
Treex – an open-source framework
for natural language processing?

Zdeněk Žabokrtský

Charles University in Prague, Institute of Formal and Applied Linguistics
Malostranské náměst́ı 25, 118 00 Prague, Czech Republic

zabokrtsky@ufal.mff.cuni.cz

WWW home page: http://ufal.mff.cuni.cz/~zabokrtsky

Abstract. The present paper describes Treex (formerly
TectoMT), a multi-purpose open-source framework for de-
veloping Natural Language Processing applications. It fa-
cilitates the development by exploiting a wide range of soft-
ware modules already integrated in Treex, such as tools for
sentence segmentation, tokenization, morphological analy-
sis, part-of-speech tagging, shallow and deep syntax pars-
ing, named entity recognition, anaphora resolution, sen-
tence synthesis, word-level alignment of parallel corpora,
and other tasks. The most elaborate application of Treex is
an English-Czech machine translation system with trans-
fer on deep syntactic (tectogrammatical) layer. Besides re-
search, Treex is used for teaching purposes and helps stu-
dents to implement morphological and syntactic analyzers
of foreign languages in a very short time.

1 Introduction

Natural Language Processing (NLP) is a multidisci-
plinary field combining computer science, mathemat-
ics and linguistics, whose main aim is to allow com-
puters to work with information expressed in human
(natural) language.

The history of NLP goes back to 1950s. Early NLP
systems were based on hand-written rules founded by
linguistic intuitions. However, roughly two decades ago
the growing availability of language data (especially
textual corpora) and increasing capabilities of com-
puter systems lead to a revolution in NLP: the field
became dominated by data-driven approaches, often
based on probabilistic modeling and machine learning.

In such data-driven scenario, the role of hu-
man experts was moved from designing rules rather to
(i) preparing training data enriched with linguistically
relevant information (usually by manual annotation),
(ii) choice of an adequate probabilistic model, propos-
ing features (various indicators potentially useful for
making the desired predictions), and (iii) specifying an
objective (evaluation) function. Optimization of the

? The presented research is supported by the grants
MSM0021620838 and by the European Commission’s
7FP grant agreement n◦ 231720 (EuroMatrix Plus). We
would like to thank Martin Popel for useful comments
on the paper.

decision process (such as searching for optimal feature
weights and other model parameters) is then entirely
left to the learning algorithm.

Recent developments in NLP show that another
paradigm shift might be approaching with unsuper-
vised and semi-supervised algorithms, which are able
to learn from data without hand-made annotations.
However, such algorithms require considerably more
complex models and for most NLP tasks they have
not outperformed supervised solutions based on hand-
annotated data so far.

Nowadays, researched NLP tasks range from rel-
atively simple ones (like sentence segmentation, lan-
guage identification), through tasks which already
need a higher level of abstraction (such as morpholog-
ical analysis, part-of-speech tagging, parsing, named
entity recognition, coreference resolution, word sense
disambiguation, sentiment analysis, natural language
generation), to highly complex systems (machine
translation, automatic summarization, or question an-
swering). The importance of (and demand for) such
tasks increases along with the rapidly growing amount
of textual information available on the Internet.

Many NLP applications exploit several NLP mod-
ules chained in a pipeline (such as a sentence seg-
menter and part-of-speech tagger prior to a parser).
However, if state-of-the-art solutions created by dif-
ferent authors – often written in different program-
ming languages, with different interfaces, using dif-
ferent data formats and encodings – are to be used,
a significant effort must be invested into integrating
the tools. Even if these issues are only of technical na-
ture, in real research they constitute one of limiting
factors for building more complex NLP applications.

