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Abstract. With an abundance of social network data being released, theneed
to protect sensitive information within these networks hasbecome an important
concern of data publishers. In this paper we focus on the popular notion ofk-
anonymization as applied to node degrees in a social network. Given such a
networkN , the problem we study is to transformN to N ′, such that the de-
gree of each node inN ′ is attained by at leastk − 1 other nodes inN ′. Apart
from previous work, we permit modifications to the node set, rather than the edge
set, and this offers unique advantages with respect to the utility of the released
anonymized network. We study both vertex-labeled and unlabeled graphs, since
instances of each occur in real-world social networks. Under the constraint of
minimum node additions, we show that on vertex-labeled graphs, the problem is
NP-complete. For unlabeled graphs, we give an efficient (near-linear) algorithm
and show that it gives solutions that are optimal modulok, a guarantee that is
novel in the literature. Additionally, we demonstrate empirically that commonly-
studied structural properties of the network, such as clustering coefficient, are
quite minorly distorted by the anonymization procedure.
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1 Introduction

Social networks are a natural phenomenon and as such have been studied for a long
time by sociologists, anthropologists, and biologists. But the recent explosion of web
applications that have social links either implicit (e.g.,Amazon and IMDB) or explicit
(e.g., Facebook and Twitter) has substantially simplified the difficult preprocessing step
of producing their underlying graphs. Consequently, the opportunity for analyzing and
mining these networks has become widespread.

From a high level view, there are two general families of methods for achieving net-
work data privacy. The first family encompasses “data anonymization” methods. These
methods first transform the data and then release them. The data is thus made available
for unconstrained analysis. The second family encompasses“privacy-aware computa-
tion” methods, which do not release data, but, rather, only the output of an analysis
computation. The released output is such that it is very difficult to infer from it any
information about an individual input datum. The relatively recent differentially-private
methods (cf. [3–5,11]) all belong in this family. Both families of methods have natural
pros and cons. Methods in the first family give complete freedom to the analysts to per-
form any analysis they wish on the released data. However, they can be more vulnerable
to attack. On the other hand, methods in the second family canprotect the data better,
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but in the end do not release data, only carefully computed private outputs of specific
computations. This obviously limits further analysis. Ourapproach belongs in the first
family. Our goal is to anonymize social networks without significantly distorting them.

Research into network anonymization has gathered some momentum in the past five
years, with an evolution towards stronger adversarial models, that is, towards assuming
the adversary has more knowledge. While requisite, it is outpacing research into pro-
tecting against the adversaries that have already been proposed; our hardness results in
this paper combined with the hardness result of Zhou and Pei [18] demonstrate that un-
derstanding simpler models is very important because extending them could potentially
be infeasible. Additionally, in some settings, simpler adversarial models may be suffi-
cient and if the anonymization procedures have different complexities, then the ability
to consider trade-offs is paramount. Thus, in this researchwe return to a more modest
adversary, one who knows only degree-based information, soas to more thoroughly
develop the foundations on which research into stronger adversarial models and the
interplay between levels of adversarial knowledge can be built. While most anonymiza-
tion research studies unlabeled graphs, existing algorithms do not provide optimality
guarantees, so the only known complexity results are for vertex-labeled graphs. Here,
we study both important classes.

In previous studies, networks are typically anonymized by exclusively introducing
new edges into the network. This approach is justified under the assumption that one
does not wish to add new entities into the network, but we challenge this assumption.
Even for microdata, the analysis that one wishes to do with the network data is at the
aggregate level, so the introduction of new nodes does not necessarily have an adverse
affect. To the contrary, adding new nodes with similar properties could better preserve
aggregate measures than will distorting the existing nodes.

In fact, one ought to consider the intended use of the anonymized network prior to
conducting the anonymization, because this affects which characteristics should be pre-
served. To facilitate this choice, it is important to develop alternate approaches with re-
spective advantages. We introduce the natural complement to currentk-anonymization,
an approach of augmenting the network with new vertices which are connected to them-
selves and to the original graph. In this manner, one guarantees, for example, not to
increase the size of any clique by more than one, and is very unlikely to do anything but
introduce new 2- and 3-cliques. If large cliques are of particular interest to an analyst,
this is clearly preferable, because adding edges among original vertices can produce
false positives. Alternatively, for analysis tasks that involve monotone properties such
as independent sets, the distortion is more controlled in that vertex addition can only
introduce false positives, whereas edge addition can introduce false negatives, too.

1.1 Related Work

The most closely related work to this paper is the research ofLiu and Terzi [10] who also
study the same adversarial model. The distinction from our work is that they constrain
the problem by assuming an immutable vertex set, whereas we place constraints on
the edge set. This distinction renders the work incomparable, each preserving different
structural properties as stated above.



