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Abstract. The goal of gene finding is to locate genes,
which are important segments of DNA encoding proteins.
Programs solving this task are based on hidden Markov
models (HMMs) capturing statistical features extracted
from known genes, but often also incorporate hints about
the correct gene structure extracted from experimental
data. Existing gene finding programs can use such external
information only in a limited way. Typically, they can pro-
cess only simple hints describing a single part of the gene
structure, because these are relatively easy to incorporate
to standard HMM algorithms, but cannot cope with com-
plex hints spanning multiple parts. We have developed an
efficient algorithm able to process such complex hints. Our
experiments show that this approach slightly increases the
accuracy of gene prediction. We also prove that a more
general class of hints leads to an NP-hard problem.

1 Introduction

In this paper we study a combinatorial optimization
problem arising in computational biology. Although
we were originally motivated by a very specific appli-
cation, we formulate the problem quite generally and
explore its variants that admit efficient polynomial-
time algorithms as well as those that are NP hard.

Our motivation comes from the problem of gene
finding. Here the goal is to locate segments of a DNA
sequence that encode proteins produced by the organ-
ism. On a more abstract level, we are given a string
X = x1 . . . xn and the goal is to produce a string
A = a1 . . . an over some output alphabet Σ of possible
labels, such that ai is a label of xi, corresponding to its
functional role. In gene finding, X is the input DNA
sequence (over alphabet {A,C,G, T}) and the output
alphabet could be Σ = {0, 1} where 1 stands for genes
and 0 for non-genic regions. We will call A a labeling
or annotation of the input string X.

The desired mapping fromX to A is in gene finding
often characterized by a probabilistic model defining
probability distribution P (A|X). We then output the
labeling with the highest probability. Frequently used
models are hidden Markov models (HMMs) or their
variants such as hidden semi-Markov models and con-
ditional random fields [3, 5]. These models take into
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account statistical properties of genic and non-genic
regions of DNA, such as frequency of k-tuples, length
distribution of genes, and characteristic sequence mo-
tifs at gene boundaries. Genes found by HMMs are of-
ten imprecise, and to increase the accuracy, statistical
models of DNA are often combined with additional ex-
ternal information provided by biological experiments.
External information is often in the form of individual
hints, each hint giving a probable location of one gene
or a part of a gene.

To combine an HMM with hints, we can manipu-
late probabilities of individual labelings A so that the
labeling gets a bonus for each hint agreeing with it.
Different gene finders define the set of possible hints
and their influence on the probability space differently,
but the possibilities are restricted by the need for ef-
ficient algorithm finding the annotation with highest
probability in the modified space. The simplest form
of a hint is a point-wise hint which increases or de-
creases probabilities of all annotations that have a cer-
tain label at a certain position in the sequence [2, 16].
Such hints can be easily incorporated to the standard
Viterbi algorithm for finding the most probable anno-
tations in HMMs.

However, a single piece of evidence often suggests
labels for a longer interval of the sequence. Splitting
such information into multiple point-wise hints leads
to information loss, because some labelings can get the
bonus even if they do not agree with the evidence over
the whole interval. Therefore, some gene finders [14, 5]
use hints in the form of intervals such that the proba-
bility of a labeling is increased only if it has the label
prescribed by the hint throughout the whole extent
of the interval. We call such hints interval hints. The
main focus of our paper is to study further generaliza-
tions of interval hints.

For most of the time we will abstract away both
the HMM and the input string X and consider only
a set of hints. Indeed, probabilities from the HMM can
be expressed as special hints of length 2, as we explain
in Section 2. Therefore in the most general setting, we
can formulate our problem as follows:

Definition 1 (Optimal labeling with hints prob-
lem). Given is positive integer n, finite alphabet Σ,
and a set of hints. Each hint is a pair (γ, b) where
γ ⊆ Σn is a set of labelings and b ∈ R is a bonus. We
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say that a labeling A ∈ Σn agrees with hint (γ, b) if
A ∈ γ. The score of a labeling A ∈ Σn is the sum of
bonuses of all hints that agree with A. The goal is to
find a labeling with the maximum score.

