
Models Transformations for Ubiquitous System Design 
 

Emmanuel Dubois, Christophe Bortolaso, Guillaume Gauffre 
University of Toulouse - IRIT 

118, route de Narbonne  
31 062 Toulouse Cedex 9, France 

[firstname.lastname]@irit.fr 
 

ABSTRACT 
Many different models and tools exist for supporting the 
design of ubiquitous interactive systems. Each of them 
deals with a different point of view. As a result designing 
such systems has to involve a set of models rather than just 
one. In this paper we first provide an overview on existing 
models dedicated to Mixed Interactive Systems, one form 
of ubiquitous systems. Then, to facilitate the elicitation of 
the most appropriate model, we organize them along the 
steps of the development process. Finally, to smoothly 
guide the use of these different design resources along the 
development process, we provide an overview of different 
linking mechanisms between design models for ubiquitous 
systems and highlight their characteristics.  

Keywords 
Interaction model, software architecture model, model 
transformation, mixed interactive system 

INTRODUCTION 
Among the most recent forms of interactive techniques, 
one aims at taking advantage of physical objects to support 
the interaction with a computer system: physical artifacts 
surrounding users during their activity become part of the 
loop. Users’ everyday objects thus constitute an extension 
of their body to communicate with the system. Such 
systems are either called tangible UI, mixed or augmented 
reality, etc.: we hereafter refer to them with the generic 
term of Mixed Interactive System (MIS). Such systems are 
emerging in many different domains, ranging from specific 
application such as surgery [19] to mass market [15]. It 
also comes together with the emergence of new usages and 
the combination of advanced and various technologies. 
Furthermore, new spaces are now opened to interaction 
since the interaction is simply requiring the presence of 
everyday physical objects. According to Weiser’s 
definition, it is therefore a form of ubiquitous interactive 
system because the interaction mechanisms “weaved 
themselves into the fabric of everyday life” [25]. 
Nevertheless, the growing interest into the development of 
such interaction forms is undoubtedly linked to the 
constant exploration of new sensors, modalities and 
communication channels: as a result these forms of 
interaction are very different from traditional WIMP based 
situations. To better understand their differences and 
precisely highlight their specificities, efforts has been paid 
to develop descriptive models: such models express 

considerations related to the interaction [7], the physical 
properties of the required entities [16], the abilities of the 
modalities involved [6], etc. We observe from the diversity 
of approaches that complementary aspects, relevant for the 
design of MIS are addressed by different models. In the 
course of the design, the designer thus has to identify, for 
each step of the development, the most appropriate model, 
method or tool supporting the design. Developing a MIS 
thus appears to be a real challenge [21]. An optimistic 
solution could rely on the use of a unique and universal 
approach, aggregating all the required dimensions and 
enabling the design of all kinds of MIS. However, given 
the low maturity of the domain, the multiple attempts being 
developed, such an approach is not yet conceivable  
Rather than contributing to the creation of such a unique 
reference model, we propose to compare existing models 
according to their role and place in the development 
process. Then, to facilitate their combined use, i.e. to 
smoothly guide the use of these design resources along the 
development of MIS, we explore possible linking 
mechanisms between models. In this paper, we first give a 
brief overview and characterization of modeling 
approaches existing in the field of MIS. We then introduce 
three fundamental design resources on which we have 
investigated the development of different model 
transformations and couplings. 

EXISTING MODELS IN MIS 
Designing Mixed Interactive Systems (MIS) requires 
considering many specifics facets: the nature of physical 
artifacts, the links between these physical objects and 
digital data and the variety of devices and technologies 
which can be involved. Consequently, adapted design 
resources have been developed. Hereafter, we review a set 
of design resources dedicated to MIS. 
First, conceptual frameworks [9,12,16,22] provide a high 
level of abstraction on the MIS field. They raise questions 
about the generic role of the system and its place in the 
physical world. They provide a big picture of the MIS field 
and somehow help to lead the analysis of interactive 
situation. 
Taxonomies and models [6,7,23] have also been defined to 
understand mixed interactive situations, the elements that 
characterize them and their advantages. This second set of 
approaches therefore contributes to a better understanding 
of the interaction design of MIS. 