We try to eliminate such problems by introducing
a common NLP framework that integrates a number
of NLP tools and provides them with unified object-
oriented interfaces, which hide the technical issues
from the developer of a larger application. The frame-
work’s architecture seems viable – tens of researchers
and students have already contributed to the system
and the framework has been already used for a number
of research tasks carried out at the Institute of For-



8 Zdeněk Žabokrtský

mal and Applied linguistics as well as at some other
research institutions. The most complex application
implemented within the framework is English-Czech
machine translation. The framework is called Treex.1

The remainder of the paper is structured as fol-
lows. Section 2 overviews related work that had to be
taken into account when developing such framework.
Section 3 presents the main design decisions Treex
is build on. English-Czech machine translation imple-
mented in Treex is described in Section 4, while other
Treex applications are mentioned in Section 5, which
also concludes.

2 Related work

2.1 Theoretical background

Natural language is an immensely complicated phe-
nomenon. Modeling the language in its entirety would
be extremely complex, therefore its description is of-
ten decomposed into several subsequent layers (levels).
There is no broadly accepted consensus on details con-
cerning the individual levels, however, the layers typ-
ically roughly correspond to the following scale: pho-
netics, phonology, morphology, syntax, semantics, and
pragmatics.

One of such stratificational hypotheses is Func-
tional Generative Description (FGD), developed by
Petr Sgall and his colleagues in Prague since the
1960s [18]. FGD was used with certain modifications as
the theoretical framework underlying the Prague De-
pendency Treebank [6], which is a manually annotated
corpus of Czech newspaper texts from the 1990s. PDT
in version 2.0 (PDT 2.0) adds three layers of linguistic
annotation to the original texts:

1. morphological layer (m-layer)
Each sentence is tokenized and each token is an-
notated with a lemma (basic word form, such as
nominative singular for nouns) and morphological
tag (describing morphological categories such as
part of speech, number, and tense).

1 The framework was originally called TectoMT since
starting its development in autumn 2005 [23], because
one of the sources of motivation for building the frame-
work was developing a Machine translation (MT) system
using tectogrammatical (deep-syntactic) sentence repre-
sentation as the transfer medium. However, MT is by
far not the only application of the framework. As the
name seemed to be rather discouraging for those NLP
developers whose research interests did not overlap with
tectogrammatics nor with MT, TectoMT was rebranded
to Treex in spring 2011. To avoid confusion, the name
Treex is used throughout the whole text even if it refers
to a more distant history.

2. analytical layer (a-layer)
Each sentence is represented as a shallow-syntax
dependency tree (a-tree). There is one-to-one cor-
respondence between m-layer tokens and a-layer
nodes (a-nodes). Each a-node is annotated with
the so-called analytical function, which represents
the type of dependency relation to its parent
(i.e. its governing node).

3. tectogrammatical layer (t-layer)
Each sentence is represented as a deep-syntax de-
pendency tree (t-tree). Autosemantic (meaning-
ful) words are represented as t-layer nodes
(t-nodes). Information conveyed by functional
words (such as auxiliary verbs, prepositions and
subordinating conjunctions) is represented by
attributes of t-nodes. Most important attributes
of t-nodes are: tectogrammatical lemma, functor
(which represents the semantic value of syntactic
dependency relation) and a set of grammatemes
(e.g. tense, number, verb modality, deontic modal-
ity, negation).

Edges in t-trees represent linguistic dependencies
except for several special cases, the most notable
of which are paratactic structures (coordinations).

All three layers of annotation are described in an-
notation manuals distributed with PDT 2.0.

This annotation scheme has been adopted and fur-
ther modified in Treex. One of the modifications con-
sists in merging m-layer and a-layer sentence represen-
tations into a single data structure.2

Treex also profits from the technology developed
during the PDT project, especially from the existence
of the highly customizable tree editor TrEd, which is
used as the main visualization tool in Treex, and from
the XML-based file format PML (Prague Markup Lan-
guage, [14]), which is used as the main data format in
Treex.

2.2 Other NLP frameworks

Treex is not the only existing general NLP frame-
work. We are aware of the following other frameworks
(a more detailed comparison can be found in [15]):

– ETAP-3 [1] is a C/C++ closed-source NLP frame-
work for English-Russian and Russian-English
translation, developed in the Russian Academy of
Sciences.