3

Zhou and Pei [18] define a notion ofk-anonymity on graphs so that nodes in an
anonymized group will have isomorphic neighbourhoods. They show that anonymizing
a graph under their definition using a minimal number of edge additions is NP-hard.
Other landmark papers in the field [7, 17, 14, 2, 16] have introduced models of protect-
ing from progressively stronger adversarial knowledge. These are summarized in Ta-
ble 1. For all of these adversarial models, it is important tounderstand the challenges
in producing networks anonymized with respect to those models. Deepening the under-
standing ofk-anonymity here in this paper is an important step in that direction.

The other work that is very closely related to our research isof König, Erdős, and
Kelly [6, 9], since our work extends their graph theoretic results. König showed that,
given a graphGwith maximum degreed, it is always possible to make ad-regular graph
H by adding vertices and adding edges whose endpoints must include at least one new
vertex. In a subsequent paper, Erdős and Kelly gave an efficient algorithm to determine
how many vertices must be added to obtain such a graphH . We generalize this problem
with two relaxations. First, we may not require that all nodes of a graph be anonymized.
For example, in the Amazon database, there are two types of vertices, customers and
products, and the database owner could be interested only inanonymizing the customer
vertices. Second, wek-anonymize the graph for an arbitraryk (which we typically
assume to be some reasonably small value≪ d).

Table 1.Summarisation of Related Work

Authors Adversarial Model Graph Type Permitted Operations

König, Erdős & Kelly [6, 9]n-Anonymization Unlabeled Vertex/Edge Addition
Liu and Terzi [10] k-Anonymization Unlabeled Edge Addition/Removal
Zhou & Pei [18] k-N’hood Anon. Vertex-Labeled Edge Addition
Cheng et al. [2] k-Isomorphism Unlabeled Edge Addition/Removal
Hay et al. [7] Automorphic Equiv.Unlabeled Label Modifications
Wu et al. [16] k-Symmetry Unlabeled Vertex/Edge Addition
Tripathy and Panda [15] k-N’hood Anon Vertex-Labeled Edge Addition
Kapron et al. [8] k-Label Seq. Anon.Vertex/Edge LabeledEdge Addition

This Paper k-Anonymization
Vertex-Labeled

Vertex Addition
and Unlabeled

1.2 Our Results

We study the problem ofk-anonymizing a graph by augmenting it with additional ver-
tices, both for vertex-labeled and for unlabeled graphs. Our main results are as follows:

• We prove that on vertex-labeled graphs,k-anonymization with a constant number of
vertex additions is NP-complete by giving a reduction to a hard table anonymization
problem (§ 2).

• For unlabeled graphs, we introduce an efficient (i.e.,O(nk)) k-anonymization al-
gorithm based on dynamic programming and prove that it produces a solution that
is optimal modulok (§ 3).

• We perform experiments with several well-known network datasets to demonstrate
empirically that our vertex-addition approach tok-anonymization quite minimally
distorts the original graph with respect to standard parameters like clustering coef-
ficient, average path length and connectivity, even ask approachesd (§ 4).



4

2 A Hardness Result for Vertex-Labeled Graphs

In this paper, we consider simple, undirected graphs in two settings: one in which the
vertices are labeled and the other in which they are not. The labeled graphs correspond
to social networks in which the nodes have identifiers or attributes. In this section we
define the problem ofk-degree-anonymizing vertex-labeled graphs and provide a result
that the problem is NP-complete.

We start with the definition of a vertex-labeled graph and a label sequence.
Definition 1. A vertex-labeled graph is a simple, undirected graphG = (V,E, L,L)
whereV is a set of vertices,E ⊆ V × V is the set of edges,L is a set of labels andL
is a labeling function,L : V → L, that assigns a label to every vertex inV .

Definition 2. For v ∈ V , we say thatSv = (l1, l2, . . . , lm) is a label sequence forv if
it corresponds to some ordering of the labels ofv and the vertices that are adjacent to
v. We will consider label sequences of vertices to be equivalent up to reordering.

Then,k-anonymity for labeled graphs relates to the uniqueness of label sequences:

Definition 3. Given a vertex-labeled graphG = (V,E), a subsetX ⊆ V of vertices is
k-anonymous inG if for every vertexv ∈ X , there are at leastk − 1 other vertices in
X whose label sequence is the same as the label sequence ofv.

