
Flip-pushdown automata:
nondeterministic ε-moves can be removed⋆

Pavol Ďurǐs and Marek Košta

Comenius University, Bratislava, Slovakia,
duris@dcs.fmph.uniba.sk

kosta1@st.fmph.uniba.sk

Abstract. Flip-pushdown automaton is pushdown au-
tomaton which has ability to flip its pushdown through-
out the computation. This model was introduced in [3] by
Sarkar. Here we solve in the affirmative the following open
problem posed by Holzer and Kutrib in [1]: What is the
power of ε-moves for nondeterministic flip-pushdown au-
tomata – can they be removed without affecting the compu-
tational capacity? (ε denotes the empty word.) Moreover,
we prove here that the family of languages recognized by the
deterministic variant of the flip-pushdown automata (with
k-pushdown reversals) is closed under intersection with reg-
ular sets, complement and inverse homomorphism, but it is
not closed under union, intersection, (non-erasing) homo-
morphism, reverse, concatenation and (positive) iteration.
Finally, we formulate some new questions and pose new
problems.

1 Introduction

A flip-pushdown automaton, introduced by Sarkar [3],
is an ordinary one-way pushdown automaton with the
ability to flip its pushdown during the computation. It
is known [3] that the flip-pushdown automata without
any limit on the number of flips are equally powerful
to Turing machines.

Holzer and Kutrib [1, 2] have introduced the so-
called “flip-pushdown input-reversal technique” and
using it they have shown that k+1 pushdown reversals
are more powerful than k for deterministic and non-
deterministic flip-pushdown automata, and, nondeter-
minism is more powerful than determinism for flip-
pushdown automata with constant number of flips.
Another use of this technique led to the fact that
languages accepted by flip-pushdown automata using
constant number of flips can be accepted by linear
bounded automata, so investigated language classes lie
between context-free and extended context-sensitive
language classes in Chomsky hierarchy. These papers
raised also some new questions and pointed to some
interesting problems.

⋆ This work was supported by Slovak Grant Agency for
Science (VEGA) under contract #1/0726/09 “Algorith-
mics and Complexity Aspects of Information Process-
ing”.

The problem we deal with is the power of ε-moves.
Well-known and famous result by Greibach [5] is the
so-called Greibach normal form for the context-free
grammar. With this result one can easily prove that for
every pushdown automaton ε-free pushdown automa-
ton can be constructed. By ε-free pushdown automa-
ton we mean automaton that does not use ε-moves.
Our main result parallels this nicely: for every flip-
pushdown automaton other ε-free flip-pushdown au-
tomaton accepting the same language can be found.
Moreover, our proof of this fact is constructive. Of
course we will use Greibach normal form quite exten-
sively.

In section 2 we give necessary formal definitions
and cite the most important Theorems. Section 3 is the
central section of the paper, here we state and prove
our main result – that ε-moves can be removed with-
out affecting computational power of the nondetermin-
istic flip-pushdown automaton model. Some closure
properties of families of languages described by de-
terministic flip-pushdown automata are discussed in
section 4. Finally, we summarize our results and pose
new problems in section 5.

2 Preliminaries

The reader should be familiar with basic facts from
formal language theory, where we refer to standard
textbook on this subject [4]. We use ε to denote empty
word, powerset of a set S by 2S and length of w by |w|.

Definition 1. A nondeterministic flip-pushdown au-
tomaton (NFPDA) is a system A = (Q, Σ, Γ , δ, ∆,
q0, Z0, F), where Q is a finite set of states, Σ is a fi-
nite input alphabet, Γ is a finite pushdown alphabet,
δ is a mapping from Q × (Σ ∪ {ε}) × Γ to finite
subsets of Q × Γ ∗ called the transition function, ∆ is
a mapping from Q to 2Q, q0 is the initial state, Z0 ∈ Γ
is a specific pushdown symbol, called the bottom-of-
pushdown symbol, which initially appears on the push-
down store, and F ⊆ Q is the set of final states.

A configuration of this automaton is a triple
(q, w, γ), where q ∈ Q, w ∈ Σ∗ and γ ∈ Γ ∗. When flip-
pushdown automaton A is in configuration (q, w, γ),

16 Pavol Ďurǐs, Marek Košta

then it is in state q, remaining input is w and stack
content is γ. Flip-pushdown automaton has two pos-
sibilities how to change configuration: via δ-function
or via ∆-function. We write (q, aw, γZ) ⊢A (p, w, γα)
if and only if (p, α) ∈ δ(q, a, Z) when δ-step is taken.
In second case we write (q, w, Z0γ) ⊢A (p, w, Z0γ

