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Abstract. The paper deals with the application of evolu-
tionary algorithms to black-box optimization, frequently en-
countered in biology, chemistry and engineering. In those
areas, however, the evaluation of the black-box fitness is of-
ten costly and time-consuming. Such a situation is usually
tackled by evaluating the original fitness only sometimes,
and evaluating its appropriate response-surface model oth-
erwise, called surrogate model of the fitness. Several kinds
of models have been successful in surrogate modelling, and
a variety of models of each kind can be obtained through
parametrization. Therefore, real-world applications of sur-
rogate modelling entail the problem of assessing the suit-
ability of different models for the optimization task being
solved. The present paper attempts to systematically inves-
tigate this problem. It surveys available methods to assess
model suitability and reports the incorporation of several
such methods in our recently proposed approach to surro-
gate modelling based on radial basis function networks. In
addition to the commonly used global suitability of a model,
it pays much attention also to its local suitability for a given
input. Finally, it shows some results of testing several of
the surveyed methods in two real-world applications.

1 Introduction

An important application area of evolutionary opti-
mization algorithms [8, 31] is black-bock optimization,
i.e., optimization of an objective function (in evolu-
tionary terms called fitness) that cannot be described
explicitly, but is known only from its evaluations in
a finite number of points in the input space.
Frequently, the fitness is evaluated in some empirical
way, through measurements or testing. This is typical
for applications in biology, chemistry, or materials sci-
ence [1]. In those domains, however, the fact that evo-
lutionary algorithms rely solely on fitness evaluations
can be quite disadvantageous because the evaluation of
empirical functions encountered there is usually time-
consuming and costly. For example in the evolution-
ary optimization of catalytic materials [1, 12], where
a fitness describes the suitability of the material for
a particular chemical reaction, its evaluation in one
generation of the evolutionary algorithm needs sev-
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eral days to several weeks of time and costs several to
many thousands of euros.

The usual way of dealing with a time-consuming
and costly evaluation of an objective function is to
evaluate such a function only sometimes, and
evaluate its suitable response-surface model oth-
erwise [19, 25]. In the context of evolutionary opti-
mization, such a model is commonly called surrogate
model of the fitness, and the approach is called sur-
rogate modelling [10, 29, 32, 37] (occasionally also out-
side that context [3, 23]). Because fitness is typically
assumed to be highly nonlinear, nonlinear models are
used as surrogate models. So far most frequently en-
countered have been Gaussian processes [7, 28, 37]
(inspired by their success in response surface mod-
elling [20, 21, 23, 35]), radial basis function (RBF) net-
works [2, 37] and other kinds of feedforward neural net-
works [16, 18].

Due to the applicability of different kinds of models
to surrogate modelling, as well as due to the possibility
to construct a variety of models of each kind through
an appropriate parametrization, a large number of var-
ious surrogate models can always be employed. There-
fore, real-world applications of surrogate modelling en-
tail the problem of assessing the suitability of different
models for the optimization task being solved. Unfor-
tunately, no systematic attention seems to have been
paid to that problem so far in the area of surrogate
modelling, the research in this area being focused on
the integration of surrogate models with evolutionary
optimization algorithms, their adaptation to the opti-
mization tasks, and on increasing the accuracy of the
constructed models [11, 14, 17, 26]. The present paper
is an attempt to change the situation. We survey avail-
able methods to assess model suitability, concentrat-
ing in particular on local suitability of the model for
a given input. Moreover, we give some results of test-
ing several of the surveyed methods on two real-world
applications of surrogate modelling.

In the following section, the principles of surrogate
modelling are recalled and their usefulness for evolu-
tionary optimization is documented. The key section
of the paper is Section 3, in which the most important
methods for assessing model suitability are explained
and results of their testing are presented.
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2 Surrogate modelling in evolutionary
optimization

In evolutionary optimization, surrogate modelling is
an approach in which the evaluation of the original
black-box fitness is restricted to points considered to be
most important in the search for its global maximum,
and its appropriate response-surface model is evalu-
ated otherwise. Important for searching the global ma-
ximum of a fitness function are on the one hand the
highest values found so far, on the other hand the di-
versity of current population. Therefore, the selection
of points in which the original fitness is evaluated is
always based on some combination of those two crite-
ria.

