
Generating consistent universal controllers for
Web-Service-enabled appliances

Marius Feldmann, Thomas Springer, Alexander Schill

Technische Universität Dresden

Fakultät Informatik

Professur Rechnernetze

Germany

{marius.feldmann, thomas.springer, alexander.schill}@tu-dresden.de

ABSTRACT

Today, an increasing number of home and office appliances

that we interact with contain embedded Web Servers.

Making available Web Services for remote access to their

functionality is just a small step. In this paper, we present a

multi-platform, model-based generation approach enabling

efficient and low-cost development of interactive

applications for accessing Web-Service-enabled appliances.

The results are not stand-alone, monolithic elements of

software but are capable of being integrated into a

consistent host application ad-hoc during runtime. Thus, a

heterogeneous and dynamic infrastructure of appliances

from different manufacturers can be accessed via single

control applications. The approach has been proven to be

applicable for generating interactive applications for

various target platforms including mobile devices.

Keywords

Web Services, Model-based User Interface Generation,

Dynamic Service Infrastructures

INTRODUCTION AND MOTIVATION

Web Services are software components offering their

functionalities via a well-defined interface. This interface is

described by a functional interface description language

such as the Web Service Description Language (WSDL).

Nowadays, Web Services are an accepted and widely used

means for offering remote functionalities. Various tools are

available for managing the whole lifecycle of Web Services

starting from creating, via testing, to deploying and

managing them. However, the field of developing user

interfaces for Web Services has not been covered in a

satisfactory manner yet. Though some approaches have

been specified during the last years enabling the

development of user interfaces for static Web Service

infrastructures, no approach exists that makes it possible to

extend an interactive application fully automatically

depending on the associated set of Web Services the

application interacts with. The necessity for such an

interactive application becomes obvious in the case of the

selected use case: Within an automated home, a set of

appliances can be controlled via a universal control

application available on different platforms. In the sketched

scenario in Figure 1, three appliances (Light Control

System, Music Control System and a Router) can be

accessed via their offered Web Services by using either a

universal control application for a mobile device or a

Web-based universal control application. If a new device

(DVB-T device) is added to the device infrastructure, a user

interface has to be made available dynamically within the

two universal control applications. Developing these user

interfaces for various target platforms usually tends to

constitute a time consuming and expensive task.

Figure 1. Sketch of the home appliance scenario

In order to solve these problems, this paper presents an

approach to generate the user interfaces of the

Web-Service-enabled appliances fully automatically from

functional interface descriptions. Due to the fact that

without further input, the generation result would be of low

quality, so called Service annotations [8] are applied as

platform independent modeling approach for defining user

interfaces.

The results of the generation chain named interactive

components can be embedded in the universal control

applications dynamically during runtime. Without stopping

this application, they appear in their navigation menu and

can directly be used to remote control the appropriate

device. Due to the possibility to parameterize the

generation of interactive components by using layout and

style descriptions, they can be visually adapted to different

appearances of the embedding universal control

applications. Thus, a consistent visual representation is

achieved.

The remainder of this paper is structured as follows. In the

second section an overview of the state of the art in the

addressed domain is provided. The third section defines the

concept of interactive components and points out their

central characteristics. In the fourth section the assumed

development approach is described. The fifth section

M. Feldmann, T. Springer, A. Schill: Generating consistent universal controllers for Web-Service-enabled
appliances. Proc. of 1st International Workshop on Model-based Interactive Ubiquitous System 2011, Pisa, Italy,
June 13, 2011, http://ceur-ws.org/Vol-787

Modiquitous 2011 Proceedings

39

introduces the steps for generating interactive components

from the results of the development approach. The sixth

section describes the technical realization of the mentioned

appliance control scenario and an end user study applied

using the prototypical implementation. The paper is

concluded by a summary and outlook on future work.

STATE OF THE ART

Creating user interfaces for home appliances is a topic

covered in the HCI community already for years (e.g. [3]).

As well the specific goal to create consistent user interfaces

for controlling different devices has been addressed [4].

However, these approaches do not focus in any way on

Web-Service-enabled appliances. Thus, the possibility to

generate user interfaces from functional interface

descriptions is not discussed. The only approach exploring

Web Services in the field of universal appliance control

applications exploits a task-driven development approach

to create consistent user interfaces [5]. Though the

efficiency of this approach may be increased by using

Service annotations [6], it still takes various manual steps

to develop a user interface for different target platforms.

Furthermore, the resulting user interfaces cannot be

embedded automatically into a host application during

runtime. Extending the focused research and development

field to ad-hoc UI generation approaches for

Web-Service-based interactive applications, we discovered

a set of ten approaches. They usually take either a

functional interface description or additionally Service

annotations as input and create stand-alone markup-based

UIs as output. An example for this category of approaches

is described in [7]. The results have a low quality and do

not address the generation of consistent UIs enabling the

interaction with various underlying Web Services as it is

demanded within the home appliance scenario.