2 As mentioned above, their units are in a one-to-one rela-
tion anyway; merging the two structures together has led
to a significant reduction of time and memory require-
ments when processing large data, as well as to a lower
burden for eyes when browsing the structures.



Treex – an open-source framework for NLP 9

– GATE (Java, LGPL) is one of the most widely
used NLP frameworks with integrated graphical
user interface. It is being developed at University
of Sheffield [4].

– Apache OpenNLP (Java, LGPL)3 is an organiza-
tional center for open source NLP projects.

– WebLicht4 is a Service Oriented Architecture for
building annotated German text corpora.

– Apertium [20] is a free/open-source machine trans-
lation platform with shallow transfer.

In our opinion, none of these frameworks seems fea-
sible (or mature enough) for experiments on MT based
on deep-syntactic dependency transfer. The only ex-
ception is ETAP-3, whose theoretical assumptions are
similar to that of Treex (its dependency-based stratifi-
cational background theory called Meaning-Text The-
ory [13] bears several resemblances to FGD), however,
it is not an open-source project.

2.3 Contemporary machine translation

MT is a notoriously hard problem and it is studied
by a broad research field nowadays: every year there
are several conferences, workshops and tutorials dedi-
cated to it (or even to its subfields). It goes beyond the
scope of this work even to mention all the contempo-
rary approaches to MT, but several elaborate surveys
of current approaches to MT are already available to
the reader elsewhere, e.g. in [10].

A distinction is usually made between two MT
paradigms: rule-based MT (RBMT) and sta-
tistical MT (SMT). The rule-based MT systems are
dependent on the availability of linguistic knowledge
(such as grammar rules and dictionaries), whereas sta-
tistical MT systems require human-translated parallel
text, from which they extract the translation knowl-
edge automatically. One of the representatives of the
first group is the already mention system ETAP-3.

Nowadays, the most popular representatives of the
second group are phrase-based systems (in which the
term ‘phrase’ stands simply for a sequence of words,
not necessarily corresponding to phrases in constituent
syntax), e.g. [8], derived from the IBM models [3].

Even if phrase-based systems have more or less
dominated the field in the recent years, their trans-
lation quality is still far from perfect. Therefore we
believe it makes sense to investigate also alternative
approaches.

MT implemented in Treex lies somewhere between
the two main paradigms. Like in RBMS, sentence rep-
resentations used in Treex are linguistically in-
terpretable. However, the most important decisions

3 http://opennlp.sourceforge.net
4 http://weblicht.sfs.uni-tuebingen.de/englisch/index.shtml

during the translation process are made by statistical
models like in SMT, not by rules.

3 Treex architecture overview

3.1 Basic design decisions

The architecture of Treex is based on the following
decisions:

– Treex is primarily developed in Linux. However,
platform independent solutions are searched for
wherever possible.

– The main programming language of Treex is Perl.
However, a number of tools written in other lan-
guages have been integrated into Treex (after pro-
viding them with a Perl wrapper).

– Linguistic interpretability – data structures repre-
senting natural language sentences in Treex must
be understandable by a human (so that e.g. trans-
lation errors can be traced back to their source).
Comfortable visualization of the data structures is
supported.

– Modularity – NLP tools in Treex are designed so
that they are easily reusable for various tasks (not
only for MT),

– Rules-vs-statistics neutrality – Treex architecture
is neutral with respect to the rules vs. statistics
opposition (rule-based as well as statistical solu-
tions are combined).

– Massive data – Treex must be capable of process-
ing large data (such as millions of sentence pairs
in parallel corpora), which implies that distributed
processing must be supported.

– Language universality – ideally, Treex should be
easily extendable to any natural language.

– Data interchange support – XML is used as the
main storage format in Treex, but Treex must be
able to work with a number of other data formats
used in NLP.

