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Abstract. With an abundance of social network data being releasedyekd
to protect sensitive information within these networks basome an important
concern of data publishers. In this paper we focus on the lpppotion of k-
anonymization as applied to node degrees in a social netv@itken such a
network N, the problem we study is to transforid to N’, such that the de-
gree of each node iV’ is attained by at least — 1 other nodes inV’. Apart
from previous work, we permit modifications to the node sher than the edge
set, and this offers unique advantages with respect to tligy of the released
anonymized network. We study both vertex-labeled and etéabgraphs, since
instances of each occur in real-world social networks. Wnide constraint of
minimum node additions, we show that on vertex-labeledlgathe problem is
NP-complete. For unlabeled graphs, we give an efficientr{lie@ar) algorithm
and show that it gives solutions that are optimal modul@ guarantee that is
novel in the literature. Additionally, we demonstrate erigailly that commonly-
studied structural properties of the network, such as etirgj coefficient, are
quite minorly distorted by the anonymization procedure.

Keywords: privacy, k-anonymization, complexity, dynamic programming, So-
cial networks

1 Introduction

Social networks are a natural phenomenon and as such hanesteked for a long
time by sociologists, anthropologists, and biologistst B recent explosion of web
applications that have social links either implicit (e 4mazon and IMDB) or explicit
(e.g., Facebook and Twitter) has substantially simpliffeddifficult preprocessing step
of producing their underlying graphs. Consequently, theoofunity for analyzing and
mining these networks has become widespread.

From a high level view, there are two general families of rnd#hfor achieving net-
work data privacy. The first family encompasses “data andrgtion” methods. These
methods first transform the data and then release them. Taésdhus made available
for unconstrained analysis. The second family encompdpsigacy-aware computa-
tion” methods, which do not release data, but, rather, dmydutput of an analysis
computation. The released output is such that it is veryadiffito infer from it any
information about an individual input datum. The relativedcent differentially-private
methods (cf. [3-5, 11]) all belong in this family. Both fams of methods have natural
pros and cons. Methods in the first family give complete fomedb the analysts to per-
form any analysis they wish on the released data. Howewerdhn be more vulnerable
to attack. On the other hand, methods in the second familypoatect the data better,



but in the end do not release data, only carefully computaefer outputs of specific
computations. This obviously limits further analysis. @pproach belongs in the first
family. Our goal is to anonymize social networks withoutrsfgantly distorting them.

Research into network anonymization has gathered some ntamén the past five
years, with an evolution towards stronger adversarial isotigat is, towards assuming
the adversary has more knowledge. While requisite, it ipaeihg research into pro-
tecting against the adversaries that have already beeonggdpour hardness results in
this paper combined with the hardness result of Zhou andiB¢oemonstrate that un-
derstanding simpler models is very important because dittgithem could potentially
be infeasible. Additionally, in some settings, simpler edarial models may be suffi-
cient and if the anonymization procedures have differemmlexities, then the ability
to consider trade-offs is paramount. Thus, in this reseaeheturn to a more modest
adversary, one who knows only degree-based informatioassim more thoroughly
develop the foundations on which research into strongeeradvial models and the
interplay between levels of adversarial knowledge can lie lvhile most anonymiza-
tion research studies unlabeled graphs, existing algositio not provide optimality
guarantees, so the only known complexity results are faexdabeled graphs. Here,
we study both important classes.

In previous studies, networks are typically anonymizedXslesively introducing
new edges into the network. This approach is justified untdelassumption that one
does not wish to add new entities into the network, but welehge this assumption.
Even for microdata, the analysis that one wishes to do wigthntitwork data is at the
aggregate level, so the introduction of new nodes does roatssarily have an adverse
affect. To the contrary, adding new nodes with similar prtpe could better preserve
aggregate measures than will distorting the existing nodes

In fact, one ought to consider the intended use of the anagametwork prior to
conducting the anonymization, because this affects whiahacteristics should be pre-
served. To facilitate this choice, it is important to deye#dternate approaches with re-
spective advantages. We introduce the natural complementtent:-anonymization,
an approach of augmenting the network with new vertices lwhie connected to them-
selves and to the original graph. In this manner, one gueeanfor example, not to
increase the size of any clique by more than one, and is veikelyito do anything but
introduce new 2- and 3-cliques. If large cliques are of palér interest to an analyst,
this is clearly preferable, because adding edges amonialigertices can produce
false positives. Alternatively, for analysis tasks thafire monotone properties such
as independent sets, the distortion is more controlledahhrtex addition can only
introduce false positives, whereas edge addition candotre false negatives, too.