To summarize our efforts, we realized an intensive

state-of-the-art analysis searching for approaches that make

it possible to generate automatically user interfaces for

Service-based interactive applications and that create

results which can be included ad-hoc into a running host

application. To the best of our knowledge, no comparable

approach like the one presented in this paper exists.

INTERACTIVE COMPONENTS

Interactive components are a domain-specific solution for

user interfaces of Service-based interactive applications.

Due to their characteristics, they solve the identified

problems of dynamic integration of ad-hoc generated user

interfaces into a hosting interactive application.

Interactive components contain all information necessary

for registration purposes within a host application. They

offer a user interface for providing input values and

displaying output values of Web Service operations and

contain all information needed for enabling the interaction

of a human user with a remote Web Service. After an

interactive component has been generated, it is transmitted

to a host application (such as the universal appliance

control application) via an application specific directory

Service.

As soon as an interactive component is physically available

on a target device, it runs through the following steps:

1. Registration: The interactive component

communicates the information needed for its execution

to the host application. The registration information

covers:

a. Identifier: In order to identify a component and to

replace old versions on a target platform, a unique

identifier is assigned to every interactive

component.

b. Component Dependencies: An interactive

component may demand functionality that has to

be provided by the host application. This includes

for example functionality to determine the current

geolocation or specific data storage facilities.

c. Input-/Output-Data: An interactive component

may interact with a host application via

exchanging data. To identify the data needed as

input and returned as output, references to data

described within the associated functional

interface description is used.

d. Context information: Every interactive

component may be generated for a concrete usage

context such as a specific language, a specific

target platform or a selected geographical location.

A context description is expressed as a set of

context type and value information.

e. Information for visualization purposes: An

interactive component is included dynamically

into the navigation menu of a host application so

that a user can activate it. For visualizing the

component, data such as a label text or an icon is

communicated to the host application.

If a host application accepts the registration

information and fulfills the requirements (thus it can

offer the necessary components (b) and the appropriate

input data (c)), the registration is successful. If the

interactive component is not registered successfully, it

is removed from the host application.

2. Activation: After an interactive component has been

registered successfully and the current application

context conforms to the context the component is

intended for, the component can be activated by a user.

The host application hands over the input parameters

demanded by the interactive component during the

registration procedure.

3. Usage: After a successful activation of the interactive

component, a user can input data via the user interface

and invoke remote Web Service operations. The

operation results are being visualized in the user

interface.

4. Deactivation: The interactive component can be

deactivated at any time by the host application or the

user. After the deactivation has been triggered, its user

interface is not visible anymore. During deactivation of

Modiquitous 2011 Proceedings

40

an interactive component, it returns the output data

specified during the registration process to the host

application.

We have specified a Meta-model named Service-based

Interactive Component Model (SBIC) for representing

interactive components during the generation process. The

structure of the model is sketched in Figure 2. The SBIC

has been developed as a model representing an interactive

component in a way close to a runtime representation.

Thus, a model-to-code transformation mapping a SBIC

instance to a platform specific interactive component can

be implemented with little effort.

Besides the registration information, the SBIC describes the

structure, navigation flow and data flow of the user

interface. Furthermore, it contains layout and design

information that is weaved into the model during the

generation process. Thus, the layout and design of a

generated interactive component can be adapted to the

layout and design of a host application.

DEVELOPMENT APPROACH

As aforementioned in the state-of-the-art analysis, the

development of Service-based interactive applications for

various target platforms is currently a time-consuming task

involving huge manual effort. Our approach is

characterized by the novel idea to only use Service

annotations for modeling user interfaces. As the

state-of-the-art does not offer any Service annotation model

enabling the specification of application-specific aspects

such as navigation or data flows, we introduced new

annotation types.

To not reinvent the wheel, these types were introduced into

the annotation model originating from the ServFace project

[8]. Besides others, the following annotation types have

been specified and included into an extension of the

ServFace annotation model:

1. Navigation Flow: Enables the possibility to define a

navigation flow between the user interfaces derived

from different Service operations. With every specified

navigation flow, a data flow may be associated.

Figure 2. Structure of interactive component Meta-model

2. Bundling: Renders it possible to merge the user

interfaces of different operations into one user

interface. Furthermore, the view for input and output

of one operation might be merged in one view.

3. Provided by Host: Marks an input parameter of a

Service operation as input to the interactive component

provided by the host application.

4. Returned to Host: Marks output parameters to be

returned to the host application when the interactive

component is deactivated.

5. Component Dependency: Defines dependencies to

functionalities the host application has to provide.

