Devitt, Liang Wu; Morgan Stanley,

07.06. 2010

[Herm09] Challenges for User Centered Smart

Environments; Fabian Hermann, Roland Blach, Doris

Janssen, Thorsten Klein, Andreas Schuller, Dieter Spath;

HCII 09, 2009

[Schu09] Mobile Soziale Netzwerke : Interaction Patterns

zur Fusion realer und digitaler Welten; Schuller, Andreas;

Kniewel, Romy et. al.; Berichtband des siebten Workshops

des German Chapters der Usability Professionals

Association e.V., Stuttgart 2009, S. 184-188.

[Plai98] An information architecture to support the

visualization of personal histories; C. Playsant, B.

Schneiderman, R. Mushlin; Information Processing &

Management, Elsevier 1998, p. 581- 597

[Bade2004] Connecting time-oriented data and information

to a coherent interactive visualization; R. Bade, S.

Schlechtweg, S. and Miksch; Proceedings of the SIGCHI

conference on Human factors in computing systems, 2004,

p. 105-112

[Groz07] The nepomuk project-on the way to the social

semantic desktop; Groza, T., Handschuh, S. et al.;

Proceedings of I-Semantics, 2007, p 201-211

55

Modiquitous 2011 Proceedings

	WORKSHOP ORGANIZERS
	Thomas Schlegel
	Stefan Pietschmann

	PROGRAMME COMMITTEE
	INTRODUCTION
	THEME, GOALS, AND RELEVANCE
	PROGRAM
	ACCEPTED PAPER
	Models Transformations for Ubiquitous System Design
	Model-Based Testing for the Menu Behavior of Automotive Infotainment System HMIs
	Towards Ubiquitous Emergency Management Systems
	Framework for Transforming Abstract Privacy Models into Impl UbiComp System Requirements
	Ubiquitous Alignment
	Generating consistent universal controllers for Web-Service-enabled appliances
	A Context Taxonomy Supporting Public System Design
	Navigating the Personal Information Sphere

	CONCLUSIONS