Thus, the vertex-labeled problem we study in this paper is defined as:

LABELED SUBGRAPH ANONYMIZATION

Input: A vertex-labeled graphG = (V,E, L,L), a setX ⊆ V of vertices, integerst
andk ≥ 3.
Question: Is there a vertex-labeled graphG′ = (V ∪ V ′, E ∪ E′, L′,L′) such that
|V ′| ≤ t, E′ ⊆ (V × V ′) ∪ (V ′ × V ′), L′

|V = L, L′
|V = L andX is k-anonymous in

G′?
That is, can wek-anonymizeX by adding at mostt new labeled vertices? New

edges are allowed between an old vertex and a new vertex or between new vertices.

Theorem 1. Labeled Subgraph Anonymization is NP-complete.

The proof of the hardness result depends on building a polynomial time reduc-
tion from thek-ATTRIBUTE-ANONYMITY table anonymization problem that was
demonstrated by Meyerson and Williams [12] to be NP-hard. However, in the interest
of space, we omit the details of the proof. Similar to the previous section, we start with
some definitions to clarify the problem and introduce some notation in Table 2.

3 An Efficient Algorithm for Unlabeled Graphs

In the section we consider another type of graphs, those which do not have labels on the
vertices, and give an efficient algorithm for anonymizing them.
Definition 4. Given a graphG = (V,E) with V = {v1, v2, . . . , vn} and d(vi) =
|{u ∈ V : (u, vi) ∈ E}|, the degree sequence ofG is defined to be the sequence
(d(v1), d(v2), . . . , d(vn)).
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Table 2.Notation we use to describe unlabeled graphs

Name Notation Definition

Degree ofu d(u) ||{v ∈ V : (u, v) ∈ E}||
Start Index ofu start(u) First vertex in the same partition asu
Deficiency ofu def(u) d(start(u))− d(u)
Total DeficiencyN/A

∑
v∈V

def(v)
Max Deficiency N/A maxv∈V def(v)
i’th Vertex v(i) Vertex with thei′th highest degree, except for arbitrary tie-breaks

Throughout this paper, we assume degree sequences to be sorted in descending
order for the simplicity in describing our algorithm. For unlabeled graphs,k-anonymity
is then as defined by Liu and Terzi [10].

Definition 5. Given a graphG = (V,E), a subsetX ⊆ V is k-anonymous inG if for
everyv ∈ X , there are at leastk − 1 other vertices inX with the same degree asv.

Definition 6. A partitioning of a degree sequence(d1, d2, . . ., dn) is an ordered col-
lection ofi + 1 disjoint subsequences of size at leastk, given as((d1, d2, . . ., dk+c1),
(dk+c1+1, . . ., d2k+c1+c2), . . ., (dik+c1+...+ci+1, . . ., cn)), with all cj ≥ 0.

The anonymization algorithm, given in Algorithm 1, infers apolynomial time opti-
mal algorithm for the anonymization of just the original graph, but we leave the infer-
ence to the reader, given space constraints. The eventual outcome of the entire algorithm
is that the newly added vertices are anonymized as well.

3.1 Partitioning the Original Graph’s Vertices

The first step of our algorithm is to identify which vertices of the original graph should
be anonymized into the same equivalence class by partitioning the degree sequence into
subsequences of length at leastk. This recurrence differs from the similar degree se-
quence anonymization of Liu and Terzi [10], because our problem requires producing a
resultant partitioning that minimizes the max deficiency rather than the total deficiency.
Two simple propositions are thus very useful:

Proposition 1 The deficiency of a subsequence containing a highest degree of di and
a smallest degree ofdj will be less or equal to the deficiency of any subsequence con-
tainingdi and anydj+c or containingdj and anydi−c, ∀c ∈ N.

Proposition 2 For any subsequence(di, . . ., d2k+c), the max deficiency is greater or
equal to the subsequences(di, . . ., dk+c′), (dk+c′+1,. . .,d2k+c). That is to say, it never
produces a higher max deficiency when one splits a subsequence.

Algorithm 1 k-Degree-Anonymization of Unlabeled Graphs
1: Optimally partition degree sequence ofG (§3.1)
2: Augment graph withm (or so) dummy vertices (§3.2)
3: Connect original graph vertices to new dummy vertices (§3.2)
4: Insert inter-dummy-vertex edges to anonymize dummies, too (§3.3)
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Both propositions follow trivially from the fact that the degree sequences are as-
sumed to be sorted and that max deficiency (i.e., difference)is transitive. We use them
to produce an incremental algorithm described by the following recursion. Let

A = max(C(1, x− k), ∆(x− k + 1, x))

B = max(C(1,S(x − 1)), ∆(S(x − 1) + 1, x))

Then
∆(x, y) = dx − dy

S(x) = 1, if x < 2k.

