
A Constraint-Based Framework for Computing Privacy

Preserving OLAP Aggregations on Data Cubes

Alfredo Cuzzocrea1, Domenico Saccà
2

1 ICAR-CNR and University of Calabria

87036 Cosenza, Italy

cuzzocrea@si.deis.unical.it
2 DEIS Dept, University of Calabria

87036 Cosenza, Italy

sacca@deis.unical.it

Abstract. A constraint-based framework for computing privacy preserving OLAP aggregations

on data cubes is proposed and experimentally assessed in this paper. Our framework introduces a

novel privacy OLAP notion, which, following consolidated paradigms of OLAP research, looks
at the privacy of aggregate patterns defined on multidimensional ranges rather than the privacy

of individual tuples/data-cells, like similar efforts in privacy preserving database and data-cube

research. To this end, we devise a threshold-based method that aims at simultaneously
accomplishing the so-called privacy constraint, which inferiorly bounds the inference error, and

the so-called accuracy constraint, which superiorly bounds the query error, on OLAP

aggregations of the target data cube, following a best-effort approach. Finally, we complete our
main theoretical contribution by means of an experimental evaluation and analysis of the

effectiveness of our proposed framework on synthetic, benchmark and real-life data cubes.

1 Introduction

Following state-of-the-art initiatives in the context of privacy preserving OLAP (e.g., [2,9,12]), in this

paper we propose an innovative framework based on flexible sampling-based data cube compression

techniques for computing privacy preserving OLAP aggregations on data cubes while allowing

approximate answers to be efficiently evaluated over such aggregations. This framework addresses

an application scenario where, given a multidimensional data cube A stored in a producer Data

Warehouse server, a collection of multidimensional portions of A defined by a given (range) query-

workload QWL of interest must be published online for consumer OLAP client applications.

Moreover, after published, the collection of multidimensional portions is no longer connected to the

Data Warehouse server, and updates are handled from the scratch at each new online data delivery.

The query-workload QWL is cooperatively determined by the Data Warehouse server and OLAP

client applications, mostly depending on OLAP analysis goals of client applications, and other

parameters such as business processes and requirements, frequency of accesses, and locality. OLAP

client applications wish for retrieving summarized knowledge from A via adopting a complex multi-

resolution query model whose components are (i) queries of QWL and, for each query Q of QWL, (ii)

sub-queries of Q (i.e., in a multi-resolution fashion). To this end, for each query Q of QWL, an

accuracy grid G(Q), whose cells model sub-queries of interest, is defined. While aggregations of

(authorized) queries and (authorized) sub-queries in QWL are disclosed to OLAP client applications,

it must be avoided that, by meaningfully combining aggregate patterns extracted from

multidimensional ranges associated to queries and sub-queries in QWL, malicious users could infer

sensitive knowledge about other multidimensional portions of A that, due to privacy reasons, are

hidden to unauthorized users. Furthermore, in our reference application scenario, target data cubes are

also massive in size, so that data compression techniques are needed in order to efficiently evaluate

queries, yet introducing approximate answers having a certain degree of approximation that,

however, is perfectly tolerable for OLAP analysis goals [3]. In our proposal, the described application

scenario with accuracy and privacy features is accomplished by means of the so-called

accuracy/privacy contract, which determines the accuracy/privacy constraint under which client

applications must access and process multidimensional data. In this contract, the Data Warehouse

server and client OLAP applications play the role of mutual subscribers, respectively.

Given a multidimensional range R of a data cube A, an aggregate pattern over R is defined as an

aggregate value extracted from R that is able of providing a “description” of data stored in R. In order

to capture the privacy of aggregate patterns, in this paper we introduce a novel notion of privacy

OLAP. According to this novel notion, given a data cube A the privacy preservation of A is modeled

in terms of the privacy preservation of aggregate patterns defined on multidimensional data stored in

A. Therefore, we say that a data cube A is privacy preserving iff aggregate patterns extracted from A

are privacy preserving. Contrary to our innovative privacy OLAP notion above, previous privacy

preserving OLAP proposals totally neglect this even-relevant theoretical aspect, and, inspired by well-

established techniques that focus on the privacy preservation of relational tuples [10,7], mostly focus

on the privacy preservation of data cells (e.g., [9]) accordingly.

2 Basic Constructs and Definitions

A data cube A defined over a relational data source S is a tuple A = D,F,H,M, such that: (i) D is

the data domain of A containing (OLAP) data cells, which are the basic aggregations of A computed

over relational tuples stored in S; (ii) F is the set of dimensions of A, i.e. the functional attributes with

respect to which the underlying OLAP analysis is defined (in other words, F is the set of attributes

along which tuples in S are aggregated); (iii) H is the set of hierarchies related to the dimensions of

A, i.e. hierarchical representations of the functional attributes shaped in the form of general trees; (iv)

M is the set of measures of A, i.e. the attributes of interest for the underlying OLAP analysis (in

other words, M is the set of attributes taken as argument of SQL aggregations whose results are

stored in data cells of A). Given these definitions, (i) |F| denotes the number of dimensions of A, (ii) d

 F a generic dimension of A, (iii) |d| the cardinality of d, and (iv) H(d) H the hierarchy related to

d. Finally, for the sake of simplicity, we assume to deal with data cubes having a single measure (i.e.,

|M| = 1). However, extending schemes, models and algorithms proposed in this paper as to deal with

data cubes having multiple measures (i.e., |M| 1) is straightforward.