3.2 Data structure units

In Treex, representations of a text in a natural lan-
guage is structured as follows:

– Document. A Treex document is the smallest in-
dependently storable unit. A document represents
a piece of text (or several parallel pieces of texts
in the case of multilingual data) and its linguistic
representations. A document contains an ordered
sequence of bundles.

– Bundle. A bundle corresponds to a sentence (or
a tuple of sentences in the case of parallel data)
and its linguistic representations. A bundle con-
tains a set of zones.



10 Zdeněk Žabokrtský

– Zone. Each language (languages are distinguished
using ISO 639-2 codes in Treex) can have one or
more zones in a bundle.5 Each zone corresponds to
one particular sentence and at most one tree for
each layer of linguistic description.

– Tree. All sentence representations in Treex have
the shape of an oriented tree.6 At this moment
there are four types of trees: (1) a-trees – morphol-
ogy and surface-dependency (analytical) trees,
(2) t-trees – tectogrammatical trees, (3) p-trees –
phrase-structure (constituency) trees, (4) n-trees
– trees of named entities.

– Node. Each nodes contains (is labeled by) a set of
attributes (name-value pairs).

– Attribute. Some node attributes are universal
(such as identifier), but most of them are specific
for a certain layer. The set of attribute names and
their values for a node on a particular layer is de-
clared using the Treex PML schema.7 Attribute
values can be further structured.

Of course, there are also many other types of data
structures used by individual integrated modules (such
as dictionary lists, weight vectors and other trained
parameters, etc.), but they are usually hidden behind
module interfaces and no uniform structure is required
for them.

3.3 Processing units

There are two basic levels of processing units in Treex:

– Block. Blocks are the smallest processing units in-
dependently applicable on a document.

– Scenario. Scenarios are sequences of blocks. When
a scenario is applied on a document, the blocks
from the sequence are applied on the document
one after another.

5 Having more zones per language is useful e.g. for com-
paring machine translation with reference translation,
or translation outputs from several systems. Moreover
it highly simplifies processing of parallel corpora, or
comparisons of alternative implementations of a certain
tasks (such as different dependency parsers).

6 However, tree-crossing edges such as anaphora links in
a dependency tree can be represented too (as node at-
tributes).

7 There are also “wild” attributes allowed, which can store
any Perl data structure without its prior declaration
by PML. However, such undeclared attributes should
serve only for tentative or rapid development purposes,
as they cannot be validated.

(a) Simple Treex scenario:

Util::SetGlobal language=en # do everyth. in English zone
Block::Read::Text # read a text from STDIN
W2A::Segment # segment it into sentences
W2A::Tokenize # divide sentences into words
W2A::EN::TagMorce # morphological tagging
W2A::EN::Lemmatiz # lemmatization (basic word forms)
W2A::EN::ParseMST # dependency parsing
W2A::EN::SetAfunAuxCPCoord # fill analytical functions
W2A::EN::SetAfun # fill analytical functions
Write::CoNLLX # print trees in CoNLLX format
Write::Treex # store trees into XML file

(b) Input text example:

When the prince mentions the rose, the geographer explains
that he does not record roses, calling them "ephemeral".
The prince is shocked and hurt by this revelation. The
geographer recommends that he visit the Earth.

(c) Fragment from the printed output (simplified):

1 The the DT 2
2 prince prince NN 3
3 is be VBZ 0
4 shocked shock VBN 5
5 and and CC 3
6 hurt hurt VBN 5
7 by by IN 5
8 this this DT 9
9 revelation revelation NN 7
10 . . . 3

(d) A-tree visualization in TrEd:

a-tree
zone=en

The
AuxA
DT

prince
Sb
NN

is
Pred
VBZ

shocked
NR
VBN

and
NR
CC

hurt
NR
VBN

by
AuxP
IN

this
Atr
DT

revelation
Adv
NN

.
AuxG
.

Fig. 1. Simple scenario for morphological and surface-
syntactic analysis of English texts. Generated trees are
printed in the CoNLLX format, which is a simple line-
oriented format for representing dependency trees.