The different ways of interaction between the sys-
tem input/output interface, the generated evolution-
ary algorithm (EA) and the surrogate model can basi-
cally be assigned to one of the following two strategies:

A. The individual-based strategy consists in choosing
between the evaluation of the original fitness and
the evaluation of its surrogate model individual-
wise, for example, in the following steps:

(i) An initial set E of individuals is collected in
which the original fitness η was evaluated
(e.g., individuals forming several first genera-
tions of the EA).

(ii) The model is trained using pairs {(x, η(x)) :
x ∈ E}.

(iii) The EA is run with the fitness η replaced
by the model for one generation with a pop-
ulation Q of size qP , where P is the desired
population size for the optimization of η, and
q is a prescribed ratio (e.g., q = 10 or q = 100).

(iv) A subset P ⊂ Q of size P is selected so as to
contain those individuals fromQ that are most
important according to the considered criteria
for the progress of optimization.

(v) For x ∈ P, the original fitness is evaluated.

(vi) The set E is replaced by E ∪ P and the algo-
rithm returns to (ii).

B. The generation-based strategy consists in choosing
between both kinds of evaluation generation-wise,
for example, in the following steps:

(i) An initial set E of individuals in which the
original fitness η was evaluated is collected like
in the individual-based strategy.

(ii) The model is trained using pairs {(x, η(x)) :
x ∈ E}.

(iii) The EA is run with the fitness η replaced
by the model for a number gm of generations,
interactively obtained from the user, with pop-
ulations P1, . . . ,Pgm of size P .

(iv) The EA is run with the original fitness η for
a prescribed number ge of generations with
populations Pgm+1, . . . ,Pgm+ge (frequently,
ge = 1).

(v) The set E is replaced by E ∪ Pgm+1 ∪ · · · ∪
Pgm+ge and the algorithm returns to (ii).

The fact that surrogate modeling is employed in
the context of costly or time-consuming objective func-
tions effectively excludes the possibility to use those
functions for tuning surrogate modeling methods, and
for comparing different models and different ways of
their combining with evolutionary optimization. To
get around this difficulty, artificial benchmark func-
tions can be used, computed analytically but expected
to behave in evolutionary optimization similarly to the
original fitness. As an example, Fig. 1 shows the appli-
cation of surrogate modelling to a benchmark function
proposed in [34] for the application area of optimiza-
tion of catalytic materials (cf. [1]). The benchmark
function was optimized using the system GENACAT
[13, 15], one of several evolutionary optimization sys-
tems developed specifically for that application area.
The evolutionary algorithm employed by GENACAT
is a genetic algorithm (GA) taking into account the
composition and properties of catalytic materials. As
surrogate model, a RBF-network trained with data
from all previous generations was used, combined with
the GA according to the individual-based strategy.
The results shown in Fig. 1 clearly document that sur-
rogate modelling substantially accelerates the search
for the maximum of a fitness function.

3 Assessing the suitability of different
models

Instead of a single surrogate model, a whole set of mod-
els F an be used. Then it is necessary to decide how
suitable each of them is to be evaluated instead of the
original fitness η. Typically, the suitability of a model
F ∈ F is assumed to be indirectly proportional to
some error ε(F ), defined on F and calculated using
a given sequence of data not used for the construction
of F . Consequently, the most suitable surrogate model
is the one fulfilling

F̂ = arg min
F∈F

ε(F ). (1)

There are various ways how ε(F ) takes into account
the evaluation η(x) by the original fitness and the eval-
uation F (x) by the model for given inputs x, e.g.,
mean absolute error, mean squared error, root mean
square error, relative entropy, Kullback-Leibler diver-
gence, . . . . There are also two basic ways how to assure
that the given sequence of data was not used for the
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Fig. 1. Comparison of the highest values of the benchmark fitness function from [34] found by the evolutionary opti-
mization system GENACAT [13, 15] without surrogate modeling and with an RBF network used as surrogate model,
according to the individual-based strategy.

construction of F : single split and cross-validation, the
latter having the important advantage that all avail-
able data are used both for model construction and
for the estimation of model error.

