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Abstract. Database management currently assumes a relative stability
of database structures and supports user viewpoints through a number
of views. New users must either adopt their data demand to existing
views or issue a request for support of their demands. The support for
the second option is not feasible whenever user communities often change
or users agile change their viewpoints. Further applications continuously
evolve. This evolution also results in change requests to database struc-
tures, to database views and to database features. We support evolution
of databases and changes of user viewpoints by a generic database sys-
tem, and automatic generation of generation of views. This approach
supports modification of the database according to the special viewpoint
of users. Queries issued by the user are transformed to generic database
queries. Results that are computed for these queries are translated back
to user-specific answers.

Key words: knowledge model, semantic data analytics, exploratory se-
mantic searching and browsing, database modeling, scientific data man-
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1 Motivating Applications

1.1 CIDOC-CRM

The International Committee on Documentation of the International Council of
Museums (ICOM-CIDOC) focuses on the documentation requirements and stan-
dards of museums, archives, and similar organisations. The CIDOC Conceptual
Reference Model (CRM) [4] provides an extensible ontology for concepts and
information in cultural heritage and museum documentation. It became an in-
ternational standard (ISO 21127:2006) for the controlled exchange of cultural
heritage information.

The goal of CIDOC-CRM is to provide the semantic definitions and clarifica-
tions needed to transform disparate, localized information sources into a coherent
global resource, be it within an institution, an intranet, or on the Internet. In
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order to achieve this, the CRM adopts a supra-institutional perspective, ab-
stracted from any particular local context. This abstraction is derived from the
underlying semantics of the database schemata and document structures found
in museum and cultural heritage documentation. The CRM is descriptive rather
than prescriptive: it explains the logic of what cultural heritage institutions do
in fact document rather than telling them what they should document. Thus it
enables semantic interoperability.

This CIDOC-CRM model is a typical example of a pixel schema. Pixel
schemata are simple typed, heterogeneous, agile evolving and large schemata
with relatively small populations. A diagram [3] displays one approach of its
main structure without providing an insight into the structure of each of more
than 240 entity and relationship types. Its printout in the A0 format results in
a pixel picture that is not surveyable.

An example for a CIDOC-CRM conform description of an object is given
at a work [7] by Doerr. In these example the subject is an Epitaphios shown
in the Museum Benaki. In Figure 1 we give an overview about the (shortened)
main structure of that object Epitaphios. Each node containing E[0-9]* in the
label like E19.Physical Object defines a type in the CIDOC-CRM standard. The
labels on the edges define relationships between entities.

Fig. 1. Main structure of CIDOC-CRM structure for Epitaphios

1.2 Related Work

Approaches for storage, retrieval, and description of data with heterogeneous
and evolving types exist, e.g. Amazon’s SimpleDB. The data of different users
are wrapped and stored in an on-line database. A user of Amazon’s SimpleDB
can define his/her own data structure. Access to the data is given by predefined
APIs. The Resource Description Framework (RDF) from W3C is described e.g.
by Klyne’s work [9]. An RDF expression typically connects two resources by
a predicate. Each subject or object can be a RDF expression by itself, and a
resource is a link for a source or a literal, that contains a value. The relationships
between a subject and an object are limited to binary relationships. But it is
not possible to decompose all relationships into binary relationships without the
loss of information as shown in [5] by Date et al. West gives some hints for a
good modelling of a stable, but flexible to changing business practices, database
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schema, that can be shared by different software products in his work [14]. But
these principles are based on the knowledge, which data types are needed by
the user within the model for all cooperating software products at the time
of developing the database schema. Different normal forms are defined for the
developing of database structures. Fagin defined in his work [8] a domain/key
normal form (DK/NF). A relation schema in first normal form is in the DK/NF,
if each constraint can be inferred from key and domain. Date presents in his
work [6] a definition for the 6th normal form (6NF). A relation type fulfills
the 6NF, if it consists of a single key, plus at least one additional attribute. A
normalisation of a relational database model to the 6NF results in a huge set of
entities with lots of different relationships between them. We call such a model
in the graphical representation a pixel schema.