In our work the hints will assume a special form
allowing compact representation of a potentially large
set γ. In particular, a complex hint is a four-tuple
(s, e, Y, b) such that 1 ≤ s ≤ e ≤ n and Y ∈ Σe−s+1

is the labeling suggested for xs . . . xe (see Figure 1).
Set γ for this hint is γ = Σs−1Y Σn−e. Interval hints
are a special case of complex hints with Y = ak for
some a ∈ Σ and point-wise hints are a special case of
interval hints with s = e.

h1 = (1, 4, 0001, 2) 0001...

h2 = (2, 3, 00, 1) .00....

h3 = (2, 6, 00100, 1) .00100.

h4 = (3, 6, 0001, 1) ..0001.

h5 = (6, 7, 02, 1) .....02

A 0001002

Fig. 1. A set of complex hints for n = 7 and Σ = {0, 1, 2}
and an optimal labeling with score 5, agreeing with hints
h1, h2, h3 and h5. Note that h2 is an interval hint.

In this work we describe an efficient algorithm for
finding the optimal labeling for a set of complex hints,
which is a non-trivial extension of algorithms for in-
terval hints (Section 2). We also show that additional
natural generalization of the problem where some po-
sitions between s and e are allowed to vary, leads to
an NP-hard problem (Section 3). Finally in Section 4,
we describe the use of our algorithm in the context
of gene finding and show experimental results on real
and simulated data.

2 An algorithm for complex hints

In this section we give a polynomial-time algorithm
which finds the optimal labeling for a set of complex
hints. We will first discuss several simpler cases, later
generalizing the algorithm to the full problem.

Interval hints. Gene finders employing interval hints
typically proceed by dynamic programming. For each
prefix x1 . . . xi of the input string X, they consider all
possibilities for the last region of this prefix labeled by
one label (that is, all possible j ≤ i and a ∈ Σ such
that aj = aj+1 = · · · = ai = a and aj−1 6= a). For
each such interval (j, i), it is easy to compute the sum
of bonuses of all interval hints agreeing with label a.

This type of algorithm is dictated by the fact that
gene finders combine hints with hidden semi-Markov
models or their variants [14, 5] and the Viterbi algo-
rithm for inference in these models already has this

form with running time O(n2|Σ|2). With appropriate
data structures, it is possible to implement the algo-
rithm so that processing of hints adds only an additive
term O(m) where m is the number of hints. However,
a more efficient algorithm would be desirable if we
wanted to use hints with regular HMMs, where the
Viterbi algorithm is linear in n. Running time of our
algorithm for complex hints with positive bonuses will
not depend on the sequence length, only on the num-
ber and total length of hints.

Complex hints with positive bonuses. In order to in-
troduce our algorithm for a set of complex hints with
positive bonuses, we start with several necessary def-
initions. Let h = (s, e, y1 . . . ys−e+1, b) be a complex
hint. Then for i ∈ [s, e] expression `(h, i) denotes la-
bel suggested by h for xi, that is, `(h, i) = yi−s+1.
Now let us consider two hints h1 = (s1, e1, Y1, b1) and
h2 = (s2, e2, Y2, b2). We say that h1 and h2 are com-
patible if they agree in the intersection of their inter-
vals, that is, if for every i ∈ [s1, e1] ∩ [s2, e2] we have
`(h1, i) = `(h2, i) (non-intersecting hints are always
compatible). Hint h1 is a subset of hint h2 if they are
compatible and [s1, e1] ⊆ [s2, e2]. Hint h2 is an ex-
tension of h1 if they are compatible and e2 > e1 and
s2 > s1. Note that if s1 = s2, e1 = e2, and Y1 = Y2,
these two hints can be replaced by a single hint with
bonus b1 + b2. We will assume that such a transforma-
tion is done on all applicable pairs.

In our algorithm, we transform the input to create
a weighted directed acyclic graph (DAG) such that the
optimal labeling corresponds to the path with maxi-
mum weight between given two vertices s and t. Such
longest paths can be found in DAGs efficiently, in
O(|V | + |E|) time [4]. Our algorithm could be also
expressed directly as dynamic programming, but the
graph representation is more convenient for proving
correctness and considering variants of the algorithm.