Given an |F|-dimensional data cube A, an m-dimensional range-query Q against A, with m |F|, is

a tuple

A,,...,,

110 mkkk RRRQ , such that: (i)
ikR denotes a contiguous range defined on the

dimension
ikd of A, with ki belonging to the range [0, |F|–1], and (ii) A is a SQL aggregation

operator. The evaluation of Q over A returns the A-based aggregation computed over the set of data

cells in A contained within the multidimensional sub-domain of A bounded by the ranges

110
,...,,

mkkk RRR of Q. Range-SUM queries, which return the SUM of the involved data cells, are

trendy examples of range-queries. In our framework, we take into consideration range-SUM queries,

as SUM aggregations are very popular in OLAP, and efficiently support summarized knowledge

extraction from massive amounts of multidimensional data as well as other SQL aggregations (e.g.,

COUNT, AVG etc). Therefore, our framework can be straightforwardly extended as to deal with

other SQL aggregations different from SUM. However, the latter research aspect is outside the scope

of this paper, thus left as future work.

Given a query Q against a data cube A, the query region of Q, denoted by R(Q), is defined as the

sub-domain of A bounded by the ranges
110

,...,,
mkkk RRR of Q.

Given an m-dimensional query Q, the accuracy grid G(Q) of Q is a tuple

110

,...,,)(
mkkkQ G , such that

ik denotes the range partitioning Q along the dimension

ikd of A, with ki belonging to [0, |F|–1], in a
ik -based (one-dimensional) partition. By combining

the one-dimensional partitions along all the dimensions of Q, we finally obtain G(Q) as a regular

multidimensional partition of R(Q). From Section 1, recall that the elementary cell of the accuracy

grid G(Q) is implicitly defined by sub-queries of Q belonging to the query-workload QWL against the

target data cube.

Based on the latter definitions, in our framework we consider the broader concept of extended

range-query Q+, defined as a tuple Q+ = Q, G(Q), such that (i) Q is a ―classical‖ range-query,

A,,...,,

110 mkkk RRRQ , and (ii) G(Q) is the accuracy grid associated to Q,

110

,...,,)(
mkkkQ G , with the condition that each interval

ik is defined on the

corresponding range
ikR of the dimension

ikd of Q. For the sake of simplicity, here and in the

remaining part of the paper we assume Q Q+.

Given an n-dimensional data domain D, we introduce the volume of D, denoted by D , as

follows: |||||| 110 ndddD , such that |di| is the cardinality of the dimension di of D. This

definition can also be extended to a multidimensional data cube A, thus introducing the volume of A,

A , and to a multidimensional range-query Q, thus introducing the volume of Q, Q .

Given a data cube A, a range query-workload QWL against A is defined as a collection of (range)

queries against A, as follows: },...,,{ 1||10 QWLQQQQWL , with R(Qk) R(A) Qk QWL.

Given a query-workload QWL = {Q0, Q1, …, Q|QWL|-1}, we say that QWL is non-overlapping if

there not exist two queries Qi and Qj belonging to QWL such that R(Qi) R(Qj) ≠ . Given a query-

workload QWL = {Q0, Q1, …, Q|QWL|-1}, we say that QWL is overlapping if there exist two queries Qi

and Qj belonging to QWL such that R(Qi) R(Qj) ≠ . Given a query-workload QWL = {Q0, Q1, …,

Q|QWL|-1}, the region set of QWL, denoted by R(QWL), is defined as the collection of regions of

queries belonging to QWL, as follows: R(QWL) = {R(Q0), R(Q1), …, R(Q|QWL|-1)}.

3 Accuracy Metrics

As accuracy metrics for answers to queries of the target query-workload QWL, we make use of the

relative query error between exact and approximate answers, which is a well-recognized-in-literature

measure of quality for approximate query answering techniques in OLAP (e.g., see [3]).

Formally, given a query Qk of QWL, we denote as A(Qk) the exact answer to Qk (i.e., the answer to

Qk evaluated over the original data cube A), and as)(
~

kQA the approximate answer to Qk (i.e., the

answer to Qk evaluated over the synopsis data cube A’). Therefore, the relative query error EQ(Qk)

between A(Qk) and)(
~

kQA is defined as follows:

}1),(max{

|)(
~

)(|
)(

k

kk

kQ
QA

QAQA
QE

 .