E. Dubois, C. Bortolaso, G. Gauffre: Models Transformations for Ubiquitous System Design. Proc.  
of 1st  International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy, June 13, 2011, 
http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

9



Toolkits and frameworks [13,17,21], rapid prototyping 
environments [5] or runtime platforms [1,18] have been 
proposed to facilitate the implementation of MIS.  
Finally, many user experiments results have been published 
to compare different MIS among them or against WIMP 
solutions [4]. In addition, evaluation methods dedicated to 
such tests are explored [24] to provide an appropriate form 
of evaluation. 
All these modeling approaches cover different but 
complementary design considerations. Although their 
levels of abstraction vary, they offer a clear definition of 
the development space and constitute a common 
terminology supporting interdisciplinary communication. 
As depicted in Figure 1, we also highlight that the different 
design models and resources, used to develop a MIS, can 
be organized along the traditional phases of an interactive 
software design cycle. Existing models dedicated to WIMP 
can therefore easily be put in parallel with models 
dedicated to MIS, and either be compared to or used in 
addition to these dedicated models. 

 
Figure 1: Existing design Models (M), Couplings (C) and 

Transformations (T) for MIS development.  

The main limits are however that these models and 
approaches are almost exclusively usable by MIS experts 
and remain highly compartmentalized. Indeed, even if 
high-level resources used during the design should guide 
the implementation, concrete and systematic links have not 
been clearly expressed yet. To support the design through 
the four development phases of a MIS and to highlight a 
chain of design models and tools from the earliest design 
considerations to the latest in the development process, 
connections among models are required. We propose in the 
following section, an overview of different linking 
mechanisms we have been exploring over the past years. 
We depict the goal, source and target of the links between 
two models and describe the resulting overall mechanism 
(see Figure 7). The presented linking mechanisms are also 
positioned in Figure 1. 

BASIS OF OUR INSTRUMENTED DESIGN PROCESS 
The three pillars of our articulating efforts respectively 
support the abstract description of the user’s interaction 
with a MIS, the software level decomposition required to 
implement the designed MIS and the concrete component 
based implementation of the final MIS. We first summarize 
these models and illustrate them on a case study: the 
notepad assisted slideshow. 

 
Figure 2: Use of the notepad assisted slideshow 

For oral presentations, sequential slideshow systems like 
PowerPoint are largely used. The prototype we propose is a 
physical enhancement of a slideshow system: it involves 
the use of a notepad as “remote control” and feedback 
source, and associates each page of the notepad to one 
digital slide (see Figure 2). The speaker can thus write his 
own comments on the notepad and easily access to the 
corresponding slide. Potential animation steps of each slide 
are controlled through user’s tap on the notepad. In the 
next sections, this prototype is used to illustrate the 
different models used to develop this system and how they 
have been linked. 

Interaction model 
Overview 
ASUR [7] is a model which provides an abstract view on 
the user’s interaction with a MIS. It describes physical and 
digital entities, adapters between the two worlds and 
information channels among them. It is a static 
representation: it describes a snapshot of the interaction 
required at a given time to perform a given task. It is also 
totally independent of the technology since it relies 
exclusively on an abstract description.  

Goal 
The goal of this model is to describe the different types of 
elements and data exchange required to support the 
interaction with a MIS. Both entities and channels are 
further characterized by attributes such as the type of entity 
(real object, adapter bridging the two worlds, etc.), the 
medium and language of the channels. Additional elements 
are expressible such as physical constraints among entities, 
links between a physical and digital entity, etc.  

Example 
The model of the notepad assisted slideshow is presented in 
Figure 3. The “user” interacts with the “notepad” for which 
each page is detected by an adapter (“PageDetector”). 
Another interaction with a second adapter detects user’s tap 
(“StepDetection”). These two adapters deliver to the 

10

Modiquitous 2011 Proceedings



“slideshow” some digital data from which the current slide 
and step in the animation are identified. Finally, the state of 
the slideshow is rendered through three different adapters 
to the “user” and the “attendees”. 