Our graph has one vertex for each hint and two spe-
cial vertices s and t. There is an edge from h1 to h2 if
and only if h2 is an extension of h1. The weight of this
edge is the sum of the bonus of h2 and bonuses of all
hints that are subset of h2 but are not a subset of h1
(see Figure 2). Vertices s and t are connected with
other vertices as if they corresponded to sentinel inter-
vals beyond the end of the sequence, namely (0, 0, a, 0)
and (n + 1, n + 1, a, 0). Clearly the graph created in
this way is acyclic, because vertices on each path have
increasing coordinates of their endpoints. Correctness
of the algorithm is given by the following theorem.

Theorem 1. The weight W ∗ of the maximum-weight
path from s to t in the graph described above is equal
to the score S∗ of an optimal labeling for the input set
of hints.
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Fig. 2. Directed acyclic graph created by our algorithm for
hint set from Figure 3. Vertices for hints are shown as grey
boxes.

Proof. First, we will prove that for every labeling A
with score S there is a path with weight S and there-
fore W ∗ ≥ S∗. Let H be the set of hints that agree
with A. Let HS be the set of all hints from H that are
a subset of another hint from H, and let HR = H\HS .
Let h1 and h2 be two different hints fromHR such that
s1 < s2. Then also e1 < e2 because no hint in HR is a
subset of another, and these two hints are compatible
because they both agree with A. Therefore, h2 is an
extension of h1.

Our path will start in s, pass through all vertices
in set HR ordered from left to right by their left end-
points and end in t. As we have shown, all necessary
edges on the path exist. Bonus of hint h ∈ HR is in-
cluded in the weight of the edge entering h and bonus
of hint h ∈ HS is included in the weight of the edge en-
tering the leftmost hint h′ ∈ HR such that h is a sub-
set of h′. Bonuses of no other hints are included in
the weight of the path, and therefore its weight is ex-
actly S.

Now we will prove that for any path π from s
to t with weight W , there is a labeling with score at
least W , implying that W ∗ ≤ S∗. Let H′ be the set of
all hints corresponding to vertices of π except s and t.
We will construct a labeling A = a1 . . . an as follows.
If a position i is not covered by any hint in H′, its
label ai can be chosen arbitrarily. If i is covered by
some hints h1, . . . , hk from H′, they suggest the same
label for position i and this label is chosen as ai.

Now let H′′ be the set containing all hints from H′
and all hints that are subsets of hints from H′. The
score S of path π is the sum of bonuses of hints
from H′′. Also, each hint from this set agrees with A.
The score of A is the sum of all bonuses that agree
with it, therefore S ≤W . ut

We have proved that the weight of the optimal path
is equal to the score of the optimal labeling and the
proof also implies an algorithm to convert the optimal
path to a labeling with the same score. Note however
that weights of some suboptimal paths do not corre-
spond to the score of any labeling, as a labeling that
agrees with all vertices on a path may also agree with
other hints that the path avoids.

Our graph has O(m) vertices and O(m2) edges
where m is the number of hints. As we will show be-
low, it can be constructed in O(m2 + `) time, where `
is the sum of lengths of all hints. The running time of
the whole algorithm is therefore O(m2 + `+ n) where
the dependence on n comes only from the necessity to
produce a labeling of length n (using arbitrary labels
for parts of the sequence not covered by any hint).

Running time improvement for practical instances. In
practical gene finding instances, we expect hints to
be much shorter than n and to be spread along the
length of the sequence. We can modify the graph so
that it has fewer edges if every position is covered by
at most d hints for some d < m. The construction
shown above will create edges even between hints that
are far apart, and those can be eliminated. The weight
of an edge from hint h′ to hint h depends on mutual
position of these hints, because we include only those
subset hints of h that end after the end of h′. However,
the weight will be the same for all hints h′ that do not
intersect h. Our goal is to remove such edges from
the graph and replace them with a smaller number of
edges linear in m.