EQ(Qk) can be extended to the whole query-workload QWL, thus introducing the average relative

query error)(QWLEQ
 that takes into account the contributions of relative query errors of all the

queries Qk in QWL, each of them weighted by the volume of the query,
kQ , with respect to the

whole volume of queries in QWL, i.e. the volume of QWL, QWL . QWL is defined as follows:

QWLQQQWL k

QWL

k

k

,
1|'|

0

.

Based on the previous definition of QWL , the average relative query error)(QWLEQ
 for a

given query-workload QWL can be expressed as a weighted linear combination of relative query

errors EQ(Qk) of all the queries Qk in QWL, as follows:

1||

0

)()(
QWL

k

kQ

k

Q QE
QWL

Q
QWLE , i.e.:

1||

0
1||

0

}1),(max{

|)(
~

)(|
)(

QWL

k k

kk

QWL

j

j

k

Q
QA

QAQA

Q

Q
QWLE

, under the constraint: 1
1||

0

QWL

k

k

QWL

Q
.

4 Privacy Metrics

Since we deal with the problem of ensuring the privacy preservation of OLAP aggregations, our

privacy metrics takes into consideration how sensitive knowledge can be discovered from aggregate

data, and tries to limit this possibility. On a theoretical plane, this is modeled by the privacy OLAP

notion introduced in Section 1.

To this end, we first study how sensitive aggregations can be discovered from the target data cube

A. Starting from the knowledge about A (e.g., range sizes, OLAP hierarchies etc), and the knowledge

about a given query Qk belonging to the query-workload QWL (i.e., the volume of Qk, kQ , and the

exact answer to Qk, A(Qk)), it is possible to infer knowledge about sensitive ranges of data contained

within R(Qk). For instance, it is possible to derive the average value of the contribution throughout

which each basic data cell of A within R(Qk) contributes to A(Qk), which we name as singleton

aggregation I(Qk). I(Qk) is defined as follows:

k

k

k
Q

QA
QI

)(
)(.

It is easy to understand that, starting from the knowledge about I(Qk), it is possible to progressively

discover aggregations of larger range of data within R(Qk), rather than the one stored within the basic

data cell, thus inferring even-more-useful sensitive knowledge. Also, by exploiting OLAP hierarchies

and the well-known roll-up operator, it is possible to discover aggregations of ranges of data at higher

degrees of such hierarchies. It should be noted that the singleton aggregation model I(Qk) above

represents indeed an instance of our privacy OLAP notion target to the problem of preserving the

privacy of range-SUM queries (the focus of our paper). As a consequence, I(Qk) is essentially based

on the conventional SQL aggregation operator AVG. Despite this, the underlying theoretical model

we propose is general enough to be straightforwardly extended as to deal with more sophisticated

privacy OLAP notion instances, depending on the particular class of OLAP queries considered.

Without loss of generality, given a query Qk belonging to an OLAP query class C, in order to handle

the privacy preservation of Qk we only need to define the formal expression of the related singleton

aggregation I(Qk) (like the previous one for the specific case of range-SUM queries). Then, the

theoretical framework we propose works at the same way.

Secondly, we study how OLAP client applications can discover sensitive aggregations from the

knowledge about approximate answers, and, similarly to the previous case, from the knowledge about

data cube and query metadata. Starting from the knowledge about the synopsis data cube A’, and the

knowledge about the answer to a given query Qk belonging to the query-workload QWL, it is possible

to derive an estimation on I(Qk), denoted by)(
~

kQI , as follows:

)(

)(
~

)(
~

k

k

k
QS

QA
QI , such that S(Qk) is

the number of samples effectively extracted from R(Qk) to compute A’ (note that S(Qk)
kQ). The

relative difference between I(Qk) and)(
~

kQI , named as relative inference error and denoted by

EI(Qk), gives us a metrics for the privacy of)(
~

kQA , which is defined as follows:

}1),(max{

|)(
~

)(|
)(

k

kk

kI
QI

QIQI
QE

 .

Indeed, while OLAP client applications are aware about the definition and metadata of both the

target data cube and queries of the query-workload QWL, the number of samples S(Qk) (for each

query Qk in QWL) is not disclosed to them. As a consequence, in order to model this aspect of our

framework, we introduce the user-perceived singleton aggregation, denoted by)(
~

kU QI , which is the

effective singleton aggregation perceived by external applications based on the knowledge made

available to them.)(
~

kU QI is defined as follows:

k

k

kU
Q

QA
QI

)(
~

)(
~

 .

Based on)(
~

kU QI , we derive the definition of the relative user-perceived inference error)(k

U

I QE

, as follows:

}1),(max{

|)(
~

)(|
)(

k

kUk

k

U

I
QI

QIQI
QE

 .

Since S(Qk)
kQ , it is trivial to demonstrate that)(

~
kU QI provides a better estimation of the

singleton aggregation of Qk rather than that provided by)(
~

kQI , as)(
~

kU QI is evaluated with respect

to all the items contained within R(Qk) (i.e.,
kQ), whereas)(

~
kQI is evaluated with respect to the

effective number of samples extracted from R(Qk) (i.e., S(Qk)). In other words,)(
~

kU QI is an upper

bound for)(
~

kQI . Therefore, in our framework we consider)(
~

kQI to compute the synopsis data

cube, whereas we consider)(
~

kU QI to model inference issues on the OLAP client application side.