1.1 Related Work

The most closely related work to this paper is the researthu@nd Terzi [10] who also
study the same adversarial model. The distinction from aarkvs that they constrain
the problem by assuming an immutable vertex set, whereaslaee ponstraints on
the edge set. This distinction renders the work incompara&zch preserving different
structural properties as stated above.



Zhou and Pei [18] define a notion éfanonymity on graphs so that nodes in an
anonymized group will have isomorphic neighbourhoodsyt®w that anonymizing
a graph under their definition using a minimal number of edigiteons is NP-hard.
Other landmark papers in the field [7,17, 14, 2, 16] have thioed models of protect-
ing from progressively stronger adversarial knowledgeesehare summarized in Ta-
ble 1. For all of these adversarial models, it is importanitiderstand the challenges
in producing networks anonymized with respect to those nso@eepening the under-
standing ofk-anonymity here in this paper is an important step in thadion.

The other work that is very closely related to our researdf Konig, Erdés, and
Kelly [6, 9], since our work extends their graph theoretisulés. Konig showed that,
given a grapltz with maximum degreé, it is always possible to makedaregular graph
H by adding vertices and adding edges whose endpoints mlistieat least one new
vertex. In a subsequent paper, Erdds and Kelly gave anesftialgorithm to determine
how many vertices must be added to obtain such a gfaplVe generalize this problem
with two relaxations. First, we may not require that all nedéa graph be anonymized.
For example, in the Amazon database, there are two typesriides&g customers and
products, and the database owner could be interested oahoimymizing the customer
vertices. Second, wi-anonymize the graph for an arbitraky(which we typically
assume to be some reasonably small vatué).

Table 1. Summarisation of Related Work

|Authors |Adversarial Model [Graph Type [Permitted Operations |
Konig, Erdds & Kelly [6, 9]n-Anonymization |Unlabeled Vertex/Edge Addition
Liu and Terzi [10] k-Anonymization |Unlabeled Edge Addition/Removal
Zhou & Pei [18] k-N'hood Anon.  |Vertex-Labeled Edge Addition

Cheng et al. [2] k-Isomorphism Unlabeled Edge Addition/Removal
Hay et al. [7] Automorphic Eun.UnIabeIed Label Modifications

Wu et al. [16] k-Symmetry Unlabeled Vertex/Edge Addition
Tripathy and Panda [15] |k-N'hood Anon  |Vertex-Labeled Edge Addition

Kapron et al. [8] k-Label Seq. Anon|Vertex/Edge Labelg&Edge Addition

This Paper k-Anonymization Zﬁﬁ:ﬁﬁ? Vertex Addition

1.2 Our Results

We study the problem df-anonymizing a graph by augmenting it with additional ver-
tices, both for vertex-labeled and for unlabeled graphs.rain results are as follows:

e \We prove that on vertex-labeled graphsanonymization with a constant number of
vertex additions is NP-complete by giving a reduction torlhable anonymization
problem ¢ 2).

e For unlabeled graphs, we introduce an efficient ((&xk)) k-anonymization al-
gorithm based on dynamic programming and prove that it presia solution that
is optimal moduldk (§ 3).

e We perform experiments with several well-known networkedats to demonstrate
empirically that our vertex-addition approachiteanonymization quite minimally
distorts the original graph with respect to standard pataradike clustering coef-
ficient, average path length and connectivity, eveh approached (§ 4).
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2 A Hardness Result for Vertex-Labeled Graphs

In this paper, we consider simple, undirected graphs in ®stbngs: one in which the
vertices are labeled and the other in which they are not. dlbeléd graphs correspond
to social networks in which the nodes have identifiers ortaites. In this section we
define the problem of-degree-anonymizing vertex-labeled graphs and providsualtr
that the problem is NP-complete.

We start with the definition of a vertex-labeled graph andogllaequence.
Definition 1. A vertex-labeled graph is a simple, undirected graph= (V, E, L, L)
whereV is a set of verticest C V' x V is the set of edged, is a set of labels and
is a labeling function : V' — L, that assigns a label to every vertexiin

Definition 2. Forv € V, we say thatS,, = (I1, 1o, ..., L) is a label sequence far if
it corresponds to some ordering of the labels)aind the vertices that are adjacent to
v. We will consider label sequences of vertices to be equitale to reordering.