 
Figure 3: ASUR model for notepad assisted slideshow 

Tools 
A metamodel of ASUR has been defined [11]. Based on 
this metamodel a graphical editor has been developed as an 
Eclipse plug-in within the Eclipse Modelling Project [8].  

Software architecture model 
Overview 
The ASUR-IL model is used to describe the MIS software 
architecture: it defines the software’s skeleton through a 
components based architecture. As for ASUR it remains 
sufficiently abstract to be independent of the 
implementation platform since it relies exclusively on 
generic descriptions of the components.  

Goal 
The goal of this second model is to promote the integration 
of design considerations related to component-based 
specificities (port, data flow, component) and to software 
architecture of interactive system (functional core, views 
and controller). ASUR-IL is thus composed of two types of 
sub-assemblies:  
• Adapters describing the required devices and API to 

implement the link between physical and digital world  
• Entities describing system-dependent components; 

entities are decomposed according to the MVC pattern. It 
thus contains a Model, View(s) and Controller(s) 

In comparison to ASUR, ASUR-IL adopts a software point 
of view on the interaction with the MIS. It therefore 
provides a list and description of the software bricks 
required, interfaces, ports, data types, etc.  

Example 
Left side of Figure 4 illustrates the adapter sub-assembly 
required to implement the “page detector” expressed with 
ASUR (Figure 3). It involves a digital camera component 
and a marker detection component. The right side of Figure 
4 describes the entity sub-assembly required to implement 

the “slideshow” expressed in ASUR. This sub-assembly 
involves four components: two controllers, one model and 
one view.  

 
Figure 4: Detailed description of two of the ASUR-IL 
assemblies involved in the notepad assisted slideshow 

The ASUR-IL model which entirely covers the case study 
is represented in Figure 5. 

 
Figure 5: Two of the ASUR-IL assemblies involved in the 

notepad assisted slideshow 

Tools 
As for ASUR, a metamodel has been defined, and a 
graphical editor has been defined as an Eclipse plug-in.  

Software component model 
Overview 
To implement the prototypes that we design with ASUR 
and ASUR-IL we rely on two existing prototyping 
platforms: Open Interface (OI) [20] and WComp [5].  

Goal 
The goal of such platforms is to allow a rapid development 
of system through manipulation of component assemblies 
at run-time. In association with each platform, a repository 
of components is available: it consists in a set of reusable 
software components ready to be integrated into new 
assemblies.  

Example 
The Notepad Assisted Slideshow has been implemented as 
an assembly of WComp components. This is illustrated in 
Figure 6. Each element of the assembly corresponds to one 
of the ASUR-IL element defined in the ASUR-IL model of 
the system. 

11

Modiquitous 2011 Proceedings



 
Figure 6: WComp assembly of the notepad assisted slideshow. 

Tools 
Metamodels of WComp and OI include the three concepts 
of component based architecture: components, ports and 
data flows. Each platform also offers a graphical editing 
environment for creating the appropriate assemblies. 

Outcomes and limitations 
There are obviously links between concepts expressed in 
each of these three pillars. But there is no clear constraint 
that drives their respective use and it is not ensured that the 
designer will conform to design recommendations made 
with the other models. For example, so far interaction 
design decisions expressed with the ASUR model are not 
constraining the development of the software architecture 
with ASUR-IL. And yet, these three pillars are required to 
drive a MIS from its early specification to its final 
implementation. We therefore complement them with 
linking mechanisms, such as model transformations or 
model coupling, in order to support the transitions between 
several phases of the development process. The goal is to 
better take advantage of the design choices expressed with 
the different models.  

ARTICULATING DESIGN MODELS 
MIS models have been developed to cover different phases 
of the development process: transformations and couplings 
are thus required at different places in the process.  