We will say that a hint h2 is a strict extension of
a hint h1 if h1 is an extension of h2 and the two hints
overlap. Our new graph will have a vertex for each
hint, two special vertices s and t for sentinel hints
and a skipping vertex vi for every position i which
is a right endpoint of at least one hint (including po-
sition 0 where the sentinel hint for s ends). Skipping
vertices are connected to a chain going from left to
right with edges of weight 0. Vertex for a hint h is
connected to all hints that are its strict extensions,
with the same edge weights as before. It is also con-
nected to the skipping vertex for its right endpoint
with an edge of weight 0. Finally, each skipping ver-
tex vi is connected to all hints that start in the interval
(i, j] where vj is its neighbor in the chain of skipping
vertices. The edge from vi to h will contain the bonus
of h and all its subset bonuses. Paths in this new graph
have 1-1 correspondence with the paths in the origi-
nal graph, where an edge between two non-overlapping
hints is now replaced by a path through skipping ver-
tices. The number of vertices is O(m) and the number
of edges O(md), since from a vertex for hint h there
are at most d outgoing edges: one to a skipping ver-
tex and at most d− 1 to other hints, because all these
hints cover the right endpoint of h. Similarly the num-
ber of incoming edges is at most d. Finally, the num-
ber of edges between skipping vertices is O(m). The
overall time of the algorithm with this graph will be
O(md+ `+ n); we still need to demonstrate that the
graph can be constructed within this running time.
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The critical ingredient is the ability to check in con-
stant time whether two hints are compatible. This can
be achieved by building a suffix tree of the strings asso-
ciated with individual hints and preprocessing the suf-
fix tree for longest extension queries. These queries al-
low us to take two suffixes of any of the strings and de-
termine the length of their common prefix. In our sce-
nario we take two hints (s1, e1, Y1, b1), (s2, e2, Y2, b2)
and if they overlap by some length d > 0, we de-
termine the positions of the start of the overlap in
strings Y1 and Y2. If the suffixes starting at these two
positions have a common prefix of length at least d,
the two hints are compatible. They are also compati-
ble if d = 0. The preprocessing of necessary structures
can be done in O(`) time, and compatibility of each
pair of hints can be then assessed in O(1) time [8].

To find the edges between hint vertices, we first
sort all hints by left endpoints. This can be done in
O(n+m) time by counting sort. Next, we traverse the
sorted list and maintain a set of active hints. A hint
is active if it overlaps the left endpoint of the current
hint in the list. In every step, the list contains at most
d hints, and therefore we can in each iteration traverse
the list and remove hints that are no longer active.
The current hint h is a strict extension of any active
hint h′ such that h′ and h are compatible and h is not
a subset of h′. This can be checked in O(1) time per
pair of hints. If the current hint h is a subset of some
active hint h′, we will append h to a list of subsets
of h′.

At the end of traversal, we have for each hint h the
list of its subset hints and the list of incoming edges
from other hint vertices. We sort both these lists by
right endpoints by counting sort in time proportional
to the length of h (the right endpoints of all these
hints are within h). Now we use a merge-like algorithm
with two pointers to the two lists to find for every
incoming edge from hint h′ the bonus sum of subset
hints that end after the end of h′. Edges incident to
skipping vertices can be easily constructed within the
desired running time. The overall running time of the
graph construction is thus O(md + ` + n) where the
n term comes from sorting and can be replaced by
O(m logm).

Complex hints with arbitrary bonuses. The algorithm
described above is efficient, but can only handle hints
with positive bonus values. If a hint h has a nega-
tive bonus value, the path could skip its vertex in the
graph, even if other visited vertices imply that the la-
beling agrees with h and its bonus should be counted.
The graph may thus contain paths with weight higher
that the score of the optimal labeling.

As we will show, we can transform a set of hints
with arbitrary bonuses to an equivalent set of hints

with positive bonuses. Each hint (s, e, Y, b) with a neg-
ative bonus b is transformed to a set of hints of the
form (s, e′, Y ′, |b|) such that s ≤ e′ ≤ e and Y ′ is
the same as Y on the first e′ − s positions and differs
from Y on its last position. We create all (|Σ| − 1)
(e − s + 1) combinations of e′ and Y ′ of this form.
Clearly, these hints are mutually incompatible, and
therefore at most one of them will agree with any an-
notation. An annotation A agrees with one of these
hints if and only if it does not agree with the original
hint h. This transformation increases the score of ev-
ery annotation by |b|: the annotations agreeing with h
will increase by |b| because hint h is omitted from the
set and all other annotations agree with one of the new
hints, thus getting an additional bonus of |b|. When we
transform all hints with negative values in this way,
we increase the total score of every labeling by the
sum of absolute values of all negative bonuses. This
is a constant and therefore the optimal labeling will
remain the same and can be found by the algorithm
described above. Unfortunately, the number of hints
m as well as their total length ` increase by a factor
of L|Σ| where L is the length of the longest negative
hint, but the running time is still polynomial.