Then,k-anonymity for labeled graphs relates to the uniquenesabaf lsequences:

Definition 3. Given a vertex-labeled grapi = (V, E), a subseX C V of vertices is
k-anonymous irty if for every vertex) € X, there are at least — 1 other vertices in
X whose label sequence is the same as the label sequence of

Thus, the vertex-labeled problem we study in this paperfinee as:

LABELED SUBGRAPH ANONYMIZATION

Input: A vertex-labeled graplx = (V, E, L, L), a setX C V of vertices, integers
andk > 3.
Question: Is there a vertex-labeled graghl = (V UV’/,E U E’, L', £') such that
V| <t,E' C(VxV)YUu((V’'xV'), L, =L, L' = LandX is k-anonymous in
% \

G'?

That is, can wek-anonymizeX by adding at most new labeled vertices? New
edges are allowed between an old vertex and a new vertexwebpthew vertices.

Theorem 1. Labeled Subgraph Anonymization is NP-complete.

The proof of the hardness result depends on building a pafyelatime reduc-
tion from the k-ATTRIBUTE-ANONYMITY table anonymization problem that wa
demonstrated by Meyerson and Williams [12] to be NP-hardvéler, in the interest
of space, we omit the details of the proof. Similar to the fes section, we start with
some definitions to clarify the problem and introduce sontatian in Table 2.

3 An Efficient Algorithm for Unlabeled Graphs

In the section we consider another type of graphs, thosehadamot have labels on the
vertices, and give an efficient algorithm for anonymizingrth

Definition 4. Given a graphG = (V, E) with V' = {vy,v2,...,v,} andd(v;) =
{u € V : (u,v;) € E}|, the degree sequence 6fis defined to be the sequence
(d(vl), d(vg), ce ,d(Un))



Table 2. Notation we use to describe unlabeled graphs

[Name [Notation| Definition

Degree ofu d(u) |[{v € V: (u,v) € E}||

Start Index ofu |start(u)|First vertex in the same partition as
Deficiency ofu |def(u) |d(start(u)) — d(u)

Total DeficiencyN/A > vey def(v)

Max Deficiency|N/A mazyevdef(v)

i'th Vertex v(7) Vertex with thei’th highest degree, except for arbitrary tie-brgaks

Throughout this paper, we assume degree sequences to bd sodescending
order for the simplicity in describing our algorithm. Foralbeled graphg;-anonymity
is then as defined by Liu and Terzi [10].

Definition 5. Given a graphG = (V, E), a subsetX C V is k-anonymous i@ if for
everyv € X, there are at leask — 1 other vertices inX with the same degree as

Definition 6. A partitioning of a degree sequen¢é,, ds, ..., d,,) is an ordered col-
lection of: 4 1 disjoint subsequences of size at lelsgiven as((d1, ds, . . ., di1c, ),
(Akter+1y - o A2ktertes)s - o (dikter+.teitls - - Cn)), With all ¢; > 0.

The anonymization algorithm, given in Algorithm 1, inferp@ynomial time opti-
mal algorithm for the anonymization of just the original giabut we leave the infer-
ence to the reader, given space constraints. The eventigaloe of the entire algorithm
is that the newly added vertices are anonymized as well.

3.1 Partitioning the Original Graph’s Vertices

The first step of our algorithm is to identify which verticegloe original graph should
be anonymized into the same equivalence class by partitidghe degree sequence into
subsequences of length at le&sfThis recurrence differs from the similar degree se-
guence anonymization of Liu and Terzi [10], because ourlpralvequires producing a
resultant partitioning that minimizes the max deficiendheathan the total deficiency.
Two simple propositions are thus very useful:

Proposition 1 The deficiency of a subsequence containing a highest defjrkeaad
a smallest degree af; will be less or equal to the deficiency of any subsequence con-
tainingd; and anyd; ... or containingd; and anyd;_., Ve € N.

Proposition 2 For any subsequendd,, .. ., dax+.), the max deficiency is greater or
equal to the subsequenc@s, . . ., dit¢), (dkter+1,- - daktc). Thatis to say, it never
produces a higher max deficiency when one splits a subseguenc

Algorithm 1 k-Degree-Anonymization of Unlabeled Graphs
1: Optimally partition degree sequence®f(§3.1)
2: Augment graph withn (or so) dummy vertices;8.2)
3: Connect original graph vertices to new dummy vertié&s2)
4: Insert inter-dummy-vertex edges to anonymize dummaes(§.3)




Both propositions follow trivially from the fact that the gieee sequences are as-
sumed to be sorted and that max deficiency (i.e., differeisaednsitive. We use them
to produce an incremental algorithm described by the fatigwecursion. Let

A =max(C(l,z — k), Alx — k+1,2))
B =max(C(1,S(x - 1)), A(S(x — 1)+ 1,z))

Then Ale,y) = dy — d,
S(x) =1, if z <2k
S(z) =S(x —1), if > 2k and A < B.
Sx)=xz—k+1, if x >2kand A > B.
C(l,z) = A(l,x), if © < 2k.
C(1,2) = min(max(A, B)), if = > 2k.