S(x) = S(x − 1), if x ≥ 2k and A < B.

S(x) = x− k + 1, if x ≥ 2k and A ≥ B.

C(1, x) = ∆(1, x), if x < 2k.

C(1, x) = min(max(A,B)), if x ≥ 2k.

Stated more intuitively, the algorithm computes the ideal partitioning from the left
by incrementally adding the next degree to the right of the sequence. The∆ function
computes the deficiency of a particular partition; theS function keeps track of where
x’s partition starts, shouldx be the smallest degree in it; and theC function computes
the overall max deficiency (cost) of the best possible partitioning up to thex′th element.

If there are fewer than2k degrees in the sequence, there is not any choice but to
group them all together. If, however, there are more than2k degrees, then there are
two ways in which the partitioning can be extended. Either the new rightmost, smallest
degree can be added to the rightmost partition, or a new partition can be formed with
thek − 1 rightmost degrees and the new degree.

It is a result of Proposition 1 that, in general, the new degree will clearly be added
to the right. Adding the new degree to any other partition would produce a greater or
equal max deficiency.

For the example graph with a degree sequence of(5, 3, 3, 2, 1, 1, 1), the best parti-
tioning of this degree sequence is((5, 3, 3), (2, 1, 1, 1)), as given when the recursion is
evaluated. This algorithm yields the following lemma:

Lemma 1. The degree sequence partitioning of an unlabeled graph can be solved op-
timally for vertex addition inO(n) time andO(n) space.

It is important to note that thetotal deficiency indicates precisely how many edges
need to be added in order to anonymize the original graph vertices:

Lemma 2. Thetotal deficiency of an optimal degree sequence partitioning into sub-
sequences of length≥ k and< 2k is upper-bounded by(n− 1)(2k − 1).

3.2 Anonymizing the Original Graph’s Vertices

To anonymize the original graph’s vertices, we must addressboth themax deficiency

and thetotal deficiency. To balance out amax deficiency of m requires adding
at leastm dummy vertices. Ergo, we typically add exactlym additional vertices; but
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occasionally, as we detail later, we augment the graph with up tom′+1 vertices instead,
wherem′ is the larger ofm andk.

There is a nice characteristic of our interim solution afterthe dynamic program-
ming. Effectively, we need to come up with a bipartite graph between original nodes
and additional nodes, starting from scratch. We proceed as follows. We order them
additional vertices. We then connect the firstdef(v(1)) additional vertices to the orig-
inal vertexv(1), the nextdef(v(2)) additional vertices tov(2), and so on until allm
additional vertices have an edge. This process ends at somev(i).

We continue with another iteration, this time starting atv(i) and with subsequent
iterations until we have satisfied the deficiency of every node in the original graph.

Because of the nature of thiscyclingprocedure, always adding an edge to an addi-
tional vertex that has not yet been visited on that particular iteration, we can guarantee
that, if d iterations are required, somem− x additional vertices will have degreed and
the remainingx will have degreed − 1, for some0 ≤ x < m. Because we serviced
each original vertex in turn, no edge can be accidentally added twice.

3.3 Ensuring thek-Anonymity of the Additional Vertices

The last detail is to ensure that all the new vertices are themselvesk-anonymous. Recall
thatm−x of the new vertices have degreed and the otherx have degreed−1, for some
0 ≤ x < m. Furthermore,d andx can both be computed in advance of the edge addition
step, sinced = floor( total deficiency

m
) andm− x = total deficiency (mod m). As a

first recourse, if groups of vertices of degreed andd − 1 are both present in the set of
anonymized original nodes, nothing needs be done.

If eitherd or d− 1 is not present in the anonymized degree sequence, we explicitly
anonymize the new vertices. This scenario can be detected after partitioning the degree
sequence, and we then choose to instead augment the graph with m′ = min(m, k)
additional vertices. This ensures that if we constructH such that all additional vertices
have the same degree, they will themselves form ak-anonymous group.

For thex vertices with degreed − 1, we randomly pair them and add an edge
between each pair. Ifx is even, this is sufficient: allm′ additional vertices have degree
d.

If, instead,x is odd, then this pairing will leave out one last vertex, callit r. If m′−1
is even (and at least 2), then we can add an edge fromr to each of two other additional
vertices so that all three have degreed+1. The remainingm′−3 vertices with degreed
can then all be paired off again (sincem′ − 3 is even) and all additional vertices will be
anonymized with degreed+ 1. If, on the other handm′ − 1 is odd, then we simply use
an extra additional vertex (m′+1) at the beginning of the second phase of the algorithm.

