
Towards Structured Business Process
Modeling Languages

Carlo Combi, Mauro Gambini, and Sara Migliorini

Department of Computer Science – University of Verona
Strada Le Grazie, 15, 37134 Verona, Italy

{carlo.combi|mauro.gambini|sara.migliorini}@univr.it

Abstract. A Process-Aware Information System (PAIS) is a software
system driven by explicit Business Process (BP) models. A basic PAIS
provides at least an execution engine, a Business Process Modeling Lan-
guage (BPML) and a graphical editor. The editor is mainly used to de-
sign new BP models, maintain existing ones and check their correctness.
BPMLs typically embrace an unstructured control-flow paradigm that
allows one to create a BP model by connecting the available elements
without following any specific construction pattern. Nevertheless, sev-
eral research efforts confirm that it is a good practice to use structured
forms whenever possible in order to avoid subtle errors. This paper aims
to promote the design of novel BPMLs able to support a fully struc-
tured control-flow approach. This goal is pursued by exposing pitfalls
and myths that surround unstructured BPMLs and prevent any further
investigation in the structured direction. The desired features of a struc-
tured BPML are outlined at the end of the paper.

Key words: process-aware information systems, structured business
process modeling languages, structured control-flow, modularity.

1 Introduction

Organizations typically need to coordinate the efforts of different agents in order
to achieve their established goals. A set of interrelated activities, performed by a
group of agents, may constitute a business process (BP) with a well-defined out-
come. A Process-Aware Information System (PAIS) is a software system driven
by explicit BP specifications with the aim to coordinate the involved agents in
performing their activities [1]. A BP is usually described through a high-level
graphical Business Process Modeling Language (BPML) often accompanied with
a low-level executable specification. The latter is interpreted by the PAIS engine
to enact the process. This solution can be found in YAWL [1], BPMN/WS-
BPEL [2] and other widely adopted languages.

BPMLs are usually classified as unstructured due to their graph-oriented
syntax and token-based semantics inspired by Petri Nets; they allow free com-
position of constructs without worrying much about type or position of the
connected elements. Using an unstructured BPML one can build more or less

2 Carlo Combi, Mauro Gambini, and Sara Migliorini

structured models: a sub-graph of a model is considered structured when its con-
structs are properly nested and correctly matched to produce a block with one
entry and one exit point, as discussed for instance in [3, 4]. Research concerning
the quality of BP models confirms that structured forms are preferable than
unstructured ones, because they improve model comprehensibility and reduce
the probability to accidentally introduce errors inside models [5, 6]. These effects
should not surprise: firstly, the presence of a structured form is an easy-to-verify
syntactic property that can guarantee the presence of desirable semantic prop-
erties which can be hard to prove in the general case; secondly, structured forms
enhance modularity, a key property in any complex design activity performed
by humans.

The aim of this paper is to promote the development of a new generation of
BPMLs that recognizes modularity as a primary requirement. In particular, new
modeling languages should at least be able to enforce a fully structured control-
flow design without compromising expressiveness. Modularity of a BPML can
be defined as the ability to decompose models in small interrelated components
which in turns can be recombined in different configurations. Modularity is be-
coming a main concern in BP design because BP models are growing in size due
to technological advances in process automation and integration.

The remainder of this paper is organized as follows. Sec. 2 briefly discusses
several research efforts that are at the basis of the following work. Sec. 3 in-
troduces the notion of executable unstructured BPML and the basic notations
adopted through the entire paper. Sec. 4 describes the most severe errors that
can be introduced in a BP model created with an unstructured BPML. An ex-
pert designer essentially adopts structured forms whenever possible to avoid this
kind of errors. Nevertheless, unstructured compositions are accepted as a neces-
sary evil because they cannot be removed in all situations or they are at least
more convenient to use. Sec. 5 explains how this and other similar arguments
are improperly used to exclude the existence of good structured BPMLs or to
diminish their relevance. Sec. 6 shows how a structured BPML can be effectively
built out of simple constructs and composition rules. Finally, Sec. 7 summarizes
the findings and outlines future work.