R) if
and only if p ∈ ∆(q). Intuitively, the first case is the
standard pushdown computational step. Second case,
however, is new possibility (in comparison to standard
pushdown automaton) and in this case content of the
pushdown is reversed (flipped). So the flip-pushdown
automaton has two possibilities in any configuration:
either apply δ-function or apply ∆-function. Nonde-
terministic choice is made to choose the next config-
uration. Note that when A is flipping pushdown con-
tent then special symbol (Z0) has to be at the bottom
of the pushdown and is not flipped. The reflexive and
transitive closure of relation ⊢A just defined is denoted
by ⊢∗

A. The subscript A will be omitted whenever the
meaning is clear.

Let k ≥ 0. Then we define the language accepted
by flip-pushdown automaton A by final state and by at
most k pushdown reversals as T≤k(A) = {w ∈ Σ∗ such
that (q0, w, Z0) ⊢∗

A (q, ε, γ) with at most k pushdown
reversals, for some γ ∈ Γ ∗ and q ∈ F}.

Language accepted by empty pushdown and by at
most k pushdown reversals is defined as N≤k(A) =
{w ∈ Σ∗ such that (q0, w, Z0) ⊢∗

A (q, ε, ε) with at
most k pushdown reversals}. When accepting by
empty pushdown, set of the final states is usually de-
fined to be empty. Similarly, one can also define
N=k(A) or T=k(A) with apparent meaning.

Class of languages accepted by nondeterministic
flip-pushdown automata by at most k flips (i.e. those
languages L for which there is A, such that
T≤k(A)=L) is denoted by L (NFPDA(≤ k)). Broader
class containing all these classes is

∞∪
i=0

L (NFPDA(≤ k)) = L (NFPDA(fin)).

When dealing with nondeterministic flip-pushdown
automata the mode of acceptance does not change the
computational power of the model. In deterministic
case, however, situation is a little bit more compli-
cated. For more information we refer to [1].

Just for completeness, let us define Greibach nor-
mal form.

Definition 2. Context free grammar G=(N,T, P, S)
is in Greibach normal form if all rules are of the form
A → aβ where A ∈ N , a ∈ T and β ∈ N∗.

Already mentioned “flip-pushdown input-reversal”
technique is very powerful tool we will use extensively
in the following.

Theorem 1 ([2]). Let k ≥ 0. Then language L is
accepted by a nondeterministic flip-pushdown automa-
ton M = (Q,Σ, Γ, δ,∆, q0, Z0, F) by final state with at
most k+1 pushdown reversals, i.e. L = T≤k+1(M), if
and only if language LR = {wvR such that (q0, w, Z0)
⊢∗
M (q1, ε, Z0γ) with k reversals, q2 ∈ ∆(q1) and

(q2, v, Z0γ
R) ⊢∗

M (q3, ε, ε) without any reversal} is ac-
cepted by a nondeterministic flip-pushdown automaton
M ′ by final state with at most k pushdown reversals,
i.e. LR = T≤k(M

′). The same holds when acceptance
by empty pushdown is considered. Moreover, automa-
ton M ′ can be effectively constructed from automa-
ton M and vice versa.

This Theorem provides trade-off between number
of flips and number of reversals. The number of flips
can be reduced by one when correct suffixes of words
in L are reversed. But the real power of this Theorem
is revealed when it is applied k times on language L ac-
cepted by some k-flip pushdown automaton. Then we
get context-free language L′ that has strong connec-
tion with language L. Simply speaking, we get words
in L′ first by reversing some correct suffixes of words
in L and then applying this process inductively.

3 Main result

In this section we will prove that for every k-flip push-
down automaton M , a k-flip pushdown automaton M̄
can be constructed in such a way that M̄ does not
use ε-steps. This means that δ(q, ε, Z) = ∅ holds for
every q, Z and δ-function of M̄ and M̄ accepts the
same language as M .

3.1 Main idea

Suppose we have a language L that is accepted by
some k-flip pushdown automaton M = (Q,Σ, Γ, δ,∆,
q0, Z0, ∅) by empty pushdown. In previously defined
notation this means that L = N=k(M). Let Lk be the
language containing the words of the form v0$v1$. . .
vk such that w = v0v1 . . . vk ∈ L, and for w there
is an accepting computation of M on w during which
M makes a flip of the pushdown content at the end of
each vi for 0 ≤ i ≤ k − 1. New automaton M ′ accept-
ing Lk can be easily constructed: just simulate M and
after each flip symbol $ must be read or computation
will stuck. Symbol $ must be also read at the end of
the word.

So we have marked places in words accepted by M
where flip of pushdown occurred. We will also con-
struct languages Lk−1, . . . , L0 in this way: language Li

is constructed from language Li+1 (0 ≤ i ≤ k − 1)
by applying “flip-pushdown input-reversal technique”,

Flip pushdown automata 17

see Theorem 1. So Li is accepted by some i-flip push-
down automaton which can be constructed according
to Theorem 1. These facts are formally described in
two following Lemmas.