From requirement to interaction design 
Overview 
We explored different linking mechanisms at this level: 
• Linking models resulting of a KMAD task analysis to 

the ASUR interaction model [3]. It involves a unique 
expert, whose role is to translate the most of a task model 
into the definition of the contour of the interaction model: 
concepts expressed in the task tree are mapped to 
elements of an ASUR model describing an interaction 
technique supporting the realization of the task.  

• Stimulating creativity session with the ASUR model 
[2]. A Model Assisted Creativity Session (MACS) is 
based on a scenario and a set of different constraints; it 
fosters the generation of mixed interaction techniques 
inside a group of multidisciplinary designers. MACS 
participants are invited to manipulate elements of an 
interaction model, in order to augment the potential of 
variations they might consider to generate ideas.  

Goal 
The goal of these two linking mechanisms is to ensure that 
the interaction techniques proposed are really in line with 
the specified task to achieve (KMAD-ASUR) and with the 
design problems to solve (MACS). In both cases the result 
of the linking mechanism is just a partial interaction model.  

Tool 
KMAD-ASUR and MACS are not so far supported by 
automatic tools. KMAD-ASUR is based on a set of rules 
and an algorithm describing the sequence of use: managing 
the alternatives generated by this transformation is left in 
charge of the designer. A MACS is composed of a set of 
steps, guidelines for the facilitator and manual post-
treatments for the generated modelled ideas. 

From interaction design to software architecture 
Overview 
This transformation, represented in the left side of Figure 7, 
converts an abstract specification of the interaction 
technique into a structured set of required software 
components: the generation of this software components 
structure is driven by the type of ASUR entity, attributes 
and channels involved in the model [10].  

 
Figure 7: Synthetic summary of the model transformations linking ASUR to an implementation.  

(available as Eclipse Plugins http://www.irit.fr/recherches/ELIPSE/guideme/) 

12

Modiquitous 2011 Proceedings



Goal 
This transformation maintains coherence between the 
interaction specification and the proposed implementation. 
The software structure produced through it is only partial: 
indeed information related to the type of data for example, 
is not expressed in the ASUR model. This refinement of 
the software architecture design is thus left to the designer. 

Tool 
To support this transformation, ATL rules automate part of 
the transformation. It is assisted by the use of an ontology 
that establishes links between parts of the interaction 
design and parts of the software architecture definition: the 
ontology provides additional information to choose among 
existing components. A repository of already defined and 
used ASUR-IL components is available. Finally a wizard 
helps the designer to go through the different steps of the 
transformation and suggest design options. All these 
technologies have been packed into Eclipse plug-ins. 

From software architecture to implementation 
Overview 
Translating ASUR-IL model to an implementation 
produces a running prototype [10]: this transformation is 
represented in the right side of Figure 7. The prototype is 
therefore made of an assembly of existing components 
(either from the OI or WComp platforms) and strictly 
conforms to the software architecture previously expressed.  

Goal 
The goal of this final transformation is to concretely 
instantiate the designed interactive technique. Until this 
final point, there is no need to pay attention to the soft- and 
hardware technologies to use. As a result, the running 
prototype can easily reuse existing bricks, even if they are 
not all available on the same platform: indeed 
communication mechanisms among the components have 
also to be specified.   

Tool 
To support this transformation, ATL rules, repositories of 
components, ontology and an interactive wizard have been 
developed. All these technologies have been packed into 
Eclipse plug-ins. 

From development models to evaluation 
Overview 
We developed this linking mechanism in order to relate 
ergonomic recommendations to part of an interaction 
model describing the MIS [2]. This is based on a formal 
pattern describing usability recommendations: this pattern 
involves elements constituting the ASUR interaction 
model. 

Goal 
The main objective of this link between evaluation and 
design model is to facilitate the identification on the model, 
of part of the solution that is affecting (positively or 
negatively) the usability of the system. Such links thus 

potentially reduce the duration of one cycle of the four 
phases development process.  