Treex – an open-source framework for NLP 11

A block can change a document’s content “in
place”8 via a predefined object-oriented interface. One
can distinguish several broad categories of blocks:

– blocks for sentence analysis – blocks for tokeniza-
tion, morphological tagging, parsing, anaphora
resolution, etc.

– blocks for sentence synthesis – blocks for propa-
gating agreement categories, ordering words, in-
flecting word forms, adding punctuation, etc.

– blocks for transfer – blocks for translating a com-
ponent of a linguistic representation from one lan-
guage to another, etc.

– blocks for parallel texts – blocks for word align-
ment, etc.

– writer and reader blocks – block for stor-
ing/loading Treex documents into/from files or
other streams (in the PML or other format),9

– auxiliary blocks – blocks for testing, printing, etc.

If possible, we try to implement blocks in a lan-
guage independent way. However, many blocks will re-
main language specific (for instance a block for moving
clitics in Czech clauses can hardly be reused for any
other language).

There are large differences in complexity of blocks.
Some blocks contain just a few simple rules (such as
regular expressions for sentence segmentation), while
other blocks are Perl wrappers for quite complex prob-
abilistic models resulting from several years of research
(such as blocks for parsing).

As for block granularity, there are no widely agreed
conventions for decomposing large NLP applica-
tions.10 We only follow general recommendations for
system modularization. A piece of functionality should
be performed by a separate block if it has well defined
input and output states of Treex data structures, if it
can be reused in more applications and/or it can be
(at least potentially) replaced by some other solution.

8 Pipeline processing (like with Unix text-processing com-
mands) is not feasible here since linguistic data are
deeply structured and the price for serializing the data
at each boundary would be high.

9 In the former versions, format converters were consid-
ered as tools separated from scenarios. However, provid-
ing the converters with the uniform block interface al-
lows to read/write data directly within a scenario, which
is not only more elegant, but also more efficient (inter-
mediate serialization and storage can be skipped).

10 For instance, some taggers provides both morphological
tag and lemma for each word form, while other taggers
must be followed by a subsequent lemmatizer in order
to achieve the same functionality.

4 English-Czech machine translation
in Treex

The translation scenario implemented in Treex com-
poses of three steps described in the following sec-
tions: (1) analysis of the input sentences up to tec-
togrammatical layer of abstraction, (2) transfer of the
abstract representation to the target language, and
(3) synthesis (generating) of sentences in the target
language. See an example in Figure 2.

4.1 Analysis

The analysis step can be decomposed into three phases
corresponding to morphological, analytical and tec-
togrammatical analysis.

In the morphological phase, a text to be trans-
lated is segmented into sentences and each sentence
is tokenized (segmented into words and punctuation
marks). Tokens are tagged with part of speech and
other morphological categories by the Morce tag-
ger [19], and lemmatized.

In the analytical phase, each sentence is parsed us-
ing the dependency parser [12] based on Maximum
Spanning Tree algorithm, which results in an analyti-
cal tree for each sentence. Tree nodes are labeled with
analytical functions (such as Sb for subject, Pred for
predicate, and Adv for adverbial).

Then the analytical trees are converted to the tec-
togrammatical trees. Each autosemantic word with its
associated functional words is collapsed into a sin-
gle tectogrammatical node, labeled with lemma, func-
tor (semantic role), formeme,11 and semantically in-
dispensable morphologically categories (such as tense
with verbs and number with nouns, but not number
with verbs as it is only imposed by subject-predicate
agreement). Coreference of pronouns is also resolved
and tectogrammatical nodes are enriched with infor-
mation on named entities (such as the distinction be-
tween location, person and organization) resulting
from Stanford Named Entity Recognizer [5].