Lemma 1. Let Lk be the previously defined language.
Let Lk, . . . , L0 be the languages, where the language
Li−1 is obtained from language Li by one application
of Theorem 1 for 1 ≤ i ≤ k. Then word w =

v0$v1$. . . $vi−1$vi$vi+1$. . . $vk−1$vk$

is in language Li if and only if word w′ =

v0$v1$. . . $vi−1$v
R
k $v

R
k−1$. . . $v

R
i+1$v

R
i $

is in language Li−1 for 1 ≤ i ≤ k.

Proof. Quite obvious. The last flip in computation on
word w occurs after subword vi. Because symbol $
is new and also from formulation of Theorem 1 stated
correspondence between words from Li and Li−1holds.

⊓⊔

Lemma 2. When k = 2l then word w0 =

v0$v2$. . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $

belongs to language L0 if and only if word wk = v0$v1$
. . . vk belongs to Lk. In case k = 2l+1 words in L0

have form

v0$v2$. . . $v2l$v
R
2l+1$v

R
2l−1$. . . $v

R
3 $v

R
1 $

Proof. Just apply Lemma 1 inductively k times. ⊓⊔

In the following we assume for simplicity that
k = 2l, case when k = 2k + 1 is proved similarly. We
will exploit correspondence between words in L0 and
those in Lk stated in Lemma 2. Language L0 is by def-
inition context-free so there is Greibach normal form
context free grammar generating it. We want to sim-
ulate leftmost derivations in this grammar (and oth-
ers constructed from this one) with flip-pushdown au-
tomaton.

Let us have context-free grammar G0 =
(N0, Σ∪{$}, P0, S0), such that L(G0) = L0. Leftmost
derivation of word w0 ∈ L0 in grammar G0 looks like
this:

S0 ⇒∗ v0α0 ⇒∗ (1)

⇒∗ v0$v2α2 ⇒∗ v0$v2$v4α4 ⇒∗

⇒∗ v0$v2$v4 . . . $v2lα2l ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1α2l−1 ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1$v

R
2l−3α2l−3 ⇒∗

⇒∗ · · · ⇒∗

⇒∗ v0$v2$v4 . . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $ = w0

Here αi is non-empty string of nonterminals, other
symbols are terminal.

If we were able to reverse and regulate this deriva-
tion in right way we could obtain “derivation” of word
wk instead of w0 (w0 and wk are from Lemma 2). This
means that if we could after (1) reverse string α0 and
also reverse terminal words derived from these non-
terminals (i.e. derive in grammar G1 obtained from G0

by reversing right-hand side of each production), we
could obtain something like this:

S0 ⇒∗
G0

v0α0 reverse nonterminal string

v0α
R
0 now continue in G1

⇒∗
G1

v0$v1β β is nonterminal string in G1

The main idea of the previous process is this. We want
to simulate the leftmost derivation (in grammar G0)
by pushdown automaton, storing nonterminal string
on the stack. When reversal takes place, automaton
will simulate leftmost derivation in G1 (we will call it
reverse grammar) and so on. By continuing this sim-
ulation in suitable grammars making reversals along
the way we can obtain valid accepting computation
on word wk. Deeper analysis will follow but first we
need some notation based on (1).

α0 = A1 . . . An (2)

Ai ⇒∗
G0

xi ∈ T ∗

u = x1 . . . xn

u = $v2$v4 . . . $v2l$v
R
2l−1$. . . $v

R
3 $v

R
1 $

uR = $v1$v3$. . . $v2l−1$v
R
2l$. . . $v

R
4 $v

R
2 $

We will use the concept of reverse grammar exten-
sively in the following so here is formal definition.

Definition 3. We say that context-free grammar H=
(NH , T, PH , SH) is reverse grammar to context-free
grammar I = (NI , T, PI , SI) if the following condi-
tions hold:

1. H is in Greibach normal form
2. NH ∩NI = NI

3. (∀ξ ∈ NI)(∀z ∈ T ∗) ξ ⇒∗
H zR ⇐⇒ ξ ⇒∗

I z

Lemma 3. Assume that H is reverse grammar to I.
Then for every α (non-empty nonterminal string of
grammar I) and v (terminal string) we have:

α ⇒∗
I v if and only if αR ⇒∗

H vR (3)

Proof. Easy induction on the length of α. From defi-
nition 3 we see that the statement holds when |α| = 1.
Assume that the statement hold for all α of length k.
Now let αA ⇒∗

I vαvA. By induction hypothesis and
definition 3 this is equivalent to AαR ⇒∗

H vRAv
R
α . So

the statement of the Lemma follows by induction. ⊓⊔

18 Pavol Ďurǐs, Marek Košta

We want to construct flip-pushdown automaton M̃
without ε-moves, which will simulate leftmost deriva-
tions in G0, . . . , Gk (here Gi+1 is reverse to Gi) as fol-

lows. On input wk, M̃ is going to verify if wk belongs
to Lk. Initial configuration of M̃ is (q0, wk, S0). After
simulating the leftmost derivation (in G0) the config-
uration will be (q, $v1$. . . vk, An . . . A1)