Consequently, we have the following theorem:

Theorem 2. Our algorithm cank-anonymize a graph by introducing a number of ad-
ditional vertices optimal modulok in O(nk) time andO(n) space.

4 Experimental Results
In the previous section, we presented an algorithm and proved its asymptotic efficiency
and worst-case optimality. In the introduction, we mentioned that certain structural
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Table 3.Structural Properties of the Datasets

Graph NodesEdges APL CC

Enron 366921838313.39 0.09
Power Grid 4941 6594 18.990.10
Net Science1589 2742 0.35 0.69

properties of graphs are either unaffected, or controllably affected, by a vertex-addition
approach. Here we illustrate that on standard benchmark datasets, other commonly
studied aggregate structural properties are quite minorlydistorted by anonymization,
even ask grows quite large. This is important because preserving privacy (throughk-
anonymity) is not especially useful if it results in tremendously misleading output.

4.1 Metrics and Setup
Datasets We select three diverse datasets, ranging from a power grid network which
models the connectivity of generators and substations to anemail communication net-
work in a company (namely, Enron). The dataset properties are shown in Table 3.

Metrics We measure the distortion introduced by the algorithm via metrics, defined
below, which are commonly studied in the social network literature [1].
1. Clustering Coefficient (CC): A measure oftriadic closure. Social networks are
known to have significant triadic closure (friends of a person are also likely to know
each other). More formally, for all ordered triplesu, v, w ∈ V ,

CC =
||{u, v, w ∈ V : (u, v) ∈ E ∧ (u,w) ∈ E ∧ (v, w) ∈ E}||

||{(u, v, w ∈ V : (u, v) ∈ E ∧ (u,w) ∈ E}||

2. Hop Plot: The connectivity of a graph can be modeled using ahop plot. A hop
plot studies reachability for each path lengthk. Fork, the hop plot displays, summed
over all vertices, the number of nodes reachable using pathsof length at mostk. The
maximum value for any value ofk is n2 wheren is the number of vertices in the graph.
The smallest value ofk for which the maximum value ofn2 is reached is thediameter
of the social network, the path length using which any two nodes in the graph can reach
each other. Changing or distorting the connectivity of a graph drastically changes the
hop plot shape. This is the main motivation behind studying these plots.
3. Average Path Length (APL):The expected path length between any two randomly
chosen connected vertices. This metric is highly relevant as it is directly related to the
six degrees of separationin social networks [13]. It can be read from a hop plot, but is
interesting in its own right. Define a predicateC(u, v) to betrue if u andv are connected
in the graph andfalse if they are not connected. DefineCP = {(u, v) : C(u, v) =
true} to be the set of all the pairs of vertices that are connected. Then:

APL =

∑
(u,v)∈CP PathLength(u, v)

| CP |

Setup A java implementation3 was used to measure the distortion based on the metrics
for the five chosen datasets defined earlier in this section. The resulting graphs were

3 Available athttp://webhome.csc.uvic.ca/ ˜ schester/
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Fig. 1.Results - All Datasets

manually verified to bek-anonymous. All experiments were performed on a quad-core
Intel Xeon5140 2.33GHz processor with4MB of L2 cache and6GB of RAM.

4.2 Results and Discussion

Figure 1 show how the metrics of the resulting graphs over varying k compare to those
of the original graphs for the five datasets in the experimental study. We varyk from
k = 0.25 up to2.00% of n for our experiments, maintaining thatk ≪ d. For Enron,
2% of the number of nodes still translates tok values of720, which is substantial for
the context, providing a reidentification probability of0.14%.
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Distortion Performance From the plots in Figure 1, it can be observed that the val-
ues of clustering coefficient [Figures 1 (a),(c),(e)] in thedistorted graphs arecloseto
the corresponding values before distortion. This holds forAPL, too, but we omit the
figures for space. For the largest dataset (Enron), even for an extreme value ofk (at
2%), these values are very close to the ones before distortion.The Net Science dataset
nicely depicts pathological behaviour, still quite good, wherein the densest nodes in the
network are not connected to each other. By necessity, an optimal partitioning of the
graph into groups each containing at leastk vertices will group together these dense
and disconnected vertices and create much shorter paths through the graph.

By observing the hop plots [Figures 1 (b),(d),(f)], it can beseen that the shape is
very similar for all values ofk. Of course, due to the addition of new nodes, the diameter
and the maximumy-axis value necessarily increase.

Running Time For the largest dataset (Enron), the running time over five trials was at
worst70s to anonymize the graph. The naive computation of the metricstook20 to 30
minutes each. The times on smaller graphs were much lower andhad the same trend
where the computation of the metrics dominated the running time.
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