2 Related Work

In [4] Kiepuszewski et al. investigate the expressiveness of unstructured workflow
languages with some syntactical restrictions. They show that some well-behaved
unstructured models cannot be transformed into structured ones. Based on this
study, Liu and Kumar in [3] analyze unstructured workflows introducing a taxon-
omy of unstructured forms and determining which ones have an equivalent struc-
tured form. In both contributions the authors consider structured languages less
expressive than unstructured ones; however, their studies concern only control-
flow forms abstracted from other language aspects, hence they do not exclude
the existence of fully-featured structured BPMLs. In [5] Mendling and Laue in-
vestigate the importance of structuredness for obtaining correct models: they

Towards Structured BPMLs 3

introduce two different metrics that capture the degree of unstructuredness and
related these metrics to the probability of finding an error. They conclude that
structuredness is an important property for increasing the quality of BP models.
Moreover, Reijers and Mendling in [6] analyze modularity and conclude that such
property has positive effects on the comprehensibility of large-scale BP models.

These effects are also confirmed by Vanhatalo et al. in [7] where they present
a parsing technique, called Refined Process Structure Tree (RPST), useful for de-
tecting structured subgraphs inside a BP model. RPST has several applications,
for instance it can be used as a first step for translating a graphical BP model
into low-level executable specification which can be directly interpreted by the
PAIS engine. A first analysis about modularity and concurrency of BPMLs can
be found in [8], where we investigate some critical design problems that emerge
when a graphical modeling language is obtained by coupling unstructured rout-
ing constructs with shared variables and message passing primitives in order to
provide a complete computational model.

3 Background

Many existing BPMLs can be classified as both executable and unstructured.
It is considered unstructured any BPML that exposes a graph-oriented syntax
with a token-based semantics rooted in the Petri Nets theory. A BPML is also
classified as executable when it allows one to produce BP models containing
all the information needed to be directly interpreted by a PAIS. An executable
BPML can be distinguished from a pure conceptual one by the presence of
dedicated constructs for declaring and manipulating data.

Without claiming to be exhaustive, the notion of executable unstructured
BPML captures a substantial set of existing modeling languages. YAWL and
BPMN, with its WS-BPEL executable semantics, are certainly good represen-
tatives of this category. YAWL [1] was born as an academic research project, it
offers a clearly stated semantics and captures many of the workflow control-flow
and data patterns in a coherent system. Furthermore, through the Workflow
Pattern initiative, YAWL can be easily compared with other BPMLs. BPMN [2]
is a widely adopted industrial standard that has reached a good acceptance and
is supported by many commercial systems.

This paper contains some abstract BP models expressed in YAWL or BPMN.
Whenever necessary, these models are augmented with additional ad-hoc graph-
ical notations that are not natively provided by the chosen BPMLs. In particu-
lar, a task T that initially reads a set of variables x̄ = {xi}ni=1 and subsequently
writes a set of variables ȳ = {yj}mj=1, not necessary disjoint, is graphically de-
noted as [x1, . . . , xn | T | y1, . . . , ym], where the square brackets represents the
graphical box boundary. The simplified notation [x1, . . . , xn | T], [T | y1, . . . , ym]
or [T] is used when x̄ = ∅, ȳ = ∅ or x̄ = ȳ = ∅, respectively. Input variables x̄ are
always placed on the side of the incoming control-flow arrow, while output vari-
ables ȳ on the opposite side. Finally, YAWL cancellation regions are represented
with dashed ellipses connected to the reset task through a line of the same type.

4 Carlo Combi, Mauro Gambini, and Sara Migliorini

4 Common Pitfalls in Unstructured BP Modeling

Many kind of errors can be accidentally introduced in a BP model during the
design activity, but the most subtle ones concern unwanted interaction patterns
that may occur among two or more concurrent entities. These errors are con-
sidered subtle because they are difficult to spot and usually, they cannot be
corrected in any obvious way. This section aims to expose the root causes that
lead to this kind of errors and explain how structured compositions help in
avoiding them from the beginning. Unfortunately, unstructured forms cannot be
entirely discarded due to a lack of expressiveness of the available BPMLs and
they are commonly accepted as a necessary evil.