)(k

U

I QE can be extended to the whole query-workload QWL, by considering the average relative

inference error)(QWLEI
 that takes into account the contributions of relative inference errors EI(Qk)

of all the queries Qk in QWL. Similarly to what done for the average relative query error)(QWLEQ
,

we model)(QWLEI
 as follows:

1||

0

)()(
QWL

k

kI

k

I QE
QWL

Q
QWLE , i.e.:

1||

0
1||

0

}1),(max{

|)(
~

)(|
)(

QWL

k k

kUk

QWL

j

j

k

I
QI

QIQI

Q

Q
QWLE

, under the constraint: 1
1||

0

QWL

k

k

QWL

Q
.

Note that, as stated above,)(QWLEI
 is defined in dependence on)(

~
kU QI rather than)(

~
kQI .

For the sake of simplicity, here and in the remaining part of the paper we assume

)()(k

U

IkI QEQE .

Concepts and definitions above allow us to introduce the singleton aggregation privacy preserving

model)(
~

),(
~

),(UIIIX , which is a fundamental component of the privacy preserving OLAP

framework we propose. X properly realizes our privacy OLAP notion.

Given a query Qk QWL against the target data cube A, in order to preserve the privacy of Qk

under our privacy OLAP notion, we must maximize the inference error EI(Qk) while minimizing the

query error EQ(Qk). While the definition of EQ(Qk) can be reasonably considered as an invariant of

our theoretical model, the definition of EI(Qk) strictly depends on X. Therefore, given a particular

class of OLAP queries C, in order to preserve the privacy of queries of kind C, we only need to

appropriately define X. This nice amenity states that the privacy preserving OLAP framework we

propose is orthogonal to the particular class of queries considered, and can be straightforwardly

adapted to a large family of OLAP query classes.

5 Thresholds

Similarly to related proposals appeared in literature recently [9], in our framework we introduce the

accuracy threshold Q and the privacy threshold I. Q and I give us an upper bound for the

average relative query error)(QWLEQ
 and a lower bound for the average relative inference error

)(QWLEI
 of a given query-workload QWL against the synopsis data cube A’, respectively. As stated

in Section 1, Q and I allow us to meaningfully model and treat the accuracy/privacy constraint by

means of rigorous mathematical/statistical models.

In our application scenario, Q and I are cooperatively negotiated by the Data Warehouse server

and OLAP client applications. The issue of determining how to set these parameters is a non-trivial

engagement. Intuitively enough, for what regards the accuracy of answers, it is possible to (i) refer to

the widely-accepted query error threshold belonging to the interval [15, 20] % that, according to

results of a plethora of research experiences in the context of approximate query answering

techniques in OLAP (e.g., see [4]), represents the current state-of-the-art, and (ii) use it as baseline to

trade-off the parameter Q. For what regards the privacy of answers, there are not immediate

guidelines to be considered since privacy preserving techniques for advanced data management (like

OLAP) are relatively new hence we cannot refer to any widely-accepted threshold like happens with

approximate query answering techniques. As a result, the parameter I can be set according to a two-

step approach where first the accuracy constraint is accomplished in dependence of Q, and then I

is consequently set by trying to maximize it (i.e., augmenting the privacy of answers) as much as

possible, thus following a best-effort approach.

6 Computing the Synopsis Data Cube via a Constraint-based Approach

From the Sections above, it follows that our privacy preserving OLAP technique, which is finally

implemented by greedy algorithm computeSynDataCube, encompasses three main phases: (i)

allocation of the input storage space B, (ii) sampling of the input data cube A, (iii) refinement of the

synopsis data cube A’. In this Section, we present in detail these phases.

6.1 The Allocation Phase. Given the input data cube A, the target query-workload QWL, and the

storage space B, in order to compute the synopsis data cube A’ the first issue to be considered is how

to allocate B across query regions of QWL. Given a query region R(Qk), allocating an amount of

storage space to R(Qk), denoted by B(Qk), corresponds to assign to R(Qk) a certain number of samples

that can be extracted from R(Qk), denoted by N(Qk). To this end, during the allocation phase of

algorithm computeSynDataCube, we assign more samples to those query regions of QWL having

skewed (i.e., irregular and asymmetric) data distributions (e.g., Zipf), and less samples to those query

regions having Uniform data distributions. The idea underlying such an approach is that few samples

are enough to ―describe‖ Uniform query regions as data distributions of such regions are ―regular‖,

whereas we need more samples to ―describe‖ skewed query regions as data distributions of such

regions are, contrary to the previous case, not ―regular‖. Specifically, we face-off the deriving

allocation problem by means of a proportional storage space allocation scheme, which allows us to

efficiently allocate B across query regions of QWL via assigning a fraction of B to each region. This

allocation scheme has been preliminarily proposed in [5] for the different context of approximate

query answering techniques for two-dimensional OLAP data cubes, and, in this work, it is extended

as to deal with multidimensional data cubes and (query) regions.