Stated more intuitively, the algorithm computes the ideatiponing from the left
by incrementally adding the next degree to the right of trgusace. TheA function
computes the deficiency of a particular partition; $héunction keeps track of where
2’s partition starts, should be the smallest degree in it; and tdéunction computes
the overall max deficiency (cost) of the best possible paniitg up to ther'th element.

If there are fewer tha@k degrees in the sequence, there is not any choice but to
group them all together. If, however, there are more thlamegrees, then there are
two ways in which the partitioning can be extended. Eitherrtew rightmost, smallest
degree can be added to the rightmost partition, or a newtiparttan be formed with
thek — 1 rightmost degrees and the new degree.

It is a result of Proposition 1 that, in general, the new degvél clearly be added
to the right. Adding the new degree to any other partition Mfqaroduce a greater or
equal max deficiency.

For the example graph with a degree sequendéd, 3,2, 1, 1, 1), the best parti-
tioning of this degree sequence({$, 3, 3), (2,1,1, 1)), as given when the recursion is
evaluated. This algorithm yields the following lemma:

Lemma 1. The degree sequence partitioning of an unlabeled graph easolbved op-
timally for vertex addition irO(n) time andO(n) space.

Itis important to note that thtal de ficiency indicates precisely how many edges
need to be added in order to anonymize the original grapicesrt

Lemma 2. Thetotal de ficiency of an optimal degree sequence partitioning into sub-
sequences of length k and < 2k is upper-bounded b — 1)(2k — 1).
3.2 Anonymizing the Original Graph’s Vertices

To anonymize the original graph’s vertices, we must addvesisthemax de ficiency
and thetotal deficiency. To balance out anax deficiency of m requires adding
at leastmm dummy vertices. Ergo, we typically add exactly additional vertices; but



occasionally, as we detail later, we augment the graph vaitio tr’ + 1 vertices instead,
wherem/ is the larger ofn andk.

There is a nice characteristic of our interim solution aftex dynamic program-
ming. Effectively, we need to come up with a bipartite grajgiween original nodes
and additional nodes, starting from scratch. We proceealasnvs. We order then
additional vertices. We then connect the filsf (v(1)) additional vertices to the orig-
inal vertexv(1), the nextde f (v(2)) additional vertices t@(2), and so on until alin
additional vertices have an edge. This process ends ats@ne

We continue with another iteration, this time startingyat) and with subsequent
iterations until we have satisfied the deficiency of everyeiodhe original graph.

Because of the nature of thigcling procedure, always adding an edge to an addi-
tional vertex that has not yet been visited on that partidteaation, we can guarantee
that, if d iterations are required, some — = additional vertices will have degreleand
the remaininge will have degreel — 1, for some0 < z < m. Because we serviced
each original vertex in turn, no edge can be accidentallydddice.

3.3 Ensuring the k-Anonymity of the Additional Vertices

The last detail is to ensure that all the new vertices are sedrasc-anonymous. Recall
thatm — z of the new vertices have degréand the othex have degre€ — 1, for some

0 < x < m. Furthermored andz can both be computed in advance of the edge addition
step, sincel = floor(%) andm — x = total deficiency (mod m). As a

first recourse, if groups of vertices of degreandd — 1 are both present in the set of
anonymized original nodes, nothing needs be done.

If eitherd or d — 1 is not present in the anonymized degree sequence, we éplici
anonymize the new vertices. This scenario can be deteddoaititioning the degree
sequence, and we then choose to instead augment the grdpmWwit min(m, k)
additional vertices. This ensures that if we constidctuch that all additional vertices
have the same degree, they will themselves folrremonymous group.

For thex vertices with degree — 1, we randomly pair them and add an edge
between each pair. If is even, this is sufficient: ath’ additional vertices have degree
d.

If, insteadz is odd, then this pairing will leave out one last vertex, iall If m’—1
is even (and at least 2), then we can add an edge frameach of two other additional
vertices so that all three have degreg 1. The remainingn’ — 3 vertices with degreé
can then all be paired off again (sineé — 3 is even) and all additional vertices will be
anonymized with degreé+ 1. If, on the other haneh’ — 1 is odd, then we simply use
an extra additional vertexi{’ 4 1) at the beginning of the second phase of the algorithm.