Let us exemplify the calculation of ε(F ) by recall-
ing the definition of the root mean squared error on
an input data sequence D:

RMSE(F ) = RMSED(F ) = (2)

=

√
1

|D|
∑
x∈D

(F (x)− η(x))2,

where |D| denotes the cardinality of D. Thus the over-
all root mean squared error of F based on a k-fold
crossvalidation with folds D1, . . . , Dk is:

RMSE(F ) =
1

k

k∑
i=1

RMSEDi(F ) = (3)

=
1

k

k∑
i=1

√
1

|Di|
∑
x∈Di

(F (x)− η(x))2,

Observe that the most suitable model F̂ in (1) de-
pends on the considered set of surrogate models F ,
but does not depend on the inputs in which it has to
be evaluated. Therefore, it can be called globally most
suitable with respect to the given sequence of data. Its
obvious advantage is that it needs to be found only
once, and then it can be used for all evaluations, as
long as the set F does not change.

Global suitability of surrogate models based on
cross-validation was tested in more than a dozen evo-
lutionary optimization tasks. Here, we show results of
testing it in a task where F was a set of multilayer per-
ceptrons (MLPs) with two hidden layers and different
architectures. They were restricted to have nI = 14
input neurons, no = 3 output neurons, and the num-
bers of hidden neurons nH1 in the first and nH2 in
the second layer fulfilling the heuristic pyramidal con-
dition: the number of neurons in a subsequent layer
must not exceed the number of neurons in a previous
layer. Consequently,

14 ≥ nH1 ≥ nH2 ≥ 3, (4)
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Fig. 2. Comparison of the RMSE of 21 surrogate models on test data, i.e., data from the 7th generation of a genetic
optimization, with the RMSE-estimate obtained for those models by means of leave-one-out cross-validation on data
from the 1st–6th generation.

which yields 78 different MLP architectures. They were
tested as follows:

1. The employed GA was run for 6 generations using
the original fitness.

2. For each of the considered 78 architectures, one
surrogate model was trained using all the available
data from the 1st–6th generation.

3. The RMSE of each surrogate model on the data
from the 1st–6th generation was estimated using
leave-one-out cross-validation, according to (3).

4. The 7th generation G7 of the genetic algorithm
was produced.

5. The models obtained in step 2 were used to predict
the fitness of x ∈ G7.

6. For x ∈ G7, also the original fitness was evaluated.
7. From the results of steps 5–6, the RMSE of each

surrogate model on the data from the 7th genera-
tion was calculated according to (2), with D = G7.

8. For each surrogate model, the RMSE calculated in
step 7 was compared to the RMSE estimate from
step 2.

Figure 2 visualizes the results of comparisons in
step 8 for a subset of the considered surrogate models,

namely for the 21 MLP architectures that, in addition
to (4), fulfil 6 ≤ nH1, nH2 ≤ 11. The visualized re-
sults indicate that the rank of models according to the
RMSE-based suitability estimated by means of leave-
one-out cross-validation on the data from the 1st–6th

generation correlates with their rank according to the
RMSE on the data from the 7th generation. We also
quantified the extent of that correlation, using:

(i) Kendall’s rank correlation coefficient τ between
the ranks of models according to the suitability
based on RMSE and estimated using leave-one-
out cross-validation, and according to the RMSE
on test data from the 7th generation,

(ii) achieved significance level pτ of the test of rank
independence based on the correlation coefficient τ
obtained in (i).