1. Flip now

takes place and M̃ will continue simulating G1 – re-
verse grammar to grammarG0. From Lemma 3 and (2)
we have:

Ai ⇒∗
G1

xR
i

uR = xR
n . . . xR

1

uR = $v1$v3$. . . $v2l−1$v
R
2l$. . . $v

R
4 $v

R
2 $ (4)

From these facts it is apparent that

An . . . A1 ⇒∗
G1

$v1B1B2 . . . Bm

where Bi are nonterminals of grammar G1. So M̃ will
continue from configuration (p,$v1$. . .vk, A1 . . .An),
simulating G1, to configuration (r, $v2$. . . vk,
Bm . . . B1).

We believe that the main idea is now clear. The
most important point here is that we are able to sim-
ulate leftmost derivation in G0 by standard δ-steps of
flip-pushdown automaton with sentential form on the
stack. Then flip can be done and we can continue by
simulating derivation in G1 which is reverse grammar
to G0. This process of simulating and flipping will con-
tinue up to grammar Gk. Crucial here is that all these
grammars used along the way are in Greibach normal
form so M̃ will not use ε-moves when simulating these
grammars.

3.2 Proof

So we have M ′ accepting language Lk (see the begin-
ning of subsection 3.1) by empty pushdown and by
exactly k flips. By Lemma 2, L0 can be generated by
some context-free grammar G0 = (N0, Σ, P0, S0).

We want to construct automaton M̃ without ε-moves
which will accept Lk by final state and by exactly k re-
versals. However, this acceptation mode will be more
special than this: from construction it will be appar-
ent that M̃ will accept only in configuration in which
final state is reached, pushdown is empty and exactly
k flips took place.

According to previously stated ideas, automaton
M̃ will simulate leftmost derivations consequently in
grammar G0 then G1 and so on up to Gk. Now we
sketch how to construct these grammars.

1 we remind that the top of the stack is on the right

Construction of Reverse Grammars. Initially, we have
grammar G0. We show construction of Gi when Gi−1

is already constructed. So assume that we have gram-
mar Gi−1 = (Ni, Σ, Pi, Si). We want to construct
grammarGi which satisfy all conditions in definition 3.
From these the most important is the third condition.
Consider language LA = {uR | A ⇒∗

Gi−1
u} for every

nonterminal A of Gi−1. Greibach normal form gram-
mar GA for this language can be constructed by well-
known construction. From these grammars one can get
grammar Gi satisfying all three conditions in defini-
tion 3 easily – just by union of rules and nonterminal.
Some renaming, however, must be done to ensure the
second condition of definition 3.

Technical Consideration. In definition 1 we wanted to
be coherent with established formalism. But this def-
inition is a little bit cumbersome. Our idea is to rep-
resent sentential form on the stack and do computa-
tion with this representation (doing flips and simulate
grammars Gi). So it is inconvenient to bother with
special Z0 symbol and convention that it is always at
the bottom and never flipped. For the sake of simplic-
ity, we will formally do our construction without this
restriction. But we must note that this in no way spoils
the result or prevents construction in accordance with
definition 1. This construction is straightforward but
technical – some simulation of bottom of pushdown,
some information stored in states, new marked push-
down symbols and so on. The most important point
is that all these things can be done without any use of
ε-steps. So in the following construction ∆-steps cause
reversal of the whole pushdown word and no special
symbol must be at the bottom of the stack. So senten-
tial form is represented “as is” on the stack.

Let M̃ = (Q, Σ∪{$}, Γ , δ, ∆, q0, S0, {qF }), where

Q = {q0, q1, . . . , qk} ∪ {q1, . . . , qk} ∪ {qF },
Σ is alphabet of M ′ and $ is new symbol,

Γ = {A | where A is nontermial of Gi, 0 ≤ i ≤ k},
∆(qi) = {qi+1} ∧ 0 ≤ i ≤ k − 1.

Standard pushdown moves (i.e. δ-steps) will ensure the
simulation of the leftmost derivation in grammars Gi.
This can be seen from next lines:

δ(q0, a, S0) ∋ (q0, β
R) ⇔ a ∈ Σ ∧ S0 → aβ ∈ P0

δ(qi, $, Z) ∋ (qi, β
R) ⇔ Z → $β ∈ Pi

δ(qi, a, Z) ∋ (qi, β
R) ⇔ a ∈ Σ ∧ Z → aβ ∈ Pi

δ(qk, $, Z) ∋ (qF , ε) ⇔ Z → $ ∈ Pk

For every i ∈ {1, . . . , k} we have according lines in
the δ-function. No other lines except of these are in
δ-function (i.e. for all other combinations of state, in-
put and pushdown symbol δ-function is defined to be
empty set).