First, if QWL is overlapping (see Section 3), we compute its equivalent non-overlapping query-

workload, denoted by QWL’, as follows. For each pair of overlapping queries Qi and Qj in QWL

having Rij as intersection region (i.e., Qi Qj = Rij), we add to QWL’ a new set of queries composed

by the query Qk Rij plus all the queries corresponding to intersection regions originated via

prolonging the ranges of Rij along the dimensions of Qi and Qj, respectively. All the remaining queries

in QWL are kept unchanged in QWL’. Hence, in both cases (i.e., QWL is overlapping or not) a set of

regions R(QWL) = {R(Q0), R(Q1), …, R(Q|QWL|-1)} is obtained. Let R(Qk) be a region belonging to

R(QWL), the amount of storage space allocated to R(Qk), B(Qk), is determined according to a

proportional approach that considers (i) the nature of the data distribution of R(Qk) and geometrical

issues of R(Qk), and (ii) the latter parameters of R(Qk) in proportional comparison with the same

parameters of all the regions in R(QWL), as follows:

B

QRQRQR

QRQRQR
QB

WLQ

h

kk

WLQ

h

k

kkk
k 1||

0

1||

0

))(())(())((

))(())(())((
)(

, such that [5]: (i) (R) is a Boolean characteristic

function that, given a region R, allows us to decide if data in R are Uniform or skewed; (ii) (R) is a

factor that captures the skewness and the variance of R in a combined manner; (iii) (R) is a factor

that provides the ratio between the skewness of R and its standard deviation, which, according to [8],

allows us to estimate the skewness degree of the data distribution of R. Previous formula can be

extended as to handle the overall allocation of B across regions of QWL, thus achieving the formal

definition of our proportional storage space allocation scheme, denoted by

W(A,R(Q0),R(Q1),…,R(Q|QWL|-1),B), via the following system:

1||

0

1||

0

1||

0

1||1||1||

1||

1||

0

1||

0

000

0

)(

))(())(())((

))(())(())((
)(

...

))(())(())((

))(())(())((
)(

QWL

k

k

QWL

k

kk

QWL

k

k

QWLQWLQWL

QWL

QWL

k

kk

QWL

k

k

BQB

B

QRQRQR

QRQRQR
QB

B

QRQRQR

QRQRQR
QB

(1)

In turn, for each query region R(Qk) of R(QWL), we further allocate the amount of storage space

B(Qk) across the sub-queries of Qk, qk,0, qk,1, …, qk,m-1, via using the same allocation scheme (1).

Overall, this approach allows us to obtain a storage space allocation for each sub-query qk,i of QWL in

terms of the maximum sample number N(qk,i) =

32

)(,ikqB that can be extracted from qk,i
1, being

B(qk,i) the amount of storage space allocated to qk,i.

It should be noted that the approach above allows us to achieve an extremely-accurate level of

detail in handling accuracy/privacy issues of the final synopsis data cube A’. To become convinced of

this, recall that the granularity of OLAP client applications is the one of queries (see Section 1),

which is much greater than the one of sub-queries (specifically, the latter depends on the degree of

accuracy grids) we use as atomic unit of our reasoning. Thanks to this difference between granularity

of input queries and accuracy grid cells, which, in our framework, is made ―conveniently‖ high, we

finally obtain a crucial information gain that allows us to efficiently accomplish the accuracy/privacy

constraint.

6.2 The Sampling Phase Given an instance of our proportional allocation scheme (1), W, during the

second phase of algorithm computeSynDataCube, we sample the input data cube A in order to

obtain the synopsis data cube A’, in such a way as to satisfy the accuracy/privacy constraint with

respect to the target query-workload QWL. To this end, we apply a different strategy in dependence

on the fact that query regions characterized by Uniform or skewed distributions are handled,

according to similar insights that have inspired our allocation technique (see Section 6.1).

Specifically, for a skewed region R(qk,i), given the maximum number of samples that can be extracted

1 Here, we are assuming that an integer is represented in memory by using 32 bits.

from R(qk,i), N(qk,i), we sample the N(qk,i) outliers of qk,i. It is worthy to notice that, for skewed

regions, sum of outliers represents an accurate estimation of the sum of all the data cells contained

within such regions. Also, it should be noted that this approach allows us to gain advantages with

respect to approximate query answering as well as the privacy preservation of sensitive ranges of

multidimensional data of skewed regions. Contrary to this, for a Uniform region R(qk,i), given the

maximum number of samples that can be extracted from R(qk,i), N(qk,i), let (i)
)(,ikqRC be the average

of values of data cells contained within R(qk,i), (ii) U(R(qk,i),)(,ikqRC) be the set of data cells C in

R(qk,i) such that value(C)
)(,ikqRC , where value(C) denotes the value of C, and (iii)

)(,ikqRC be the

average of values of data cells in U(R(qi,k),)(,ikqRC), we adopt the strategy of extracting N(qk,i)

samples from R(qk,i) by selecting them as the N(qk,i) closer-to-

)(,ikqRC data cells C in R(qk,i) such that

value(C)
)(,ikqRC . Just like previous considerations given for skewed regions, it should be noted that

the above-described sampling strategy for Uniform regions allows us to meaningfully trade-off the

need for efficiently answering range-SUM queries against the synopsis data cube, and the need for

limiting the number of samples to be stored within the synopsis data cube.