Combination of complex hints with an HMM. In gene
finding, we typically (although not exclusively [1])
combine the score from hints with a probability value
from some model capturing typical sequence features
of genes and their constituents. Probability of a par-
ticular labeling A in hidden Markov models or condi-
tional random fields can be written as

P (A) =

n∏
i=1

p(i, ai, ai+1, X),

where factors p(i, ai, ai+1, X) depend only on two ad-
jacent labels ai and ai+1 (and some portion of the
input string X). They are computed from the emis-
sion and transition probabilities of the model. We will
consider the case when the total score of A has the
form

B + logP (A) = B +

n∑
i=1

log p(i, ai, ai+1, X),

where B is the sum of bonuses of all agreeing hints. The
log values in the sum can be written as hints of length 2
of the form (i, i+ 1, aiai+1, log p(i, ai, ai+1, X)). Over-
all, we will need n|Σ|2 such hints and they typically all
have negative score. After applying the transformation
described in the previous paragraphs and combining
together hints with the same values of s, e and Y, we
get O(n|Σ|2) additional hints of length 1 and 2 with
positive bonuses.



Gene finding with complex external information 43

This generic procedure works only if the states of
the HMM correspond exactly to the symbols of the
output alphabetΣ. Gene finding HMMs typically have
a much larger state space, with several states cor-
responding to the same output label. This situation
could be expressed using more general subset hints de-
scribed in Section 3. Although subset hints lead in gen-
eral to NP-hard problems, special cases necessary for
handling large state spaces can be solved efficiently, as
discussed at the end of the next section. Moreover, it is
also possible to create specialized algorithms for com-
bining complex hints with a hidden Markov model [12].
By taking the special structure of the problem into ac-
count, we may obtain more efficient solutions than by
converting the HMM to a collection of hints.

3 NP-hardness for subset hints

A subset hint is a four-tuple h = (s, e, Y, b) such that
numbers s, e, and b are defined as for a complex hint
and Y is a string of length e− s+ 1 over an extended
alphabet Σ+ containing all non-empty subsets of Σ.
Expression `(h, i) now denotes the set of labels sug-
gested by h for xi and a labeling A agrees with h if for
every position i ∈ [s, e] the label ai is in the set `(h, i).
Unfortunately, our algorithm for complex hints can-
not be straightforwardly extended to this scenario, be-
cause the relation of extension is not transitive, which
is crucial for the existence of a labeling satisfying all
hints on a path in our graph.

As we will prove, it is unlikely that the problem
can be solved efficiently in the full generality by other
methods, since it is NP-hard.

Theorem 2. The problem of testing whether there is
a labeling A with score at least t for a set of subset
hints is NP-complete, even for a binary alphabet Σ.

Proof. Clearly the problem is in NP (if the size of in-
put is much smaller than n, we can specify only por-
tions of A covered by hints and this is sufficient for
efficient computation of the score).

To prove NP-hardness, we will use a reduction from
the 3-SAT problem. Consider a 3-SAT instance with
N variables y1, . . . , yN and M clauses, each clause con-
sisting of three literals. We will encode it as a set of
hints over the alphabet Σ = {0, 1} such that the for-
mula has a satisfying assignment if and only if there
is a labeling with score at least M +MK where K =
3M + 1.

The length of the annotated sequence will be n =
N + 3M . The first N labels correspond to a truth as-
signment to all variables, that is, ai = 1 corresponds
to yi being true. Each of the remaining labels cor-
responds to one literal from the formula, namely api,j

corresponds to jth literal from ith clause, where pi,j =
N+3(i−1)+j. For each such literal we will add an as-
signment hint of the form (k, pi,j , z{0, 1}pi,j−k−11, 1)
where k is the index of the variable forming this literal
and z = 1 if the literal is yk and z = 0 if the literal
is ¬yk. Notation {0, 1}c represents c copies of the set
{0, 1} ∈ Σ+. In other words, the hint connects the lit-
eral with its satisfying variable assignment, and if the
literal is selected by api,j

= 1 and the variable yk has
the satisfying assignment, the labeling gets a bonus 1.
We will also add three selector hints for every clause,
that enforce that exactly one literal from the clause
is selected by api,j

= 1. These hints have the form
(pi,1, pi,3, Y,K) where Y is a binary string of length
three containing exactly two zeroes. Note that for each
clause at most one of the selector hints can agree with
a given labeling.