The abstract BP model in Fig. 1 will be used through the entire section to
ease the discussion. The task A updates the variable x that is read by B and F ;
the task F also takes the value produced by E that is temporally stored in y.
For simplicity, it is supposed that F uses x and y to compute the expression
z ← y/x. B acts as a monitoring activity that given the value in x decides when
to leave the loop {u1, A, s,B, v1}. Task D or E followed by F are performed in
parallel with B at least once before the process can complete. When B decides
to exit the loop, task C loads the current value in z to permanently store it into
a database. Such value can be produced by D or F depending on the choice v2.
The described unstructured model cannot be considered well-behaved as the one
in Fig. 2, because it contains several issues. Each of them is used to introduce
the general problems that arise with an unstructured control-flow design.

Fig. 1. An unstructured BP model containing some subtle errors. The model is ex-
pressed in BPMN and annotated with variable names and routing construct identifiers.

(P1) Control-flow entanglement – In many unstructured BPMLs implicit
fine-grained data-flow dependencies require explicit fine-grained synchronization
points; these points shall be connected together with control-flow arcs that often
break existing structured forms. For example, in the model of Fig. 1 there is no
guarantee that C reads exactly the last value produced by D or F . Eventually,
the following trace occurs: p → u1 → A → A|x → s → (x|B, v2) x≤0

−→ (B,D) →
(B|b,D) → (v1, D) b=false

−→ (z|C,D) → (C,D) → (j,D) → (j,D|z) → (j, u2) →
(j,G)→ (j, j)→ H → q. Moving C after u2 or j is not a viable alternative, hence
certain control-flow connections have to be added for synchronizing D and F with
C. Such connections inevitably break the structured block {v2, D,E, F, u2}.

Towards Structured BPMLs 5

(P2) Undesired tokens – With an unstructured control-flow design, it can
be difficult to track and deal with tokens leaved in different places of model
during its execution. For example, the model in Fig. 1 suffers of an improper
completion because the loop {u1, A, s,B, v1} potentially produces more than one
token that flow through the bottom branch of the And-Split s, finishing their run
in j. Indeed, only one token in the subgraph {v2, D,E, F, u2} is correctly syn-
chronized in j before exiting. In YAWL the remaining tokens can be withdrawn
by surrounding the subgraph {v2, D,E, F, u2, j} with a cancellation region en-
abled by H. BPMN can simulate a cancellation region by enclosing the subgraph
into a sub-process with a boundary exception. However, these solutions are far
from being easy to apply, especially if the subgraph has many entry and exit
points used for synchronization purpose.

(P3) Unreliable invariants – With an unstructured BPML one cannot
exclude that multiple tokens flow in the same sequential branch making invari-
ants hard to state and preserve. For instance, the value of a variable cannot be
assumed to remain the same between the execution of two sequential steps. Rea-
soning about the correctness of an unstructured BP model becomes soon a non-
trivial activity. For example F in Fig. 1 belongs to a branch guarded by x > 0,
but in this case one cannot exclude that F computes z ← y/x with x = 0. Indeed,
the following trace can occur: p→ u1 → A→ A|x→ s→ (x|B, v2) x>0

−→ (B,E)→
(B|b, E) → (v1, E)b=true

−→ (u1, E) → (A,E) → (A|x,E) x=0
−→ (s,E) → (s,E|y) →

(s, {x, y}|F) leading to the erroneous computation y/0.

5 Myths Surrounding BPMLs

This section discusses some common misconceptions about BPMLs that seem
to be so widespread to prevent any further investigation towards structured
modeling approaches. The central concepts of the section are exemplified through
the abstract model in Fig. 2. The model is extracted and adapted from [4], it is
formed by a starting place p, an end place q, two loops {u1, A,B, v1, s1, C, j1}
and {u2, H,G, v2, j2, F, s2} that run in parallel, two intermediate tasks D and
E and two trailing tasks I and L. The main loops mutually synchronize each
other at every iteration by means of the branches {s2, D, j1} and {s1, E, j2}.