In order to satisfy the accuracy/privacy constraint, the sampling phase aims at accomplishing

(decomposed) accuracy and privacy constraints separately, based on a two-step approach Given a

query region R(Qk), we first sample R(Qk) in such a way as to satisfy the accuracy constraint, and,

then, we check if samples extracted from R(Qk) also satisfy, beyond the accuracy one, the privacy

constraint. As mentioned in Section 4, this strategy follows a best-effort approach aiming at

minimizing computational overheads due to computing the synopsis data cube, and it is also the

conceptual basis of guidelines for setting the thresholds Q and I.

Moreover, our sampling strategy aims at obtaining a tunable representation of the synopsis data

cube A’, which can be progressively refined until the accuracy/privacy constraint is satisfied as much

as possible. This means that, given the input data cube A, we first sample A in order to obtain the

current representation of A’. If such a representation satisfies the accuracy/privacy constraint, then the

final representation of A’ is achieved, and used at query time to answer queries instead of A.

Otherwise, if the current representation of A’ does not satisfy the accuracy/privacy constraint, then we

perform ―corrections‖ on the current representation of A’, thus refining such representation in order to

obtain a final representation that satisfies the constraint, on the basis of a best-effort approach. What

we call the refinement process (described in next Section 6.3) is based on a greedy approach that

“moves”2 samples from regions of QWL whose queries satisfy the accuracy/privacy constraint to

regions of QWL whose queries do not satisfy the constraint, yet ensuring that the former do not

violate the constraint.

Given a query Qk of the target query-workload QWL, we say that Qk satisfies the accuracy/privacy

constraint iff the following inequalities simultaneously hold:

IkI

QkQ

QE

QE

)(

)(.

In turn, given a query-workload QWL, we decide about its satisfiability with respect to the

accuracy/privacy constraint by inspecting the satisfiability of queries that compose QWL. Therefore,

we say that QWL satisfies the accuracy/privacy constraint iif the following inequalities

simultaneously hold:

II

QQ

QWLE

QWLE

)(

)(.

Given the target query-workload QWL, the criterion of our greedy approach used during the

refinement process is the minimization of the average relative query error,)(QWLEQ
, and the

maximization of the average relative inference error,)(QWLEI
, within the minimum number of

2 In Section 6.3, we describe in detail the meaning of ―moving‖ samples between query regions.

movements that allows us to accomplish both the goals simultaneously (i.e., minimizing)(QWLEQ
,

and maximizing)(QWLEI
). Furthermore, the refinement process is bounded by a maximum

occupancy of samples moved across queries of QWL, which we name as total buffer size and denote

as LA’,QWL. LA’,QWL depends on several parameters such as the size of the buffer, the number of sample

pages moved at each iteration, the overall available swap-memory etc.

6.3 The Refinement Phase In the refinement process, the third phase of algorithm

computeSynDataCube, given the current representation of A’ that does not satisfy the

accuracy/privacy constraint with respect to the target query-workload QWL, we try to obtain an

alternative representation of A’ that satisfies the constraint, according to a best-effort approach. To

this end, the refinement process encompasses the following steps: (i) sort queries in QWL according

to their ―distance‖ from the satisfiability condition, thus obtaining the ordered query set QWLP; (ii)

select from QWLP a pair of queries QT and QF such that (ii.j) QT is the query of QWLP having the

greater positive distance from the satisfiability condition, i.e. QT is the query of QWLP that has the

greater surplus of samples that can be moved towards queries in QWLP that do not satisfy the

satisfiability condition, and (ii.jj) QF is the query of QWLP having the greater negative distance from

the satisfiability condition, i.e. QF is the query of QWLP that is in most need for new samples; (iii)

move enough samples from QT to QF in such a way as to satisfy the accuracy/privacy constraint on QF

while, at the same time, ensuring that QT does not violate the constraint; (iv) repeat steps (i), (ii), and

(iii) until the current representation of A’ satisfies, as much as possible, the accuracy/privacy

constraint with respect to QWL, within the maximum number of iterations bounded by LA’,QWL. For

what regards step (iii), moving samples from QT to QF means: (i) removing samples from R(QT),

thus obtaining an additional space, said B(); (ii) allocating B() to R(QF), (iii) re-sampling R(QF) by

considering the additional number of samples that have became available – in practice, this means

extracting from R(QF) further samples.