Consequently, we have the following theorem:

Theorem 2. Our algorithm cank-anonymize a graph by introducing a number of ad-
ditional vertices optimal modulb in O(nk) time andO(n) space.

4 Experimental Results

In the previous section, we presented an algorithm and priss@symptotic efficiency
and worst-case optimality. In the introduction, we mengidrihat certain structural



Table 3. Structural Properties of the Datasets

|Graph [NodegEdges |[APL |CC |
Enron 366921838313.39 |0.09
Power Grid 4941 |6594 |18.990.10
Net Sciencgl 589 |2742 |0.35 |0.69

properties of graphs are either unaffected, or controllafiected, by a vertex-addition
approach. Here we illustrate that on standard benchmadselast other commonly
studied aggregate structural properties are quite mirgigiorted by anonymization,
even ask grows quite large. This is important because preservingpyi (throughk-
anonymity) is not especially useful if it results in tremendly misleading output.

4.1 Metrics and Setup

Datasets We select three diverse datasets, ranging from a power gtidank which
models the connectivity of generators and substations &nail communication net-
work in a company (namely, Enron). The dataset propertiestaown in Table 3.

Metrics We measure the distortion introduced by the algorithm vidricge defined
below, which are commonly studied in the social networlkéitare [1].

1. Clustering Coefficient (CC): A measure oftriadic closure Social networks are
known to have significant triadic closure (friends of a parsoe also likely to know
each other). More formally, for all ordered triplesv, w € V,

[{u,v,w €V : (u,v) € EA(u,w) € ENA (v,w) € E}]
I{(u,v,w eV : (u,v) € EA (u,w) € B}

2. Hop Plot: The connectivity of a graph can be modeled usingoa plot A hop
plot studies reachability for each path lengthFor &, the hop plot displays, summed
over all vertices, the number of nodes reachable using pdtlength at mosk. The
maximum value for any value dfis n? wheren is the number of vertices in the graph.
The smallest value df for which the maximum value af? is reached is theiameter

of the social network, the path length using which any twoesod the graph can reach
each other. Changing or distorting the connectivity of gprdrastically changes the
hop plot shape. This is the main motivation behind studyirgge plots.

3. Average Path Length (APL): The expected path length between any two randomly
chosen connected vertices. This metric is highly relevarit iz directly related to the
six degrees of separatian social networks [13]. It can be read from a hop plot, but is
interesting in its own right. Define a predic#téu, v) to betrueif « andv are connected

in the graph andfalse if they are not connected. Defi@P = {(u,v) : C(u,v) =
true} to be the set of all the pairs of vertices that are connecteenT

> (uwyecp PathLength(u, v)
[P |

cC =

APL =

Setup A java implementatiod was used to measure the distortion based on the metrics
for the five chosen datasets defined earlier in this sectiba.r&sulting graphs were

3 Available athttp://webhome.csc.uvic.ca/ ~schester/
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Fig. 1. Results - All Datasets
manually verified to bé&-anonymous. All experiments were performed on a quad-core
Intel Xeon5140 2.33G H z processor withtM B of L2 cache andG B of RAM.

4.2 Results and Discussion

Figure 1 show how the metrics of the resulting graphs oveyingrk compare to those
of the original graphs for the five datasets in the experialesttidy. We vary: from
k = 0.25 up t02.00% of n for our experiments, maintaining that< d. For Enron,
2% of the number of nodes still translateskioalues of720, which is substantial for
the context, providing a reidentification probability(14%.
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Distortion Performance From the plots in Figure 1, it can be observed that the val-
ues of clustering coefficient [Figures 1 (a),(c),(e)] in thistorted graphs areloseto
the corresponding values before distortion. This holdsABL, too, but we omit the
figures for space. For the largest dataset (Enron), evennfexeceme value of: (at
2%), these values are very close to the ones before distoflmaNet Science dataset
nicely depicts pathological behaviour, still quite goodherein the densest nodes in the
network are not connected to each other. By necessity, amalppartitioning of the
graph into groups each containing at leastertices will group together these dense
and disconnected vertices and create much shorter pathgyththe graph.

By observing the hop plots [Figures 1 (b),(d),(f)], it cand®en that the shape is
very similar for all values of. Of course, due to the addition of new nodes, the diameter
and the maximuny-axis value necessarily increase.

Running Time For the largest dataset (Enron), the running time over fiaéstwas at
worst70s to anonymize the graph. The naive computation of the metimis20 to 30
minutes each. The times on smaller graphs were much lowehaddhe same trend
where the computation of the metrics dominated the runrime.t
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