Flip pushdown automata 19

First line is used for start of the simulation in G0.
Next two lines ensure that after each flip (i.e. ∆-step)
symbol $ is read from the input and simulation of
grammar Gi takes place. Last line ensures accepting
end of the whole computation in successful cases.
Essence of simulation and derivation is described in
the following Lemma. This key Lemma is obvious right
from the construction of M̃ . Simulation of context free
grammar within pushdown automaton is idea that was
mentioned already a few times but we refer unfamiliar
reader (once more) to [4].

Lemma 4. Let M̃ be constructed from grammars
G0, . . . , Gk in the way just described. Then the follow-
ing equivalence holds for every v ∈ Σ∗ and α, β ∈ Γ ∗.

(q0, v, S0) ⊢∗ (q0, ε, α
R) ⇔ S0 ⇒∗

G0
vα

(qi, $v, α
R) ⊢∗ (qi, ε, β

R) ⇔ α ⇒∗
Gi

$vβ

(qk, v, α
R) ⊢∗ (qF , ε, ε) ⇔ α ⇒∗

Gk
v

Here i ∈ {1, . . . , k − 1} and all ⊢ transitions are by
means of δ-function (i.e. without any pushdown rever-
sal).

Proof. Is really straightforward because δ-function
contains all transitions needed for proper simulation
of the leftmost derivation in grammar Gi. Formally,
everything would be done by induction on the length
of the leftmost derivation (or number of ⊢ steps). ⊓⊔

Theorem 2. Automaton M̃ does not use ε-moves
and accepts language Lk by final state and by exactly
k flips.

Proof. It is immediate from construction that M̃ does
not use ε-moves because all grammars M̃ simulates
are in Greibach normal form. So every production is
of the form Ni → ΣN∗

i for some i. Simulating this

production M̃ reads symbol from input.

Now we have to prove two inclusions. We prove the
more apparent one first. We assume for simplicity that
k = 2l. The proof is similar for k = 2l + 1.

Lk ⊆ T=k(M̃) :

Assume that wk is in Lk. By Lemma 2 we know that
w0 belongs to L0, generated by grammar G0. This
means that there exists some leftmost derivation of
w0 in grammar G0. According to previously defined
notation we have:

S0 ⇒∗
G0

v0$v2$. . . $v2l$v
R
2l−1$. . . $v

R
1 $ = w0

S0 ⇒∗
G0

v0α (5)

α ⇒∗
G0

$v2$. . . $v2l$v
R
2l−1$. . . $v

R
1 $ (6)

Following facts also hold.

(q0, v0, S0) ⊢∗ (q0, ε, α
R) (7)

(q0, ε, α
R) ⊢ (q1, ε, α) (8)

αR ⇒∗
G1

$v1β (9)

β ⇒∗
G1

$v3 . . . $v2l−1$v
R
2l$. . . $v

R
2 $ (10)

Reasons for this are as follows. Fact (7) is due to (5)

and Lemma 4. Fact (8) is just ∆-step in automaton M̃

– construction of M̃ allows this transition. Facts (9)
and (10) are implied by (6) and Lemma 3.

By (10) and Lemma 3, βR ⇒∗
G2

$v2γ and γ ⇒∗
G2

$v4$. . . $v2l$v
R
2l−1$. . . $v

R
3 $ for some nonterminal

word γ. This means together with (5), (9) and
Lemma 4 that (q0, v0, S0) ⊢∗ (q0, ε, α

R), (q1, $v1, α) ⊢∗

(q1, ε, β
R) and (q2, $v2, β) ⊢∗ (q2, ε, γ

R). Since M̃ can
flip the stack just before reading $ (see construction of
M above), then we get (q0, v0$v1$v2, S0) ⊢∗ (q2, ε, γ

R).
Generalizing this approach – using the idea that the
derivation of w0 in G0 yields some (sub)derivations
of v0 in G0, $v1 in G1, $v2 in G2 and so on up to
$vk in Gk (see (5), (9), see above, . . .), we can con-

struct (by Lemma 4) an accepting computation of M̃

on wk = v0$v1$v2 . . . vk. Hence Lk ⊆ T=k(M̃) (re-
call the assumption wk ∈ Lk, see above).

T=k(M̃) ⊆ Lk :

Lemmas 4 and 3 will be now used in reverse direction:
from existence of accepting computation we will con-
clude that some derivations in grammars Gk, Gk−1,
. . . , G0 exist. We will also use induction.