Let S*(Qk) be the number of samples of a query Qk QWL satisfying the accuracy/privacy

constraint. From the formal definitions of EQ(Qk) (see Section 3), I(Qk),)(
~

kQI and EI(Qk) (see

Section 4), and the satisfiability condition, it could be easily demonstrated that S*(Qk) is given by the

following formula:
k

I

Q

k QQS

)1(

)1(
)(*

.

Let Seff(Q
F) and Seff(Q

T) be the numbers of samples effectively extracted from R(QF) and R(QT)

during the previous sampling phase, respectively. Note that Seff(Q
F) S*(QF) and Seff(Q

T) S*(QT). It

is easy to prove that the number of samples to be moved from QT to QF such that QF satisfies the

accuracy/privacy constraint and QT does not violate the constraint, denoted by Smov(Q
T,QF), is finally

given by the following formula: Smov(Q
T,QF) = S*(QF) – Seff(Q

F), under the constraint: Smov(Q
T,QF)

Seff(Q
T) – S*(QT).

Without going in details, it is possible to demonstrate that, given (i) an arbitrary data cube A, (ii)

an arbitrary query-workload QWL, (iii) an arbitrary pair of thresholds Q and I, and (iv) an

arbitrary storage space B, it is not always possible to make QWL satisfiable via the refinement

process. From this evidence, our idea of using a best-effort approach makes sense perfectly.

cube.

(a)

(b)

(c)

(d)

Fig. 1. Relative query errors of synopsis data cubes built from Uniform (a), skewed (b) TPC-H (c) and

FCT (d) data cubes.

7 Experimental Evaluation

In order to test the effectiveness of our framework throughout studying the performance of algorithm

computeSynDataCube, we conducted an experimental evaluation where we tested how the

relative query error (similarly, the accuracy of answers) and the relative inference error (similarly, the

privacy of answers) due to the evaluation of populations of randomly-generated queries, which model

query-workloads of our framework, over the synopsis data cube range with respect to the volume of

queries. The latter is a relevant parameter costing computational requirements of any query

processing algorithm (also referred as selectivity – e.g., see [4]). We considered the zero-sum method

[9] as the comparison technique, which is a state-of-the-art perturbation-based privacy preserving

OLAP approach.

In our experimental assessment, we engineered three classes of two-dimensional data cubes:

synthetic, benchmark and real-life data cubes. For all these data cubes, we limited the cardinalities of

both dimensions to a threshold equal to 1,000, which represents a reliable value modeling significant

OLAP applications (e.g., [4]). In addition to this, data cubes of our experimental framework expose

different sparseness coefficient s, which measures the percentage number of non-null data cells with

respect to the total number of data cells of a data cube. As widely-known since early experiences in

OLAP research [1], the sparseness coefficient holds a critical impact on every data cube processing

technique, thus including privacy preserving data cube computation as well.

In particular, synthetic data cubes store two kinds of data: Uniform data, and skewed data, being

the latter obtained by means of a Zipf distribution. The benchmark data cube we considered has been

built from the TPC-H data set [11], whereas the real-life one from the Forest CoverType (FCT) data

set [6]. Both data sets are well-known in the Data Warehousing and OLAP research community. The

final sparseness of the TPC-H and FCT data cube, respectively, has been easily artificially determined

within the same OLAP data cube aggregation routine. The benefits deriving from using different

kinds of data cubes are manifold, among which we recall: (i) the algorithm can be tested against

different data distributions, thus stressing the reliability of the collection of techniques we propose

(i.e., allocation, sampling, refinement), which, as described in Section 6, inspect the nature of input

data to compute the final synopsis data cube; (ii) parameters of data distributions characterizing the

data cubes can be controlled easily, thus obtaining a reliable experimental evaluation. Selectivity of

queries has been modeled in terms of a percentage value of the overall volume of synthetic data

cubes, and, for each experiment, we considered queries with increasing-in-size selectivity, in order to

stress our proposed techniques under the ranging of an increasing input.

(a)

(b)

(c)

(d)

Fig. 2. Relative inference errors of synopsis data cubes built from Uniform (a), skewed (b) TPC-H (c)

and FCT (d) data cubes.

For what regards compression issues, we imposed a compression ratio r, which measures the

percentage occupancy of the synopsis data cube A’, size(A’), with respect to the occupancy of the

input data cube A, size(A), equal to 20%, which is a widely-accepted threshold for data cube

compression techniques (e.g., [4]). To simplify, we set the accuracy and privacy thresholds in such a

way as not to trigger the refinement process. This also because [9] does not support any ―dynamic‖

computational feature (e.g., tuning of the quality of the random data distortion technique), so that it

would have been particularly difficult to compare the two techniques under completely-different

experimental settings. On the other hand, this aspect puts in evidence the innovative characteristics of

our privacy preserving OLAP technique with respect to [9], which is indeed a state-of-the-art

proposal in perturbation-based privacy preserving OLAP techniques.