Tool 
So far the navigation through the recommendations is only 
supported by a multiple criteria query on a web site. 
Refined tools would be useful so that usability 
recommendations pop out as soon as one relevant elements 
of the interaction model is added or selected.  

CONCLUSION 
In this position paper we highlighted the diversity of 
design-time and run-time models existing in the field of 
mixed interactive system, one form of ubiquitous 
interactive system. This diversity is partly explained by the 
amount of design considerations to handle when it comes 
to designing such systems: indeed most models covers only 
one specific aspect or at the best a limited subset of 
relevant considerations. However, following our analysis 
of existing works, we have been able to identify for each of 
these development resources one of the different phases of 
a development cycle for which the development resource is 
dedicated. This is thus classifying these design resources. 
To go past the comparison of models through a 
classification, it is required to chain one model to another. 
Indeed one model provides one view on the system to 
design; chaining one to another provides a support for 
considering different complementary views without leaving 
one aspect aside. Furthermore, one unique and integrated 
design platform would be hard to propose because of the 
multiplicity of options, situations, technologies and usages 
potentially involved in a MIS. Chaining models to each 
other allows the definition of different ways in the design 
process: for example, going from A to B through a 
transformation in model C (A  C  B), may very 
flexibly be replaced by a longer transformation chain 
involving two other models instead of model C (A  D 

E – B). The result is the same, but the specialists of 
models D and E are no longer enforced to use model C. 
Based on the different linking mechanisms between models 
of different phases of the development process that we 
have investigated, this paper showed that different forms of 
transformation exist: they use repositories of partial 
solutions, graphical representations, manual application of 
rules, methodological principles or transformation 
language. Among them, those exploiting Model Driven 
Engineering (MDE) approach and tools (ASUR to ASUR-
IL to WComp/OI) appear to be the most promising: they 
use a standard language; they are easily supported by tools; 
they contribute to the definition and diffusion of the 
metamodels; they support the generation of multiple 
representations of the same model; they define 
transformation mechanisms, constitute guides through the 
design process; finally MDE has already proven its 
efficiency in classical software engineering. However, 
using MDE raised new challenges to investigate.  

13

Modiquitous 2011 Proceedings



First in terms of properties, what happens to system or 
interaction properties settled in one model when a 
transformation is applied to the model? And more 
generally, are there properties of a transformation that are 
particularly important for “modiquitous” activities?  
Managing retroactive loops in the design process also 
raises questions: if a model B is generated from a model A, 
how to ensure that modifications on B are still in line with 
A? How to send back to A modifications performed on B? 
Given that ubiquitous systems are still quickly evolving 
and adding considerations to new dimensions, 
technologies, artifacts, etc., how MDE might help 
integrates these emerging new considerations? What would 
be the relevant characteristic of an ubiquitous interactive 
situation that could help identify the most relevant design 
path among the available models and transformations? 
Finally, evaluating ubiquitous systems is a challenge in 
itself, but “modiquitous” activities are definitely 
contributing to this challenge through the elicitation of the 
most relevant design aspect of ubiquitous system, thus 
emphasizing the need to base the design of ubiquitous 
system on models. 

REFERENCES 
1. Bauer, M., Bruegge, B., Klinker, G., et al. Design of a 

Component-Based Augmented Reality Framework. 
ACM and IEEE ISAR’01, (2001), 45--54. 

2. Bortolaso, C., Bach, C., Dubois, E., A combination of a 
Formal Mixed Interaction Model with an Informal 
Creative Session. EICS’11, 10 pages, 2011 (in press). 

3. Charfi, S., Dubois, E., Bastide, R.. Articulating 
Interaction and Task Models for the Design of 
Advanced Interactive Systems. TAMODIA 2007, Vol. 
4849, Springer, LNCS, p. 70-83, 2007. 

4. Charfi, S., Dubois, E., Scapin, D.L., Usability 
Recommendations in the Design of Mixed Interactive 
Systems, EICS’09, USA, ACM, p. 231-236, 2009. 