6. Initial Operations: A subset of the operations defined

in a functional interface description may be marked as

initial. These operations can be accessed directly from

the host application. Every initial operation is an entry

point to activate the interactive component. After

activating it, the user interface for the appropriate

initial operation is visualized.

In order to specify these annotations, an authoring tool

named Interactive Component Editor (ICE) [2] has been

created. One of the views of the ICE is shown in Figure 3.

After importing one or more functional interface

descriptions into the tool, the tree structure of these

descriptions is visualized. The nodes on the various levels

(Service, operation, input/output parameters, data types) of

the tree representation can be included into the modeling of

the interactive component.

The screenshot in Figure 3 shows various navigation flows

and data flows in a specific editor view during modeling an

interactive component for a DVB-T device. The editor

makes it possible to specify any of the annotations defined

within the ServFace project and of the abovementioned

extensions. Thus, a full featured development approach has

been created enabling the model-based specification of

interactive components solely with annotated functional

interface descriptions.

After the modeling has been realized, the resulting

annotations are serialized to a file and transferred to a

remote annotation repository.

GENERATION APPROACH

The generation of interactive components is triggered on

demand once an interactive component has to be embedded

into a host application. In the case of the automated home

scenario, the generation chain is activated as soon as a new

device and thus a new annotated Web Service appears in

the home infrastructure. Due to the usage of platform

independent Meta-models and the platform specific

parameterization of the generation approach, it can be

reused for various target platforms and different host

applications. The platform and host specific parameters

have to be provided only once for every host application.

The target specification can be reused during the generation

of each interactive component that should be embedded

into this host application.

The generation chain is summarized in Figure 4.

Modiquitous 2011 Proceedings

41

Figure 3. Screenshot of the Interactive Component Editor

In a first step, the functional interface description and the

annotation file fetched from an annotation repository are

parsed and merged together into a common model. For this

purpose the Annotated Service Model (ASM) has been

developed. It enables the representation of all ServFace

annotations and the mentioned extensions. An ASM

instance contains, on the one hand, the tree representation

of the functional interface description with the different

hierarchies (Service, operation, input/output parameters,

data types) and, on the other hand, the annotations

referencing a subset of the tree’s nodes. This subset has

been determined during the development approach applied

e.g. by using the ICE.

After the ASM has been instantiated, a basic structure of

the user interface with all its interactors is inferred in a first

model-to-model transformation step. For representing the

structure of the UI, a domain-specific model named

Intermediate Service Frontend Model (ISF) adapted to the

generation chain has been developed.

For instantiating the ISF, the ASM instance is traversed. By

default for every Service operation one container for all

input parameters and one container for all output

parameters are derived and embedded into the ISF instance.

This default behavior may be modified by annotations of

the Bundling type (see previous section).

In a next step, appropriate interactors are derived from all

input and output parameters passed during traversing of the

ASM instance. They are embedded into the containers

created in the previous step.

As the selected interactors are described within the ISF

using platform specific vocabulary, this step is

parameterized by a set of inference rules which determine

which interactor should be selected under which condition.

Besides the data types of an input or output parameter, the

decision depends particularly on the set of annotations

referencing this parameter.

Figure 4. Generating interactive components from annotated functional interface descriptions

Modiquitous 2011 Proceedings

42

Figure 5. Usage of the generation approach within the home appliance scenario

In a second model-to-model transformation step, an

instance of the SBIC Meta-model mentioned above is

created from the ISF instance. Just as the transformation

steps before, the implementation of this step can be reused

for various target platforms due to the parameterization of

the transformation. The provided parameters contain

especially layout and design information for adapting the

appearance of the interactive component to the appearance

of a host application. This information can be made

available a-priori and updated as soon as the layout and

design of the host application is modified.

Finally, every SBIC instance is transformed to a platform

specific interactive component that can be made available

via a component repository to a host application. For every

supported platform a model-to-code transformation has to

be provided that takes an SBIC instance as input and

returns a packaged and deployable interactive component

as output.

The described generation chain builds the core of the home

appliance scenario introduced above. Figure 5 shows the

different steps used to make interactive components

available in different universal control applications.

The approach runs through the following seven steps:

1. A device (e.g. a DVB-T device) is newly introduced

into the infrastructure of Web-Service-enabled

appliances. As soon as it is switched on, it is registered

by transmitting the Uniform Resource Identifier (URI)

of its functional interface description plus a reference

to an annotation file to a device repository.

2. The device repository is monitored by a specific

system component named Activator. As soon as this

component detects a new device registration, it

forwards the functional interface description

referenced by the URI plus the annotation file to the

generation chain described above.

3. The generation chain parses the functional interface

description and the annotation file and transforms it

first to an ISF and then to a SBIC instance.