11 Formemes specify how tectogrammatical nodes are re-
alized in the surface sentence shape. For instance,
n:subj stands for semantic noun in the subject posi-
tion, n:for+X for semantic noun with preposition for,
v:because+fin for semantic verb in a subordinating
clause introduced by the conjunction because, adj:attr for
semantic adjective in attributive position. Formemes do
not constitute a genuine tectogrammatical component
as they are not oriented semantically (but rather mor-
phologically and syntactically). However, they have been
added to t-trees in Treex as they facilitate the transfer.



12 Zdeněk Žabokrtský

Fig. 2. Analysis-transfer-synthesis translation scenario in Treex applied on the English sentence “However, this very
week, he tried to find refuge in Brazil.”, leading to the Czech translation “Přesto se tento právě týden snažil naj́ıt
útočǐstě v Braźılii.”. Thick edges indicate functional and autosemantic a-nodes to be merged.

4.2 Transfer

The transfer phase follows, whose most difficult part
consists in labeling the tree with target-language lem-
mas and formemes. Changes of tree topology and of
other attributes12 are required relatively infrequently.

Our model for choosing the right target-language
lemmas and formemes in inspired by Noisy Channel
Model which is the standard approach in the contem-
porary SMT and which combines a translation model
and a language model of the target language. In other
words, one should not rely only on the information
on how faithfully the meaning is transfered by some
translation equivalent, but also the additional model
can be used which estimates how well some translation
equivalent fits to the surrounding context.13

Unlike in the mainstream SMT, in tectogrammat-
ical transfer we do not use this idea for linear struc-
tures, but for trees. So the translation model estimates
the probability of source and target lemma pair, while
the language tree model estimates the probability of
a lemma given its parent. The globally optimal tree

12 For instance, number of nouns must be changed to plural
if the selected target Czech lemma is a plurale tantum.
Similarly, verb tense must be predicted if an English
infinitive or gerund verb form is translated to a finite
verb form.

13 This corresponds to the intuition that translating to
one’s native language is simpler for a human than trans-
lating to a foreign language.

labelling is then revealed by the tree-modified Viterbi
algorithm [22].

Originally, we estimated the translation model sim-
ply by using pair frequencies extracted from English-
Czech parallel data. A significant improvement was
reached after replacing such model by Maximum En-
tropy model. In the model, we employed a wide range
of features resulting from the source-side analysis. The
weights were optimized using training data extracted
from the CzEng parallel treebank [2], which contains
roughly 6 million English-Czech pairs of analyzed and
aligned sentences.

4.3 Synthesis

Finally, surface sentence shape is synthesized from the
tectogrammatical tree, which is basically a reverse
operation for the tectogrammatical analysis: adding
punctuation and functional words, spreading morpho-
logical categories according to grammatical agree-
ment, performing inflection (using Czech morphology
database [7]), arranging word order etc.

4.4 Evaluating translation quality

There are two general methods for evaluating transla-
tion quality of outputs of MT systems: (1) the quality
can be judged by humans (either using a set of criteria
such as grammaticality and intelligibility, or relatively
by comparing outputs of different MT systems), or



Treex – an open-source framework for NLP 13

��������	
��	���
�
��� 
	���
��	
��	���
�
���

����
�����������������
�������������
���������������

����������������������������������� ������

!������������
"����������������
!����!����#

���� ����

���������������
�������������
�������$%&���
�����������������

���������������

�	
�'��

Fig. 3. Tectogrammatical transfer implemented as Hidden Markov Tree Model.

(2) the quality can be estimated by automatic met-
rics, which usually measure some form of string-wise
overlap of an MT system’s output with one or more
reference (human-made) translations.

Both types of evaluation are used regularly during
the development of our MT system. Automatic metrics
are used after any change of the translation scenario,
as they are cheap and fast to perform. Large scale
evaluations by volunteer judges are organized annu-
ally as a shared task with the Workshop on Statistical
Machine Translation.14 Performance of the tectogram-
matical translation increases every year in both mea-
sures, and it already outperforms some commercial as
well as academic systems. Actually, it is the participa-
tion in this shared task (a competition, in other words)
what provides the strongest motivation momentum for
Treex developers.