5. Cheung, D., Tigli, J., Lavirotte, S., et Riveill, M. 
Wcomp: a Multi-Design Approach for Prototyping 
Applications using Heterogeneous Resources. IEEE 
International Workshop on Rapid System Prototyping, 
IEEE Computer Society (2006), 119-125 

6. Coutrix, C. et Nigay, L. An Integrated Framework for 
Mixed Systems. in The Engineering of Mixed Reality 
Systems - Chap 2. Springer-Verlag London, 2010, 9-32. 

7. Dubois, E., Gray, P., Nigay, L. ASUR++ : A Design 
Notation for Mobile Mixed Systems. Interacting with 
Computers 15, 4 (2003), 497-520. 

8. Eclipse Foundation. Eclipse Modeling Project. 2006. 
http://www.eclipse.org/modeling/. 

9. Fishkin, K.P. A taxonomy for and analysis of tangible 
interfaces. PUC’04, 8, 5 (2004), 347-358. 

10. Gauffre, G., Dubois, E., Bastide, R.. Domain-Specific 
Methods and Tools for the Design of Advanced 
Interactive Techniques. in : Models in Software 
Engineering. Springer, Vol. 5002, LNCS, 2008, 65-76. 

11. Gauffre, G., Dubois, E., Taking Advantage of Model-
Driven Engineering Foundations for Mixed Interaction 
Design. Dans / In : Model Driven Development of 
Advanced User Interfaces, Springer-Verlag, Vol. 340, 
Studies in Computational Intelligence, 2011, p. 219-240 

12. Gaver, B., Boucher, A., Walker, B., and al. Expected, 
sensed, and desired:A framework for designing sensing-
based interaction. ACM TOCHI 12, 1 (2005), 3-30. 

13. Greenberg, S. et Fitchett, C. Phidgets: easy 
development of physical interfaces through physical 
widgets. UIST, ACM (2001), 209-218. 

14. GuideMe. Editor of MIS specific models. 2010. 
http://www.irit.fr/recherches/ELIPSE/guideme/. 

15. Hornecker, E., Shaer, O., Tangible User Interfaces: 
Past, Present and Future Directions, in Foundations and 
Trends in HCI, Vol. 2 Nr. 1-2, 2010, pp. 1-138 

16. Jacob, R.J., Girouard, A., Hirshfield, L.M., et al. 
Reality-Based Interaction: A Framework for Post-
WIMP Interfaces. CHI’08, ACM (2008), 201-210. 

17. Kato, H. et Billinghurst, M. Marker Tracking and HMD 
Calibration for a Video-Based Augmented Reality 
Conferencing System. IEEE IWAR’99, (1999), 85-95. 

18. Klemmer, S.R., Li, J., Lin, J., et Landay, J.A. Papier-
Mache: toolkit support for tangible input. CHI’04, 
ACM (2004), 399-406. 

19. Lamata, P., et al., Augmented Reality for Minimally 
Invasive Surgery: Overview and Some Recent 
Advances, in Augmented Reality, ISBN 978-953-7619-
69-5, (2010), p. 73 – 98. 

20. Open Interface. STREP.  http://www.oi-project.org/. 
21. Shaer, O. and Jacob, R.J. A specification paradigm for 

the design and implementation of tangible user 
interfaces. ACM TOCHI, 16, 4 (2009), 1-39. 

22. Ullmer, B. and Ishii, H. Emerging frameworks for 
tangible user interfaces. IBM Syst. J. 39, 3-4 (2000), 
915-931. 

23. Ullmer, B., Ishii, H., et Jacob, R.J.K. Token+constraint 
systems for tangible interaction with digital 
information. ACM TOCHI 12, 1 (2005), 81-118. 

24. Wang, X.  Dunston, P.S., Usability Evaluation of a 
Mixed Reality Collaborative Tool for Design Review, 
CGIV’06, (2006), p. 448 – 451. 

25. Weiser, M., The computer for the 21st century. 
Scientific American, 3(265):94–104, 1991

 

14

Modiquitous 2011 Proceedings