Assume that wk = v0$v1 . . . $vk−1$vk$ belongs to

T=k(M̃). From construction of M̃ we know that wk

has to be of this form – after each flip symbol $ must
be read, exactly k flips have to be done and this kind
of argumentation (based only on construction of M̃)
imply these statements:

(q0, v0$v1$. . . vk, S0) ⊢∗ (q0, u1, α
R
1)

(qi, ui+1, α
R
i+1) ⊢ (qi+1, ui+1, αi+1) (11)

(qi, ui, αi) ⊢∗ (qi, ui+1, α
R
i+1) (12)

(qk, uk, αk) ⊢∗ (qF , ε, ε) (13)

Here ui = vi . . . vk, 1 ≤ i ≤ k. This is just com-
putation of M̃ written in convenient way, assuming
that wk ∈ T=k(M̃). Fact (11) is just pushdown rever-
sal, (12) is part of computation between i-th and
i + 1-th flip and (13) is the final part of accepting
computation. We want to show that some derivation
of word w0 = v0 $v2$. . . vk v

R
k−1$. . . $v

R
1 $ in gram-

mar G0 exists, i.e. w0 is in L0. This and Lemma 2 will
imply that wk belongs to Lk.

20 Pavol Ďurǐs, Marek Košta

From assumption (13) and Lemma 4 we can infer
that

αR
k ⇒∗

Gk
uk = vk (14)

Fact (12) for i = k − 1 and second equivalence of
Lemma 4 lead to

αR
k−1 ⇒∗

Gk−1
$vk−1αk (15)

Facts (14) and (15) with Lemma 3 imply that

αR
k−1 ⇒∗

Gk−1
$vk−1$v

R
k $ (16)

Ideas contained in these statments can be transformed
into formal inductive proof of the fact that in gram-
mar G0 word w0 can be derived. Main idea is that
from facts like (14) and (15) we can infer (16). So
from existence of particular part of computation one
can infer that corresponding partial derivation exists.
These partial derivations are then joined inductively
to form derivation of word w0 in grammar G0. Some
“descent” from grammar Gk to grammar Gk−1 is also
important in the whole argument. We will not elab-
orate statements in fully formal way but provide one
specific example to demonstrate these ideas.

Example for k = 2. In this case w2 = v0$v1$v2$. Parts
of accepting computation look like this:

(q0, v0, S0) ⊢∗ (q0, ε, α
R
1)

(q1, $v1$, α1) ⊢∗ (q1, ε, α
R
2)

(q2, $v2$, α2) ⊢∗ (qF , ε, ε)

These parts of computation with Lemma 4 give us:

S0 ⇒∗
G0

v0α1

αR
1 ⇒∗

G1
$v1α2

αR
2 ⇒∗

G2
$v2$

These facts with Lemma 3 lead to:

α2 ⇒∗
G1

$vR2 $

αR
1 ⇒∗

G1
$v1$v

R
2 $

α1 ⇒∗
G0

$v2$v
R
1 $

S0 ⇒∗
G0

v0$v2$v
R
1 $ = w0

⊓⊔
So now we have automaton M̃ , accepting lan-

guage Lk which does not use ε-moves. The final step in
our proof is to delete marks (i.e. symbols $) from Lk,
thus obtaining language L. Deletion of marks must be
done without using ε-steps. This is easy in principle,
but technical. One symbol can be easily deleted with-
out using ε-steps. Idea is quite easy: join two steps into
one. This is standard well-known construction. Con-
stant number of symbols can be deleted by iterating
this construction. So by applying this construction on
automaton M̃ repeatedly k-times we get the desired
automaton M̄ that accepts language L.

3.3 Summary of the proof

Our proof consists of five main steps, we review them
here.

1. Language L is given, accepted by automaton M ,
ε-steps are allowed.

2. Marks are inserted into L to denote that flip took
place in computation. This gives us language Lk

accepted by M ′.
3. By means of flip-pushdown input-reversal tech-

nique languages Lk−1, . . . , L1, L0 are constructed.
Correspondence between words in Lk and L0 is
proved.

4. Automaton M̃ is constructed. It simulates suitable
Greibach normal form grammars. M̃ doesn’t use
ε-steps and accepts language Lk.

5. Marks are deleted from language Lk yielding lan-
guage L accepted by M̄ . Well-known trick of join-
ing two steps into one is used to achieve this.

4 Closure properties

In this section we establish some closure properties of
deterministic flip-pushdown automata. A determinis-
tic flip-pushdown automaton (DFPDA) is nondeter-
ministic flip-pushdown automaton which has at most
one choice of action for any possible configuration.
This means that there must never be a choice of us-
ing an input symbol, using ε-step or ∆-step. Formally,
a flip-pushdown automaton A=(Q,Σ,Γ,δ,∆, q0, Z0, F)
is deterministic if these conditions are satisfied for all
a ∈ Σ ∪ {ε}, q ∈ Q,Z ∈ Γ

1. |δ(q, a, Z)| ≤ 1
2. If δ(q, ε, Z) ̸= ∅ then δ(q, a, Z) = ∅.
3. |∆(q)| ≤ 1
4. If ∆(q) ̸= ∅ then δ(q, a, Z) = ∅.