1.3 Outline of the Paper

In this paper we define a generic database schema for CIDOC-CRM data man-
agement. We start in Section 2 by describing the theoretical background for our
generic databases. We characterise the binarisation of entity and relationship
types and the generic functions. Furthermore, we present the bulk composition
type as a data exchange format between a database and an application and we
define generic views for import and export. In Section 3 we present a practical so-
lution for our ideas. This includes an architecture for a system, the presentation
of our generic database schema in the (H)ERM notation and the depending rela-
tional realisation, and the explanation of user query transformation on a generic
database. At last, we summarise in Section 4 the work and give an outlook for
future research.

2 Generic Database Modelling

In following subsections we define the background of our approach towards a
generic database for CIDOC-CRM conform data management. We specify the
restrictions and the challenges of the application domain, define the generic
functions and the bulk type for the communication between a database and an
application. At last we present the views for the im- and export of data.

2.1 Problems to be Solved for Pixel Schemata

Pixel schemata are challenging current technology due to their evolution. At
the same time they can be handled by everybody who knows basics of database
technology. However, they are a nightmare for everybody who wants to share or
integrate data or who strives for developing interfaces for data import or export.
We need a sophisticated programming support for such agile evolution.

A rather simple but heterogeneous type structure is used by pixel schemata.
Each type typically has less than four attributes. We may combine these types
by horizontal denormalisation as given by Thalheim in his work [13].
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Pixel schemata contain their own metadata within the naming structure and
thus hint to its developers and the kind of types used. Thus, we need an explicit
reference to the source and to the kind of type.

Databases for pixel schemata are populated at different periods of time in
a different form. The quality of the data depends on the import of the data to
the database. Data may be cleansed by other people. Therefore, we should use
temporal data for explicit time reference.

The following restrictions observed for the application domain are essential
for our approach.

Simple heterogeneous application types: There are a lot of different entity and re-
lationship types in the application domain, that are defined with a relatively
small set of attributes.

Evolving application types: The practical sciences produce a rapidly evolving
amount of different application types. New types are created, older types are
changed or will be never used again.

Simple relationship constraints: The cardinality constraints between two or more
entities are (0,m) or (1,n).

Simple functional dependencies: The functional dependencies in the entity and
relationship types are simple. That means, entity types fulfill the DK/NF.

Form-oriented input and output: The input data for the database and the output
data requested by users is gathered in defined XML or HTML forms.

Small query result sets: A result set for a user query is very small.

2.2 Binarisation of Relations.

It is well known in mathematics that the language of binary predicates will be
universal if identifiers are permitted. Binarisation is also the basis for the triple
format (Type, Attribute, Value) that is widely used in Computer Engineering.
For instance, the job control language JCL uses such triples for universal com-
mands. In a similar form, RDF is based on such triples.

Consider a predicate in the topic of the storage of an archaeological find
Storage(Place,Building,Room). This can be enhanced to a predicate with an
identifier-backed predicate Storage(ID, P lace,Building,Room). The ID-enhanced
predicate can be replaced by a set of three predicates Storage P lace(ID, P lace),
Storage Building(ID,Building), and Storage Room(ID,Room).

These predicates carry the same information if additional integrity con-
straints are applied:

Storage P lace[ID] ⊆⊇ Storage Building[ID] ⊆⊇ Storage Room[ID]

If this set of paired inclusion constraints is maintained in the database then
the two databases become equivalent. We call this set of constraints for a de-
composed type unit constraints.

A second kind of constraints is necessary for maintenance of identifiers for
enhanced types. We may require that identifier sets of enhanced predicates are
disjoint. We call these constraints exclusivity constraints.



A Generic Database Schema 5

Therefore, we may use binary predicates as long as we are able to maintain
unit and exclusivity constraints. This integrity constraint enforcement may be
transferred to database functions that offer the unique opportunity for database
changes.