In order to achieve total score M + MK, the an-
notation has to agree with one selector hint for ev-
ery clause. The loss of even one such selector could
not be compensated because the sum of bonuses of all
assignment hints is only 3M , which is less than K.
Selector bonuses that contribute bonus MK enforce
that exactly one literal in each clause is selected. The
selected literal has a potential to contribute bonus 1
if it is indeed satisfied in the assignment specified by
the labeling of the first N symbols. If the formula has
score at least M +MK, every clause has exactly one
literal which is simultaneously selected and satisfied.
Note that multiple literals per clause may be satisfied,
but if they are not selected, they will not influence
the score. Annotation with score M +MK thus corre-
sponds to a satisfying assignment of the formula and
vice versa. ut

This proof is a slight modification of our earlier
proof for the use of RT-PCR queries in gene find-
ing [10]. In this earlier work we have considered hints
of a special form that suggest a specific label at both
ends and allow arbitrary labels in the middle. How-
ever the output labeling was constrained to obey an
additional DAG of possible gene structures. Here we
have adapted the proof for the simpler case where the
annotation can be arbitrary.

Partition subset hints. Subset hints often occur in
practice because our methods for obtaining additional
information about the labeling cannot distinguish be-
tween some labels from Σ. In some situations we can
represent subset hints as complex hints over an alpha-
bet Σ′ ⊆ Σ+ that forms a partition of Σ into equiva-
lence classes (in other words, every two elements in Σ′

are disjoint subsets of Σ). We will now consider a situ-
ation where every hint contains only characters fromΣ
or only characters from Σ′ (but cannot use charac-
ters from both). We will show that optimal labeling
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(over Σ) for such hint sets can be found in polynomial
time.

Briefly, we first create a directed acyclic graph G
for hints over Σ similarly as in Section 2. We add new
hints of the form (i, i, a, 0) for all positions i and labels
a ∈ Σ. Both the original hints and these new hints
will be vertices. We will have an edge from hint h1
to hint h2 if h2 is an extension of h1 and they ei-
ther overlap or h2 starts immediately after h1 ends.
In this graph, every path consists of hints that com-
pletely cover the sequence. In the same way we also
build a graph G′ for hints over Σ′. Finally, we create
graph G′′ in which each vertex is a pair (h, h′) such
that h is a vertex in G, h′ is a vertex in G′, hints h
and h′ overlap and are compatible. If hint h′ ends be-
fore h, this vertex will be connected to vertices of the
form (h, h′′) where (h′, h′′) is an edge in G′, the weight
of the edge is also copied from G′. Similarly, if h ends
before h′, (h, h′) will be connected to vertices of the
form (h′′, h′) where (h, h′′) is an edge in G. Finally,
if the two hints end together, they will be connected
to vertices of the form (h′′, h′′′) where (h, h′′) is an
edge in G and (h′, h′′′) is an edge in G′. The weight of
the new edge will be the sum of the two source edges.
The best path in G′′ then corresponds to the optimal
annotation (proof omitted due to space).

The algorithm can be extended to several groups
of hints, each over a different partition of Σ, but the
running time would increase exponentially in the num-
ber k of such groups, because the vertices in the final
graph will be k-tuples of vertices of graphs for individ-
ual groups of hints.

4 Use of complex hints in gene finding

We have implemented a variant of the algorithm from
Section 2 and applied it to the problem of gene finding.
Recall that the goal of gene finding is to find genes,
regions encoding proteins in DNA sequences. A gene
in eukaryotic organisms can be divided into several
segments called exons and introns, and only exons en-
code the protein (see Figure 3). Thus the goal of gene
finding is to find the position of each gene and its ex-
act partitioning to exons and introns. We use output
alphabet Σ = {C, I,X}, where C stands for coding
exons, I for introns, and X for intergenic regions.