(M1) The myth of expressiveness – Executable unstructured BPMLs are
more expressive than structured ones in terms of definable BP models . This myth
is rooted on the elusive notion of structured BPML that lacks of an accepted
reference implementation and it is also supported by mathematical proofs [4].
Actually, these proofs are very weak because they start defining a structured
BPML as an unstructured BPML subject to further syntactical restrictions.
Moreover, the BPMLs under analysis are simplified modeling languages that
can hardly be considered executable; for instance, they lack of any construct to
declare and manipulate data. These proofs usually shows that there exist well-
behaved unstructured BP models, as the one in Fig. 2, that cannot be expressed
with a structured control-flow. The used argument is fairly trivial because any
language with additional constraints is likely to become less expressive, at least

6 Carlo Combi, Mauro Gambini, and Sara Migliorini

if the constraints have some tangible effect. Moreover, it shall be assumed that
the BPML at hand is not sufficiently expressive to define an interpreter able to
simulate the behavior of the original model step-by-step by encoding unstruc-
tured forms as internal data structures. However, interpretation is not necessary
at all with the right set of constructs; for example, Sec. 6 presents a model
behaviorally equivalent to the one in Fig. 2 but with a structured control-flow.

Fig. 2. A well-behaved unstructured BP model expressed in BPMN.

(M2) The myth of soundness – Well-behaved BP models can be easily
distinguished from erroneous ones using the available validation methods . This
myth is fostered by the progressive advances in verification methods [9] that can
be used to assist the design activity. However, excluding some special cases, val-
idation methods are feasible only if they are applied to an abstraction of the ac-
tual executable BP model, namely an approximation obtained discarding details
considered irrelevant for the analysis. Whenever the validation method finds an
error, it provides a proof of the problem, for instance an trace that can reproduce
the fault in the original model. On the contrary, a successful validation can in-
crease the confidence about model correctness, but it cannot exclude the presence
of errors. For example, the model in Fig. 2 is sound with respect to the usual no-
tion of soundness adopted for workflow nets [1]. Nevertheless, it can easily reach
a deadlock condition during its execution: at least one variable xi ∈ x̄ changes its
state, otherwise ϕ(x̄) is always false or always true and the loops never execute
or never terminate. If x̄ changes, there exists at least one task T that update
it; in particular, a deadlock can be reached for any T ∈ {A,B,C,D,E,G,H}.
For instance, let T = A, the following trace ends with a deadlock p → w →
(u1, u2)→ (A, u2)→ (A,H)→ (A,G)→ (A, v2)ϕ(x̄)=true

−→ (A, j2)→ (A|xi, j2)→
(B, j2) → (v1, j2)ϕ(x̄)=false

−→ (I, j2) → (r, j2). In this case the passed soundness
check may generate a false expectation about BP model correctness.

(M3) The myth of refactoring – Any unstructured BP model can be
refactored in a better one, not necessarily structured. This myth is rooted on the
questionable assumption that an unstructured BPML offers more design freedom
because it imposes less construction rules. Actually, unstructured BPMLs lack

Towards Structured BPMLs 7

of modularity, hence certain transformations are far from being easy to perform
and sometimes they are even impossible. Let us consider a decomposition similar
to the one proposed in [8] for the model in Fig. 2: the main process is substi-
tuted with a new process P with tasks {Q,R, I, L}, where the sub-processes
Q = {u1, A,B, v1, s1, C, j1, E} and R = {u2, H,G, v2, j2, F, s2, D} encapsulate
the two main loops. This is an interesting decomposition, because during design
any BP model is likely to grow in size as details are added and the creation of
sub-processes, without altering the original behavior of the model, becomes a
common operation. After the Q/R decomposition the two internal loops need
to be synchronized in some way for preserving the original semantics. Message
passing seems the most suitable abstraction to solve the problem but it is only
partially or not supported at all in unstructured BPMLs, probably because it
cannot be easily integrated with the adopted language constructs. For instance,
BPMN could describe the communication between R and Q improperly plac-
ing them into two different pools, but the main process P cannot be modeled
anymore because message passing is prohibited in the same process model.