5 Final remarks and conclusions

Even if tectogrammatical translation is considered as
the main application of Treex, Treex has been used for
a number of other research purposes as well:

– other MT-related tasks – Treex has been used for
developing alternative MT quality measures in [9],
and for improving outputs of other MT systems by
grammatical post-processing in [11],

– building linguistic data resources – Treex has been
employed in the development of resources such
as the Prague Czech-English Dependency Tree-
bank [21], the Czech-English parallel corpus
CzEng [2], and Tamil Dependency Treebank [16].

14 http://www.statmt.org/wmt11/

– linguistic data processing service for other research
carried out in other institutions, such as data anal-
yses for prosody prediction for The University of
West Bohemia [17].

Treex significantly simplifies code sharing across
individual research projects in our institute. There are
around 15 programmers (postgraduate students and
researchers) who have significantly contributed to the
development of Treex in the last years; four of them
are responsible for developing the central components
of the framework infrastructure called Treex Core.

Last but not least, Treex is used for teaching pur-
poses in our institute. Undergraduate students are
supposed to develop their own modules for morpho-
logical and syntactic analysis for foreign languages of
their choice. Not only that the existence of Treex en-
ables the students to make very fast progress, but their
contributions are accumulated in the Treex Subver-
sion repository too, which enlarges the repertory of
languages treatable by Treex.15

There are two main challenges for the Treex devel-
opers now. The first challenge is to continue improving
the tectogrammatical translation quality by better ex-
ploitation of the training data. The second challenge
is to widen the community of Treex users and devel-
opers by distributing majority of Treex modules via
CPAN (Comprehensive Perl Archive Network), which
is a broadly respected repository of Perl modules.

When thinking about a more distant future of MT
and NLP in general, an exciting question arises about
the future relationship of linguistically interpretable

15 There are modules for more than 20 languages available
in Treex now.



14 Zdeněk Žabokrtský

approaches (like that of Treex) and purely statisti-
cal phrase-based approaches. Promising results of [11],
which uses Treex for improving the output of a phrase-
based system and thus reaches the state-of-the-art MT
quality in English-Czech MT, show that combinations
of both approaches might be viable.

References

1. I. Boguslavsky, L. Iomdin, and V. Sizov: Multilin-
guality in ETAP-3: reuse of lexical resources. In
G. Sérasset, (ed.), COLING 2004 Multilingual Linguis-
tic Resources, pp. 1–8, Geneva, Switzerland, August 28
2004. COLING.

2. O. Bojar, M. Jańıček, Z. Žabokrtský, P. Češka, and
P. Beňa: CzEng 0.7: parallel corpus with community-
supplied translations. In Proceedings of the Sixth In-
ternational Language Resources and Evaluation, Mar-
rakech, Morocco, 2008. ELRA.

3. P.E. Brown, V.J. Della Pietra, S.A. Della Pietra,
and R.L. Mercer: The mathematics of statistical ma-
chine translation: parameter estimation. Computa-
tional Linguistics, 1993.

4. H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan: GATE: an architecture for development
of robust HLT applications. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, July, pp. 07–12, 2002.

5. J.R. Finkel, T. Grenager, and C. Manning: Incorporat-
ing non-local information into information extraction
systems by gibbs sampling. In ACL ’05: Proceedings of
the 43rd Annual Meeting on Association for Computa-
tional Linguistics, pp. 363–370, Morristown, NJ, USA,
2005. Association for Computational Linguistics.

6. J. Hajič, E. Hajičová, J. Panevová, P. Sgall, P. Pajas,
J. Štěpánek, J. Havelka, and M. Mikulová: Prague De-
pendency Treebank 2.0. Linguistic Data Consortium,
LDC Catalog No.: LDC2006T01, Philadelphia, 2006.

7. J. Hajič: Disambiguation of rich inflection – computa-
tional morphology of Czech. Charles University – The
Karolinum Press, Prague, 2004.