2.3 Generic Functions.

Bienemann et al. introduce in their work [1] the conception of generic functions
and generic workflows. Similar to situations in applications, tasks may be spec-
ified on the basis of a general description of a possible way for satisfaction and
completion. In traditional function and workflow development approaches, a task
is supported by its own workflow and functions. The traditional approach will
lead to a huge number of processes that have a similar behaviour.

Instead of these classical approaches we use a different way. We associate a
task with a generic workflow and generic functions that accommodate all possible
different ways of completing the task. The generic workflow may be unfolded to
a workflow suite by consideration of the context.

The formal definition of generic functions uses function applications and
functionalisations. Consider types t1, . . . , tk, t

′

1
, . . . , t′n for k, n ∈ N. Consider

Dom := Colt1 × . . .×Coltk and Rng := Colt
′

1 × . . .×Colt
′

n to be sets of tuples
of collections of objects of the corresponding types, for k, n ∈ N. Consider a func-
tion f : Dom→ Rng mapping a tuple of collections of types t1, . . . , tk into a tu-
ple of collections of types t′

1
, . . . , t′n. Consider two formulae φ, ψ defined over the

domain and the co-domain of f , respectively. The quintuple (Dom,φ, f, ψ,Rng)
is called a function application with precondition φ and postcondition ψ [2].
Function applications can be defined recursively by means of operators of the
function algebra of choice, i.e., (Dom,φ, θ(F1, . . . , Fm), ψ,Rng) is a function ap-
plication, if θ is a corresponding operator of the function algebra, and F1, . . . , Fm

are function applications.
A functionalisation is a quadruple (S,F , Σ, s0) with

1. a specification of structuring denoted by S = (S, V ) and consisting of a
database schema S = (TS , ΣS) with TS being a set of types according to
the type system as stated above, and ΣS being a set of static integrity
constraints, and a set of views V upon schema S defining collections in
domains, and co-domains of function applications,

2. a function application F ,
3. a set of dynamic integrity constraints Σ on S,
4. a distinguished initial state s0.

Dimensions of functionalisation are refinement of structuring, context embed-
ding, and instantiation. Any function may be adapted to the specific needs by
application of one of these refinement strategies.

2.4 The Bulk Composition.

A bulk composition builds a unified container for instantiations of different types
and is used as a transfer type between different schemes or applications. A de-
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scription of a bulk composition is given in a work [10] from Ma et al.. The bulk
composition type BC is a triple (t, ID, l) with

1. t as a name of a type,
2. an identifier ID for a type instantiation,
3. and a set of attributes l = {A1, A2, . . .}.

Look at the given example Storage(ID, P lace,Building,Room). We identify
the type t : Storage, with the given identifier id : ID and the set of attributes l =
{Place,Building,Room}. A tuple bc = (Storage, ID, {Place,Building,Room}) is
the result.

The bulk composition type is used as a uniform type and can contain any
instantiation of different types. Each type has its own attribute list.

2.5 Generic Views for Import and Export of Data.

In database design one has to specify the requirements for data. The result is
a conceptual data model with entities, attributes, relationships, and integrity
constraints. This conceptual model is the basis for a logical data model with
tables, columns, keys, and triggers of a database. Refinement of the conceptual
model results in a refinement of the logical model. We can use views to define
entities and relationships based on a static relational database model.

Terwilliger describes in his thesis [12] a set of transformations for the trans-
formation process from one database schema S to another database schema
S′. In our case the two transformations UNPIV OT and PIV OT are of spe-
cial interest. The transformation UNPIV OT translates instances of a type T
into a key-attribute-value set, and the transformation PIV OT translates a key-
attribute-value set into instances of a type T .