The algorithm was implemented in C++ as a stan-
dalone console application called grapHMM. In order
to process long DNA sequences, we implemented sev-
eral practical improvements. For example, the graph
is generated on the fly and unnecessary information is
immediately deleted to free up memory.

We have tested the program on genomic data from
Drosophila melanogaster (fruit fly). This species is an
important model organism in genetics and its genome

is relatively well sequenced and annotated. Genomic
sequences and reference annotations were downloaded
from the UCSC genome browser [7]. We have used
44 MB of DNA sequence containing 5 164 genes. They
were split to 2 MB parts and divided to train-
ing (≈ 28 MB, 3368 genes) and testing (≈ 16 MB,
1796 genes) data sets.

The HMM has been taken from the work of [15]
and retrained on our training data set by standard
procedures [6]. It has 265 states, but it is quite simple
compared to state-of-the-art gene finders. For exam-
ple, it does not allow arbitrary length distributions of
exons, introns and intergenic regions and uses simpler
models of sequence motifs at exon boundaries. In our
experiments we compare the accuracy achieved on the
testing set by the HMM alone and with different sets
of hints.

1226000 1227000 1228000 1229000

 No hints

 Complex hints

 Interval hints

 Reference

 Protein hints

Gene 1 Gene 2

Fig. 3. Example of a prediction obtained with different
protein hint sets in a region containing two genes. Lines de-
pict introns, rectangles exons (gene 1 has one exon, gene 2
has four exons). Four identical complex hints span the
whole length of gene 1 and suggest short intergenic re-
gion beyond its boundary. Prediction with complex hints is
correct. Prediction with interval hints does not agree with
the intergenic hint at the right end of the gene. Prediction
without hints predicts a long gene extending beyond the
displayed region.

Experiment with protein hints. In the first experiment,
we have used a real set of hints originating from
a database of known proteins. We have downloaded all
known proteins from several insect species (D. melano-
gaster, D. simulans, D. pseudoobscura, Anopheles
gambiae, and Bombyx mori) from the NCBI RefSeq
database [13] (67, 893 protein sequences in total). We
have used the BLAT program [9] and scripts from Ex-
onHunter distribution [2, 11] to find regions in the test-
ing set that could encode identical or similar proteins
to those in the database. Weak matches were were
filtered out to increase the specificity. As a result of
this strict filtering, only 11% of the sequence is cov-
ered by hints, whereas genes cover almost 45% of the
sequence. Hints contain exon and intron labels (ex-
ons are regions where the protein seems to be encoded
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and introns are separating parts encoding the same
protein). If the whole source protein could be aligned
to the genome, a single intergenic position is added
to the beginning and to the end of the complete gene
hint.

Our goal was to compare prediction accuracy ob-
tained using complex hints with accuracy obtained us-
ing simpler interval and point-wise hints. Therefore we
have converted our hint set to these simpler forms by
splitting each complex hints to several shorter hints
as necessary. Overall we have thus used three different
hint sets:

– complex hint set (15,057 training hints, 5,545 test-
ing hints)

– interval hint set (39,900 training hints, 14,358 test-
ing hints)

– point-wise hint set (8,651,653 training hints,
4,042,685 testing hints)

Bonuses of hints have great influence on the gene
prediction accuracy: if they are too low, the hints will
be ignored; if they are too high, wrong hints will de-
crease the gene prediction accuracy. For simplicity, all
hints in one hint set have the same bonus b, and we
choose optimal value of b to maximize the accuracy on
the training set for each set of hints separately. The
exception are complex hints, where the bonus of a hint
is bk where k is the number of contiguous regions in the
hint labeled by one label (or in other words the number
of interval hints comprising this complex hint). Again
the value of b was optimized using the training set.

Evaluation of these three hints sets on the test se-
quences is shown in Table 1. Complex hints slightly
increase the number of completely correctly predicted
genes compared to the interval hints, but the differ-
ence is less than 1%. On the other hand, difference in
accuracy between prediction without hints and with
one of the hint sets is quite significant.

Figure 3 shows an example of a gene where com-
plex hints lead to a better prediction than interval
hints. The algorithm with interval hints chooses an
annotation agreeing with only two out of three parts
comprising a single complex hint. With complex hints
only annotations agreeing with the whole hint get the
bonus, and one such annotation is indeed the opti-
mum.