Figure 1 shows experimental results concerning relative query errors of synopsis data cubes built

from Uniform, skewed, TPC-H, and FCT data, respectively, and for several values of s. Figure 2

shows instead the results concerning relative inference errors on the same data cubes. In both Figures,

our approach is labeled as G, whereas [9] is labeled as Z. Obtained experimental results confirm the

effectiveness of our algorithm, also in comparison with [9], according to the following considerations.

First, relative query and inference errors decrease as selectivity of queries increases, i.e. the accuracy

of answers increases and the privacy of answers decreases as selectivity of queries increases. This

because the more are the data cells involved by a given query Qk, the more are the samples extracted

from R(Qk) able to ―describe‖ the original data distribution of R(Qk) (this also depends on the

proportional storage space allocation scheme (1)), so that accuracy increases. At the same time, more

samples cause a decrease of privacy, since they provide accurate singleton aggregations and, as a

consequence, the inference error decreases. Secondly, when s increases, we observe a higher query

error (i.e., accuracy of answers decreases) and a higher inference error (i.e., privacy of answers

increases). In other words, data sparseness influences both accuracy and privacy of answers, with a

negative effect in the first case (i.e., accuracy of answers) and a positive effect in the second case (i.e.,

privacy of answers). This because, similarly to results of [9], we observe that privacy preserving

techniques, being essentially based on mathematical/statistical models and tools, strongly depend on

the sparseness of data, since the latter, in turn, influences the nature and, above all, the shape of data

distributions kept in databases and data cubes. Both these experimental evidences further corroborate

our idea of trading-off accuracy and privacy of OLAP aggregations to compute the final synopsis data

cube. Also, by comparing experimental results on Uniform, skewed, TPC-H, and FCT (input) data,

we observe that our technique works better on Uniform data, as expected, while it decreases the

performance on benchmark and real-life data gracefully. This is due to the fact that Uniform data

distributions can be approximated better than skewed, benchmark, and real-life ones. On the other

hand, experimental results reported in Figure 1 and Figure 2 confirm to us the effectiveness and,

above all, the reliability of our technique even on benchmark and real-life data one can find in real-

world application scenarios. Finally, Figure 1 and Figure 2 clearly state that our proposed privacy

preserving OLAP technique outperforms the zero-sum method [9]. This achievement is another

relevant contribution of our research.

8 Conclusions and Future Work

A complete framework for efficiently supporting privacy preserving OLAP aggregations on data

cubes has been presented and experimentally assessed in this paper. We rigorously presented

theoretical foundations, as well as intelligent techniques for processing data cubes and queries, and

algorithms for computing the final synopsis data cube whose aggregations balance, according to a

best-effort approach, accuracy and privacy of retrieved answers. An experimental evaluation

conducted on several classes of data cubes has clearly demonstrated the benefits deriving from the

privacy preserving OLAP technique we propose, also in comparison with a state-of-the-art proposal.

Future work is mainly oriented towards extending the actual capabilities of our framework in order to

encompass intelligent update management techniques (e.g., what happens when query-workload’s

characteristics change dynamically over time?), perhaps inspired by well-known principles of self-

tuning databases.

References
[1] S. Agarwal et al., ―On the Computation of Multidimensional Aggregates‖, VLDB, 506—521, 1996.

[2] R. Agrawal et al., ―Privacy-Preserving OLAP‖, ACM SIGMOD, 251—262, 2005.

[3] A. Cuzzocrea, ―Overcoming Limitations of Approximate Query Answering in OLAP‖, IEEE IDEAS,

200—209, 2005.

[4] A. Cuzzocrea, ―Accuracy Control in Compressed Multidimensional Data Cubes for Quality of Answer-

based OLAP Tools‖, IEEE SSDBM, 301—310, 2006.

[5] A. Cuzzocrea, ―Improving Range-Sum Query Evaluation on Data Cubes via Polynomial

Approximation‖, Data & Knowledge Engineering, 56(2), 85—121, 2006.

[6] UCI KDD Archive, The Forest CoverType Data Set, available at

http://kdd.ics.uci.edu/databases/covertype/covertype.html
[7] A. Machanavajjhala et al., ―L-diversity: Privacy beyond k-Anonymity‖, ACM Trans. on Knowledge

Discovery from Data, 1(1), art. no. 3, 2007.

[8] A. Stuart et al., Kendall’s Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed., Oxford

University Press, New York City, NY, USA, 1998.

[9] S.Y. Sung et al., ―Privacy Preservation for Data Cubes‖, Knowledge and Information Systems, 9(1),

38—61, 2006.

[10] L. Sweeney, ―k-Anonymity: A Model for Protecting Privacy‖, International Journal on Uncertainty

Fuzziness and Knowledge-based Systems, 10(5), 557—570, 2002.

[11] Transaction Processing Council, TPC Benchmark H, available at http://www.tpc.org/tpch/

[12] L. Wang et al., ―Cardinality-based Inference Control in Data Cubes‖, Journal of Computer Security,

12(5), 655—692, 2004.