For deterministic flip-pushdown automaton we can
naturally define acceptance by final state, empty push-
down, by exactly k flips or at most k flips. We will use
notation as in previous parts, i.e. T≤k(A) or N=k(A)
with obvious meaning. Classes of languages are defined
without confusion. For example, L (DFPDA(≤ k))
is class of languages accepted by deterministic flip-
pushdown automata by final state and by at most k
pushdown reversals. Note that some nuances are asso-
ciated with deterministic variant of the model. Accep-
tance by final state is not equivalent to acceptance by
empty pushdown for example. We refer to [1] where
results concerning these questions can be found. We
will explicitly state which mode of acceptance we are
considering.

The following result will be of great importance for
us.

Flip pushdown automata 21

Theorem 3 ([2]). Language

Labc = {anbncn | n ≥ 1}

is not accepted by any nondeterministic flip-pushdown
automaton. This means that Labc /∈ L (NFPDA(fin)).

Separation of hierachy is also one of the interesting
results which was achieved.

Theorem 4 ([2, 1]). Let k be natural number greater
than zero. Consider language

Jk = {w1$w1$w2$w2$. . . wkwk$ |
wi ∈ {a, b}∗, 1 ≤ i ≤ k}.

Then

Jk ∈ L (DFPDA(= k)) ⊂
⊂ L (DFPDA(≤ k)) ⊂ L (NFPDA(= k)),

Jk /∈ L (NFPDA(= k− 1)).

Our next result is quite interesting. In principle it
says that one nondeterministic step of standard push-
down automaton cannot be simulated by any finite
number of pushdown reversals with deterministic flip-
pushdown automaton.

Theorem 5. L (DFPDA(≤ k) is not closed under
union for any k ≥ 0.

Proof. Consider languages

L1 = {anbn | n ≥ 1} ∈ L (DFPDA(≤ k)),

L2 = {anb2n | n ≥ 1} ∈ L (DFPDA(≤ k)).

These are simple deterministic pushdown languages.
We will prove by contradiction that L1 ∪ L2 does not
belong to L (DFPDA(≤ k)) for any k. Suppose that
this is not the case. So deterministic flip-pushdown au-
tomaton A = (Q, {a, b}, Γ, δ,∆, q0, Z0, F) exists such
that T≤k(A) = L1 ∪ L2. From A we will construct
another nondeterministic flip-pushdown automaton B
which will accept the language T≤2k(B) such that
T≤2k(B) ∩ a+b+c+ = Labc. This contradiction with
Theorem 3 will conclude the proof.

We construct B = (Q∪Q, {a, b, c}, Γ , δB , ∆B, q0,
Z0, F ∪ F) from A as follows.

Q = {q | q ∈ Q}
F = {q | q ∈ F}

δB(q, a, Z) ∋ (p, β) ⇔ δ(q, a, Z) ∋ (p, β)

δB(q, b, Z) ∋ (p, β) ⇔ δ(q, b, Z) ∋ (p, β)

δB(q, a, Z) ∋ (p, β) ⇔ δ(q, a, Z) ∋ (p, β)

δB(q, c, Z) ∋ (p, β) ⇔ δ(q, b, Z) ∋ (p, β)

δB(q, ε, Z) ∋ (q, Z) ⇔ q ∈ F

∆B(q) = ∆(q)

∆B(q) = {p | p ∈ ∆(q)}

Informally, our construction did this. Take two copies
of automaton A, in second copy use symbol c instead of
symbol b when reading input. Then there is an ε-step
from accepting states of first copy into corresponding
accepting states of second copy. Initial state is in first
copy (identical with that of A).

How does the language T≤k(B) look like? Automa-
ton B could end accepting computation in some
state qF in first copy, or in qF in second copy. First
case is not really interesting: from construction of B it
is obvious that words which caused this computation
are exactly those in T≤k(A) = L1 ∪ L2.

Second case is the interesting one. B ended in qF ,
so one ε-step from first to second copy must have taken
place. Consider time when B did this step. By con-
struction, B is at this time in a configuration in which
A accepts, so input word already read at this time
must be one of anbn or anb2n for some n. When the
input word already read is anbn, then B is capable
to accept anbncn, since anbn is a prefix of anb2n ac-
cepted by A, and after ε-step, B works as the second
copy of A, where the symbol b is replaced by c. Simi-
larly, when the input word already read is anb2n then
B cannot accept any word of the form anb2nv for any
v ̸= ε, since otherwise A has to accept anb2nv′, where
v′ ̸= ε is obtained from v by replacing symbols c by b,
but A (recognizing L1 ∪ L2) cannot accept any such
word anb2nv′.

Automaton A accepts L1 ∪ L2 by at most k-flips
so B accepts mentioned words by at most 2k-flips (in
each copy at most k flips took place).

Consequently, we have that

T≤2k(B) = {anbn | n ≥ 1} ∪
∪ {anb2n | n ≥ 1} ∪ {anbncn | n ≥ 1}.