Experiment with simulated hints. To better control
various parameters of the hint set, we have also gen-
erated artificial hints. All hints in this set have the
length 1000, and the number of hints was chosen so
that the sum of their lengths is approximately n/2.
Half of the hints were created so that they start at
a random place within some exon and agree with the
reference annotation along their whole length. The sec-
ond half of hints was generated so that they start at

Hint set No hints Point-wise Interval Complex

Bonus – 8 8 6
Gene sn. 48.83% 61.08% 61.30% 61.86%
Gene sp. 40.40% 46.00% 46.42% 46.61%
Exon sn. 71.18% 75.89% 76.20% 76.14%
Exon sp. 69.01% 71.73% 72.31% 72.29%
Base sn. 92.81% 94.35% 94.15% 94.14%
Base sp. 91.86% 92.00% 92.10% 92.08%

Tab. 1. Comparison of hint sets created from protein se-
quences. For each set, we show the trained value of the
bonus parameter as well as several standard measures of
gene finding accuracy. Gene sensitivity (sn.) is a fraction of
real genes that were predicted completely correctly. Gene
specificity (sp.) is the fraction of predicted genes that are
completely correct. Similarly, we measure sensitivity and
specificity at the exon and base level, where we count com-
pletely correctly predicted exons and individual symbols in
coding exons.

a random place in the sequence and suggest label for
intergenic regions along their whole length. Some of
these hints are correct, since by chance they are con-
tained in real intergenic regions, whereas others over-
lap real genes. Note that we have chosen intergenic
hints, because it is non-trivial to randomly generate
other reasonable wrong hints that have a non-zero
probability in the HMM. Overall, 74% of hints in our
set were correct. In this experiment, we have compared
complex and interval hints, again training their bonus
on the training set and testing their performance on
the testing set. Results shown in Table 2 are analogous
to the protein hint experiment – slight improvement in
the prediction accuracy at the gene level for complex
hints compared with interval hints.

Hint set Interval Complex

Bonus 6 12
Gene sensitivity 60.75% 61.53%
Gene specificity 49.43% 50.41%
Exon sensitivity 77.31% 77.92%
Exon specificity 76.51% 76.92%
Base sensitivity 94.98% 94.69%
Base specificity 93.52% 93.39%

Tab. 2. Comparison of gene prediction accuracy with ar-
tificial hints sets, using the same accuracy measures as in
Table 1.

5 Conclusion and open problems

In this paper, we have explored several variants of the
problem of finding optimal sequence annotation that
agrees with hints with the highest total score. If the
hints completely specify annotation within some in-
terval and all hints have positive scores, the problem
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can be solved quite efficiently, in time O(md+ `+ n)
where n is the length of the annotated sequence, ` is
the total length of all hints, m is the number of hints
and d is the maximum number of hints overlapping
a single position. If some hints have negative scores,
the problem can still be solved in polynomial time. Fi-
nally, we can also solve the case where hints are over
two different alphabets, one being a partition of the
other. These algorithms can be also extended to com-
bine hints with hidden Markov models or conditional
random fields. We have also shown that if we allow
wildcards in hints, the problem becomes NP-hard even
for binary output alphabet.

Our results might be applicable in various fields
where HMMs and their variants need to be combined
with external information. However, our original mo-
tivation stems from gene finding, where complex and
subset hints are the most natural form of express-
ing hints from various sources. Our experiments with
a simple gene finder show that compared to simpler
interval hints used before, complex hints may lead to
slight increases in prediction accuracy. More experi-
ments with different information sources or in different
species may lead to more significant improvements.

Several open problems remain in this area. Our al-
gorithms are in the worst case quadratic in the number
of hints. The question is whether more efficient algo-
rithms exist at least for the case of interval hints. It
might be also useful to consider special classes of sub-
set hints that can be processed in polynomial time. For
example in our earlier work the RT-PCR hints were
NP-hard in general but solvable efficiently if their rel-
ative position was constrained [10]. Finally, one could
also generalize complex hints in other ways, for ex-
ample, allowing some uncertainty in the exact place
where labeling changes from one label to another.
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