4. Using platform-specific model-to-code transformations

(named platform adapters) for all desired target

platforms, the SBIC instance is transformed to

platform specific interactive components.

5. These components are forwarded to a repository that is

checked in fixed intervals by the used universal control

applications for updates.

6. As soon as a new interactive component is available

within the repository, it is downloaded to the target

platform and registered in the universal control

application.

7. After a successful registration of an interactive

component it can be used to interact with the remote

Web Service thus enabling device control.

REALIZATION AND EVALUATION

The approach has been implemented and evaluated using

two heterogeneous target platforms as shown in Figure 5.

As proof-of-concept for mobile devices, a universal control

application and a platform adapter for the smartphone

platform Android has been realized and as proof-of-concept

for Web applications, the same parts of software have been

implemented using the Apache Wicket framework. The

repository for devices has been realized as a simple

relational database. As technology for the repository for

interactive components Subversion (SVN) was used. SVN

has the central advantage that no additional mechanism for

versioning of interactive components had to be introduced.

Figure 6 shows a screenshot of the prototypically

implemented Web-based universal control application. As

it is depicted in the figure, interactive components are

embedded once they are registered in this application into

its navigation menu shown on the left side. The initial

operations (see fourth section) of each interactive

component are displayed by a navigation option each. As

soon as a user selects one of these options, the appropriate

user interface is displayed in the center of the Web page.

Modiquitous 2011 Proceedings

43

Figure 6. Prototype for the Web-based universal control application

The approach has been evaluated based on the prototypical

implementation within an end user study. 25 people in the

age between 19 and 31 years have used the two universal

remote controllers to interact with a set of simulated home

appliances. After fulfilling several minor tasks, the users

participated either in a questionnaire or in an interview to

get an insight into their experiences with the generated

interactive components. Summarizing the results, the

interactive components have been reviewed as easily and

efficiently usable. All users stated that the user interface

makes a consistent impression and looks like a monolithic

application. No user criticized any form of inconsistency of

the user interface. Thus, the component-based nature of the

user interface is not recognized by end users.

SUMMARY AND OUTLOOK

This paper presented an approach to generate consistent

universal controllers for Web-Service-enabled home

appliances fully automatically. The approach is based on

the idea to generate so-called interactive components from

annotated functional interface descriptions. These

components can be embedded dynamically during runtime

into a host application. The applicability of the approach

has been demonstrated by implementing the home

appliance scenario using a Web-based universal control

application and an appropriate application for a smartphone

platform. The implementation has been evaluated in an end

user study which confirmed the good quality and usability

of the resulting user interfaces and their consistency. The

control application made the impression to be monolithic

though it consists of components provided for every

available device.

Future work will focus in first place on improving the

underlying development approach sketched in the third

section. In this area it will be analyzed, how the

provisioning of Service annotations may be simplified, e.g.

by suggestion functionalities. Furthermore, implementing

support for further target platforms is intended.

REFERENCES

1. Christensen, E., Curbera, F., Meredith and G.,

Weerawarana, S. Web Services Description Language

(WSDL) 1.1. W3C Note. March 2011.

2. Feldmann, M., Martens, F., Berndt, G., Spillner, J.,

Schill, A. Rapid Developed of Service-based Interactive

Applications using Service Annotations. In:

Proceedings of IADIS International Conference

WWW/Internet 2010.

3. Nichols, J. Automatically generating high-quality user

interfaces for appliances. In CHI ’03 extended abstracts

on Human factors in computing systems, pp. 624-625,

ACM Press, 2003.

4. Nichols, J., Myers, B. A., Rothrock, B. UNIFORM:

Automatically Generating Consistent Remote Control

User Interfaces. In Proceedings of CHI'2006, pp.

611-620, Montreal, Canada , 2006.

5. Paternò, F., Santoro, C., Spano, L., D. Designing usable

applications based on Web services. In: 1st Workshop

on the Interplay between Usability Evaluation and

Software Development, pp. 67 - 73. CEUR, 2008.

6. Paternò, F., Santoro, C., Spano, L. D., Exploiting Web

service annotations in model-based user interface

development. In: EICS'10 - 2nd ACM SIGCHI

Symposium on Engineering Interactive Computing

Systems, pp. 219 - 224. ACM, 2010.

7. He, J., I. Yen, T. Peng, J. Dong und F. Bastani: An

Adaptive User Interface Generation Framework for

Web Services. Proceedings of IEEE Congress on

Services Part II, Seiten 175–182, 2008.

8. ServFace-Konsortium: Deliverable 2.9 - Models for

Service Annotations, User Interfaces, and Service-based

Interactive Applications (final version). Technical

Report, SAP AG, Lyria S.A., Consiglio Nazionale

Delle Ricerche, The University of Manchester,

Technische Universität Dresden, 2010

Modiquitous 2011 Proceedings

44