The results were

τ = 0.77 and pτ = 1.7 · 10−8, (5)

which clearly confirm a strong correlation between the
rank of the model suitability and the rank of model
RMSE on test data.
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3.1 Local suitability

Needless to say, the fact that a globally most suitable
model achieves the least value of an error ε calculated
using a given sequence of data does not at all mean
that it yields the most suitable prediction for every x
in which fitness η can be evaluated. Therefore, we in-
troduce the model F̂x locally most suitable for x as

F̂x = arg min
F∈F

λ(F, x). (6)

Like ε in (1), λ in (6) denotes some error. Dif-
ferently to ε, however, λ is defined on the cartesian
product F × X , where X denotes the set of points in
which η can be evaluated.

Recall that a surrogate model is evaluated in points
x ∈ X in which η has not been evaluated yet. Hence,
the calculation of the error λ(F, x) must not depend on
the value of η(x). Though in the context of surrogate
modelling, using such errors has not been reported yet,
a number of error measures exist that could be used
to this end, most importantly:

– widths of confidence intervals [33];

– transductive confidence [9, 27, 36];

– estimation of prediction error relying on density
estimation [4];

– sensitivity analysis [5];

– several heuristics based on the nearest neighbours
of the point of evaluation [4, 30];

– heuristic based on the variance of bagged mod-
els [6];

We are currently extending the surrogate model
presented in [2], which is based on RBF-networks, with
three of the above error measures:

(i) Width of prediction intervals for x ∈ X , i.e., of
confidence intervals for F̂x(x) in (6) based on the
linearization of the surrogate models and on the
assumption of independent normally distributed
residuals. First, each F ∈ F is replaced with its
Taylor expansion of the 1st order, which is a lin-
ear regression model FLIN with d + 1 parame-
ters, where d is the dimensionality of points in X .
Hence, F is replaced with

FLIN = {FLIN : F ∈ F}. (7)

Then for each considered x∈X , the element F̂MLE
x

of FLIN corresponding to the maximum-likelihood
estimate of the d + 1 parameters is found using
a given training sequence of input-output pairs
(x1, y1), . . . , (xp, yp). That allows to calculate for
each F ∈ F the error in (6) as

λ(i)(F, x) =

∣∣∣∣∣∣
p∑
j=1

(yj − F̂MLE
x (xj))

2−

−
(

1 +
F1−α[1, p− d]

p− d

) p∑
j=1

(yj − F (xj))
2

∣∣∣∣∣∣ , (8)

where F1−α[1, p− d] denotes the 1− α quantile of
the Fisher-Snedecor distribution with the degrees
of freedom 1 and p− d.

(ii) Difference between the predicted value and the nea-
rest-neighbours average is for k nearest neighbours
xn1

, . . . , xnk
calculated according to

λ(ii)(F, x) =

∣∣∣∣∣
∑k
j=1 ynj

k
− F (x)

∣∣∣∣∣ . (9)

(iii) Bagged variance requires to have some set B of
basic models and to find, in B, a given numberm of
models bagged with respect to (x1, y1),. . . ,(xp, yp),
i.e., globally most suitable with respect to boot-
strap samples from (x1, y1), . . . , (xp, yp). Recall
from (1) that to find such a bagged model, an er-
ror ε(B) is needed, calculated using the respective
bootstrap sample. In our implementation, we al-
ways use RMSE to this end. In its calculation ac-
cording to (3), hence, D1, . . . , Dk are folds of the
bootstrap sample. Using the bagged models, the
final set of considered surrogate models is defined
as

F =

F : F =

m∑
j=1

BFj & BF1 , . . . , B
F
m ∈ B

 ,

(10)

and the bagged variance is calculated according to

λ(iii)(F, x) =
1

m

m∑
j=1

BFj (x)− 1

m

m∑
j=1

BFj (x)

2

.

(11)

Because the extension of the surrogate model
from [2] with those three error measures has been im-
plemented very recently, it is now in the course of test-
ing in a second evolutionary optimization task. Here,
a part of the results from the first task will be shown,
concerning the optimization of catalytic materials for
high-temperature synthesis of HCN [24]. In that task,
F was a set of five RBF networks, each with a different
number of hidden neurons in the range 1–5. Those five
networks were tested in a similar way as was employed
in the above MLP-case. In particular:
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Fig. 3. Juxtaposition of the errors of predictions by RBF networks with 1–5 hidden neurons for 30 catalysts randomly
selected from the 7th generation of a genetic optimization of catalytic materials for high-temperature synthesis of
HCN [24], with the choices of the networks locally most suitable according to λ(i), λ(ii) and λ(iii), and with the globally
most suitable model.