6 The NestFlow Modeling Language

This section introduces a novel modeling language called NestFlow [10], in order
to show how a BPML can support a fully structured control-flow design approach
without compromising expressiveness. The following introduction includes only a
small set of simplified NestFlow constructs sufficient to understand the examples
in Fig. 4 and Fig. 5. For a complete description of NestFlow the reader can refer
to [10]. The essential NestFlow constructs and basic compositional rules are given

A B

Choice Block

A

Compound-TaskP ::=

Parallel Block

BA

B

A

Sequence
Block

CA , B ::=

φ(x)

AB

Loop Block

φ(x)

C ::= Send

Receive

Run

t:T

Skip

α

In ...
Out ...
Var ...

ED

Link

Fig. 3. The graphical syntax of the NestFlow modeling language.

in Fig. 3 through a graphical extension of the Backus-Naur-Form (BNF). In
such figure, 〈P 〉 denotes the starting symbol, | is the usual BNF choice operator,
〈A〉 and 〈B〉 denote non-terminal control-flow blocks and 〈C〉 denotes terminal

8 Carlo Combi, Mauro Gambini, and Sara Migliorini

command blocks. A NestFlow model is obtained by expanding the body of the
compound-task with the 〈A〉 and 〈C〉 elements. A compound-task declares zero
or more local variables and a set of input and output streams that represent
its external interface. A repeat-until loop and a while loop can be obtained
specializing a generic loop block with a skip command placed in 〈B〉 or 〈A〉,
respectively. For simplicity, choice and parallel blocks are limited here to only
two branches; the corresponding generic constructs can be simulated by nesting
multiple times these simpler blocks. A structured synchronizing merge can be
implemented with one or more nested parallel blocks with a choice block for
each parallel branch. A native task or a previously defined compound-task can
be invoked inside a model with a run. A send copies the value of a variable
inside an input stream, while a receive takes an object from an output stream
storing it in a local variable. An output stream can be connected to an input
stream by means of a link, graphically denoted with a dashed arrow as in Fig. 3:
〈D〉 can be a task or a send , similarly 〈E〉 can be another task or a receive.

φ(v1,v2)

A B

H G

I

L

F

C

2:

1:

v1

w1w2

2:

v2

1: ED

φ(w1,w2)

v1

w2

Fig. 4. A NestFlow BP model with a structured control-flow.

In Fig. 4 is depicted an abstract BP model expressed in NestFlow that resem-
bles the one of Fig. 2. In contrast with traditional BPMLs, NestFlow promotes
message passing as the primary abstraction for manipulating data: message pass-
ing is used to model the flow of data and objects exchanged by different processes
as well as by internal tasks that belong to the same scope. Parameter passing
can be easily stated in terms of message passing primitives, hence it should be
intended as syntactic sugar in NestFlow; in particular, [x̄|T] represents a send
command invoked before T , while [T |ȳ] represents a receive command invoked
after T . For instance in Fig. 4, [E|v1] can be represented as a message exchange
between the invoked task instance e :E and a receive placed immediately after
E that stores the transmitted value in the local variable v1.

The model in Fig. 4 has a structured control-flow and it can be considered
behavioral equivalent to the unstructured one of Fig. 2, provided that the latter
correctly synchronizes its internal state before evaluating the ϕ(x̄) condition. In
NestFlow parallel branches cannot share local variables, indeed it is clear that the

Towards Structured BPMLs 9

ϕ condition in Fig. 4 shall be checked over two different sets of variables {v1, v2}
and {w1, w2}. The correct synchronization of the loop conditions is guaranteed
by the explicit links (s1, r2) and (s2, r1) that imply w1 = v1 and v2 = w2, hence
ϕ(v1, v2) = ϕ(w1, w2) = ϕ(v1, w2). For this reason, and assuming that variables
are initially set to the same value, the model cannot reach a deadlock due to
the ϕ predicate. The richer data-flow notation of NestFlow can effectively help
in designing correct executable BP models since the beginning.