Intersection with regular language a+b+c+ leads to
language Labc. This is the desired contradiction with
Theorem 3, since one can easily observe that
L (NFPDA(≤ l)) is closed under intersection with reg-
ular set for every l. ⊓⊔

Proposition 1. L (DFPDA(≤ k)) is closed under
intersection with regular set, complement and inverse
homomorphism for every k ≥ 0.

Proof. Trivial simulation of finite automaton will give
us closure under intersection with regular set.

Closure under inverse homomorphism is done via
standard construction. Automaton reads input, on this
homomorphism is applied and simulation takes place
from buffer.

Complement is more peculiar. We give here just
sketch of the proof. Idea is the same as with stan-
dard deterministic pushdown automata [4]. First we
must ensure that automaton reads its whole input.

22 Pavol Ďurǐs, Marek Košta

Here there are two main problems – automaton stucks
during computation because of undefined transition
or in infinite sequence of ε-moves. The first problem
is handled easily. Problem of looping is the main part
of the proof. Crucial here is that deterministic flip-
pushdown automaton uses only constant number of
flips. After each flip detection of looping on empty in-
put can be done by mentioned technique. From these
two facts it can be inferred that detection of infinite
loops can be done effectively.

When this normal form is achieved, construction is
quite simple. We repeatedly refer reader to [4]. ⊓⊔

Proposition 2. L (DFPDA(≤ k)) is not closed un-
der intersection, homomorphism (even non-erasing),
reverse, contatenation and (positive) iteration for any
k ≥ 0.

Proof. For intersection it suffices to use De Morgan’s
laws, Theorem 5 and Proposition 1.

For concatenation and iteration it suffices to con-
sider language Jk and Theorem 4.

For homomorphism just take language

L = {can−1bn | n ≥ 1} ∪
∪ {dan−1b2n | n ≥ 1}

and homomorphism h(a) = h(c) = h(d) = a, h(b) = b.
Apply h and use Theorem 5.

For reverse just apply construction from Theorem 5
on language LR where

L = d{b2nan | n ≥ 1} ∪ {bnan | n ≥ 1}.

This construction will give us nondeterministic flip-
pushdown automaton accepting language

L′ = {anbn | n ≥ 1} ∪
∪ {anb2n | n ≥ 1}d ∪ {anbncnd | n ≥ 1}.

But this also leads to contradiction with Theorem 3.
⊓⊔

5 Conclusions

We discussed flip-pushdown automaton model. Our
main contribution to this area of theoretical research
is solution of problem of ε-moves. We proved that
ε-moves can be removed and normal form effectively
achieved. Some (non)closure properties of determinis-
tic model were also investigated. Our results answer
some open questions formulated in [1]. Finally, we list
some interesting questions which wait for answer.

1. Is L (DFPDA(≤ k)) closed under right quotient
with regular set? From our results it can be easily

shown that this is not the case when left quotient is
considered but we were unable to investigate right
quotient deeper. We tried to generalize the idea of
predicting machine from deterministic pushdown
automata, but without success.

2. What do we get when we apply flip-pushdown
input-reversal technique on deterministic k-flip
pushdown automaton? Do we get deterministic
k− 1-flip pushdown language? Or does there exist
some other similar technique which can be used
for deterministic variant?

3. Can number of states in nondeterministic k-flip
pushdown automaton be bounded without affect-
ing the computational power? In pushdown au-
tomata normal form with one state can be
achieved. Our construction from section 3 yields
normal form with at most O(k) states, where k is
number of flips. Is this boundary tight?

4. What properties “pushdown language” Lp has?

Lp = {α ∈ Γ ∗ | (q0, w, α) ⊢∗ (q, ε, ε)}

for some w ∈ Σ∗ and q ∈ Q. This language of
words which can be erased from pushdown
by some input word is regular when one considers
standard pushdown automaton. What we can say
about it here?

5. Which properties are decidable? This is only in-
teresting when deterministic variant is considered
because for nondeterministic variant these results
can be derived from previous work easily. We high-
light two non-trivial properties about determinis-
tic flip-pushdown automata which are not easily
implied by previous results. These are: regularity
problem and equality problem. Are these decid-
able?

References

1. M. Holzer and M. Kutrib: Flip-pushdown automata:
nondeterminism is better than determinism. LNCS
2710, 2003, 361–372.

2. M. Holzer and M. Kutrib: Flip-pushdown automata:
k+1 pushdown reversals are better than k. LNCS 2719,
2003, 490–501.

3. P. Sarkar: Pushdown automaton with the ability to flip
its stack. ECCC Report No. 81, 2001.

4. J.E. Hopcroft and J.D. Ullman: Introduction to au-
tomata theory, languages and computation. Addison-
Wesley, 1979.

5. S.A. Greibach: A new normal-form theorem for context-
free phrase structure grammars. Journal of ACM 12,
1965, 42–52.