1. The employed GA was again run for 6 generations
using the original fitness.

2. For each of the 5 possible numbers of hidden neu-
rons, one surrogate model was trained using all the
available data from the 1st–6th generation.

3. The RMSE of each surrogate model on the data
from the 1st–6th generation was estimated using
10-fold cross-validation, according to (3).

4. Based on the result of step 3, the globally most
suitable model was determined.

5. The 7th generation G7 of the genetic algorithm
was produced.

6. The models obtained in step 2 were used to predict
the fitness of x ∈ G7.

7. For F ∈ F and x ∈ G7, the errors λ(i)(F, x),
λ(ii)(F, x), λ(iii)(F, x) were calculated.
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8. The surrogate models locally most suitable for
x ∈ G7 according to λ(i), λ(ii) and λ(iii) were de-
termined.

9. For x ∈ G7, the original fitness was evaluated.
10. For x ∈ G7, the absolute errors of the considered

surrogate models were calculated from the results
of steps 6 and 9.

Figure 3 visualizes the locally most suitable models
determined in step 8 for a subset of 30 randomly se-
lected catalytic materials from the 7th generation. The
fact that for those catalysts the absolute errors of all
five RBF networks were calculated in step 10 allows
to juxtapose the choices of the locally most suitable
models and the globally most suitable model (model
with 2 hidden neurons) with the achieved absolute er-
rors. The juxtaposition shows that the model with the
lowest absolute error was nearly always assessed as the
locally most suitable by some of the three implemented
error measures. Unfortunately, no one of them could
be relied on in a majority of all cases.

4 Conclusion

This paper is, to our knowledge, a first attempt to sys-
tematically investigate available methods for assessing
the suitability of surrogate models in evolutionary op-
timization. In addition to the commonly used global
suitability of a model, it paid much attention also to
its local suitability for a given input. We have incorpo-
rated three methods for assessing local suitability into
our recently proposed approach to surrogate modelling
based on RBF networks. The paper not only surveyed
available methods for assessing suitability, but also de-
scribed their testing and presented some of the testing
results.

The presented results clearly confirm the useful-
ness of methods for assessing the suitability of surro-
gate models: there is a strong correlation between the
ranks of models according to the RMSE-based global
suitability estimated by means of leave-one-out cross-
validation on data from the 1st–6th generation and ac-
cording to the RMSE on the data from the 7th gen-
eration, and for nearly every unseen input, the model
with the lowest absolute error is indeed assessed as
the locally most suitable by some of the implemented
methods. Unfortunately, none of the methods is able
to correctly assess the locally most suitable model for
a majority of the 7th generation, which shows that fur-
ther research in this area is needed. We want to take
active part in such research, pursuing the following
three directions:
(i) Implement and test further methods for assessing

local suitability, listed above in Subsection 3.1. We
consider particularly interesting the transductive

confidence machine [9, 27, 36] because it is a novel
method and has solid theoretical fundamentals.

(ii) Investigate whether the success of some of the
tested methods for assessing local suitability de-
pends on the kind of dataset (in terms of the num-
ber of nominal attributes, number of continuous
attributes, etc.) on which the surrogate models
have been trained, or on their descriptive statis-
tics. To this end, we want to make use of the
GAME system [22], which collects a large amount
of meta-data about the kind of the processed da-
taset and about its descriptive statistics.

(iii) Modify and combine the tested methods, using
the results obtained in (ii), to increase their suc-
cess in assessing the local suitability of surrogate
models.
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4. Z. Bosnić and I. Kononenko: Comparison of ap-
proaches for estimating reliability of individual regres-
sion predictions. Data & Knowledge Engineering, 67,
2008, 504–516.
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