Moreover, the two loops in Fig. 4 can be easily encapsulated into two different
components that mutually interact through a couple of links without exposing
their internal implementation. As discussed in the previous section, this trans-
formation is difficult, if not impossible, to obtain with traditional BPMLs due
to their task activation semantics and unstructured control-flow.

Fig. 5. The different roles of objects and threads in control-flow modeling.

Message passing is essential for enhancing modularity and effectively helps in
unraveling complex control-flow relations. For this purpose, links can be consid-
ered flexible control-flow dependencies managed by a block-structured control-
flow logic. The flexibility comes from the semantics of the receive command: a
receive temporarily suspends the current thread of control that can be resumed
when a timeout expires or by receiving an object from a different source.

In the abstract models of Fig. 5, tasks B and D execute in parallel with C,
while E has to wait its completion before starting. The decision to execute either
D or E is taken only after the completion of B. The BPMN model in Fig. 5.a runs
into a deadlock when the condition x ≥ 0 evaluates to true, because the thread
suspended in j2 cannot be resumed. In YAWL this situation can be corrected
by defining a cancellation region for F that includes the arc between C and E,
as in Fig. 5.b. In the NestFlow model of Fig. 5.c the dependency between C

10 Carlo Combi, Mauro Gambini, and Sara Migliorini

and E is represented through a link that connects the two parallel branches. It
is a reasonable solution as a data-flow dependency between these tasks means
that E needs something produced by C for continuing. Whenever x ≥ 0, the
object sent after C is not consumed, but this condition is perfectly acceptable
and does not cause any critical fault: data can be retained for the next execution
or discarded with an optional empty command.

7 Conclusion

Research provides evidence that a structured control-flow design improves the
quality of BP models reducing the presence of errors. Despite these results there
is no serious attempt to investigate BPMLs able to support a complete structured
control-flow design. This paper identifies the limits of an unstructured modeling
approach and exposes the weaknesses of the principal arguments used to neglect
the adoption of a structured BPML. Finally, some desired characteristics of a
structured BPML are emphasized by means of two examples. These examples are
expressed using a novel BPML, called NestFlow [10], which enforces a structured
control-flow coupled with message passing constructs.

References

1. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell. Modern
Business Process Automation: YAWL and its Support Environment. 2009.

2. Object Management Group (OMG). Business Process Modeling Notation (BPMN)
2.0 (Beta 1), August 2009. http://www.omg.org/spec/BPMN/2.0/.

3. R. Liu and A. Kumar. An Analysis and Taxonomy of Unstructured Workflows. In
Business Process Management (BPM), 3rd Int. Conference, pages 268–284, 2005.

4. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workflow
Modelling. In Advanced Information Systems Engineering (CAiSE), 12th Interna-
tional Conference, pages 431–445, 2000.

5. R. Laue and J. Mendling. The Impact of Structuredness on Error Probability
of Process Models. In United Information Systems Conference (UNISCON), 2nd
International Conference, pages 585–590, 2008.

6. H. Reijers and J. Mendling. Modularity in Process Models: Review and Effects.
In Business Process Management (BPM), 6th Int. Conference, pages 20–35, 2008.

7. J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree. Data &
Knowledge Engineering, 68(9):793 – 818, 2009. Sixth International Conference on
Business Process Management (BPM 2008) - Five selected and extended papers.

8. C. Combi and M. Gambini. Flaws in the Flow: the Weakness of Unstructured
Business Process Modeling Languages Dealing with Data. In On the Move to
Meaningful Internet Systems (OTM), 17th International Conference on Coopera-
tive Information Systems (CoopIS), pages 42–59, 2009.

9. M. T. Wynn, H. M. W. Verbeek, Aalst, Ter A. H. M. Hofstede, and D. Edmond.
Business Process Verification - Finally a Reality! Business Process Management
Journal, 15(1):74–92, 2009.

10. Carlo Combi, Mauro Gambini, and Sara Migliorini. The NestFlow Interpretation
of Workflow Control-Flow Patterns. In 15th International Conference on Advances
in Databases and Information Systems (ADBIS), 2011.