8. P. Koehn et al: Moses: open source toolkit for statisti-
cal machine translation. In Proceedings of the Demo
and Poster Sessions, 45th Annual Meeting of ACL,
pp. 177–180, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics.

9. K. Kos and O. Bojar: Evaluation of machine transla-
tion metrics for Czech as the target language. Prague
Bulletin of Mathematical Linguistics, 92, 2009.

10. A. Lopez: A survey of statistical machine translation.
Technical Report, Institute for Advanced Computer
Studies, University of Maryland, 2007.

11. D. Mareček, R. Rosa, P. Galuščáková, and O. Bojar:
Two-step translation with grammatical post-processing.
In Proceedings of the 6th Workshop on Statistical Ma-
chine Translation, pp.426–432, Edinburgh, Scotland,
2011. Association for Computational Linguistics.

12. R . McDonald, F. Pereira, K. Ribarov, and J. Hajič:
Non-projective dependency parsing using spanning tree
algorithms. In Proceedings of Human Langauge Tech-
nology Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pp. 523–530,
Vancouver, BC, Canada, 2005.

13. I.A. Mel’čuk: Dependency syntax: theory and practice.
State University of New York Press, 1988.

14. P. Pajas and J. Štěpánek: Recent advances in a feature-
rich framework for treebank annotation. In Proceed-
ings of the 22nd International Conference on Compu-
tational Linguistics, volume 2, pp. 673–680, Manch-
ester, UK, 2008.

15. M. Popel and Z. Žabokrtský: TectoMT: modular NLP
framework. In Lecture Notes in Artificial Intelligence,
Proceedings of the 7th International Conference on
Advances in Natural Language Processing (IceTAL
2010), volume 6233 of LNCS, pp. 293–304, Berlin /
Heidelberg, 2010. Springer.

16. L. Ramasamy and Z. Žabokrtský: Tamil dependency
parsing: results using rule based and corpus based ap-
proaches. In Proceedings of 12th International Con-
ference CICLing 2011, volume 6608 of Lecture Notes
in Computer Science, pp. 82–95, Berlin / Heidelberg,
2011. Springer.

17. J. Romportl: Zvyšováńı přirozenosti strojově vytvářené
řeči v oblasti suprasegmentálńıch zvukových jev̊u. PhD
Thesis, Faculty of Applied Sciences, University of West
Bohemia, Pilsen, Czech Republic, 2008.

18. P. Sgall, E. Hajičová, and J. Panevová: The Meaning
of the sentence in its semantic and pragmatic aspects.
D. Reidel Publishing Company, Dordrecht, 1986.

19. D. Spoustová, J. Hajič, J. Votrubec, P. Krbec, and
P. Květoň: The best of two worlds: cooperation of sta-
tistical and rule-based taggers for Czech. In Proceed-
ings of the Workshop on Balto-Slavonic Natural Lan-
guage Processing, ACL 2007, pp. 67–74, Praha, 2007.

20. F.M. Tyers, F.Sánchez-Martánez, S Ortiz-Rojas, and
M.L. Forcada: Free/open-source resources in the Aper-
tium platform for machine translation research and de-
velopment. Prague Bulletin of Mathematical Linguis-
tics, 93, 2010, 67–76.

21. J. Šindlerová, L. Mladová, J. Toman, and S. Cinková:
An application of the PDT-scheme to a parallel tree-
bank. In Proceedings of the 6th International Work-
shop on Treebanks and Linguistic Theories (TLT
2007), pp. 163–174, Bergen, Norway, 2007.

22. Z. Žabokrtský and M. Popel: Hidden Markov tree
model in dependency-based machine translation. In
Proceedings of the 47th Annual Meeting of the As-
sociation for Computational Linguistics, 2009.

23. Z. Žabokrtský, J. Ptáček, and P. Pajas. TectoMT:
Highly modular MT system with tectogrammatics used
as transfer layer. In Proceedings of the 3rd Workshop
on Statistical Machine Translation, ACL, 2008.