We adopt these transformations and define a set of generic views for im-
port of CIDOC-CRM conform data VI. The views are based on a static rela-
tion schema of the database. We distinguish between views for importing enti-
ties and views for importing relationships. A view for importing entities V Ie is
defined as a triple (type(V Ie), id(V Ie), attr(V Ie)), where V Ie is a view name
for importing entities, type(V Ie) means the type of an entity, attr(V Ie) is a
set of attributes and id(V Ie) is a non-empty subset of attr(V Ie) called identi-
fier of the entity. We define a view for importing relationships V Ir as a triple
(type(V Ir), ent(V Ir), attr(V Ir)), where V Ir is a view name for importing rela-
tionships, type(V Ir) means the type of a relationship type, attr(V Ir) is a set
of attributes and ent(V Ir) is a non-empty sequence of entity types. Each entity
type plays its own defined role in a relationship type.

Similar to the definition of a generic view for import VI we specify a generic
view for export of CIDOC-CRM conform data VE .

3 Realisation of Generic Databases

In this section we present the architecture of an actual implementation. Further-
more, we show our generic database schema in the (H)ERM notation and the
resulting relational realisation and query translations for searching the database.
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3.1 The V-Architecture Model

To handle objects described by the CIDOC-CRM standard, we developed a
system, which is based on a generic relational database schema. This architecture
is given in Figure 2. We use one function as an interface for data import, and one
function as an interface to receive a user query and build an answering result set.
Each interface has access to the set of views for import or export, which capsule
the relations of the database. The function scans the given request and chooses
the right views for answering. These views are not physically implemented in
the database. The view for import is generated by a generic function, that also
implements the UNPIV OT transformation. The simple views for export are
generated by a generic function. Furthermore, we can specify more complex
views for export by a physical definition in the DBMS. Such physical views are
needed in order to map different type hierarchies, and they are only readable. The
structure of attributes of these views is the same as in the underlying physical
relations. The physical views are listed in the system tables of a DBMS. Both
export views capsule the transformation PIV OT .

Fig. 2. The V-architecture for the generic database system

This architecture for the storing and searching of CIDOC-CRM conform data
can be enhanced by a system for the type definition and the type management
as shown by Rathje in his thesis [11].

3.2 Generic ER-Schemata and Relational Realisation

The generic views for import and export of CIDOC-CRM conform data and the
generic functions are based on a generic entity-relationship schema for CIDOC-
CRM conform data. The (H)ER schema is given in Figure 3 in the (H)ERM
notion. We give an explanation of the schema after that.

The ”Generic Entity Type”(GET) is used for the storage of the instantia-
tions of types. The attribute ”Entity Type”(E Type) stores the given view type
type(V Ie) for entities. The ”Generic Entity Type Attribute”(GETA) is used for
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GET

GET ID E Type

GETA

A Name

Bulk V alue

Kind
Source

T ime
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A Name

Source
Kind
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Role

Role ID R Name
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Source
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Fig. 3. Generic database schema in (H)ERM notion

the storage of the attribute values of instantiations of types. The attribute ”At-
tribute Name”(A Name) marks one of the attributes of the view type for the
entities attr(V I). The attribute ”Bulk Value”(Bulk Value) stores the value of
the attribute. Each instantiation of a generic entity type needs minimum one
instantiation of a generic entity type attribute, the identifier of an entity. The
”Generic Relationship Type”(GRT) is used for the storage of the instantiations
of relationships. The attribute ”Relationship Type”(R Type) stores the given
view type type(V Ir) for relationships. Similar to the generic entity type at-
tribute, there is a ”Generic Relationship Type Attribute”(GRTA) for storing
possible attributes of the view for the relationships attr(V I). In a relationship,
entities are referenced by a ”Role”(Role). The attribute ”Role Name”(R Name)
characterises the role of an instantiation of an entity in an instantiation of a re-
lationship. The role, an entity and a relationship are related in the relationship
type ”related”. In each instantiation of the type ”related”, a role identifies the
instantiation of an entity in an instantiation of an relationship.

The three meta attributes ”Source”, ”Time”, and ”Kind” are used to store
the source information, a timestamp of the creation or update of an information,
and a state of completion.

We use for declaration of the relational schema a table representation where
columns are given by the name and the value domain. We assume the existence
of a most general value domain, e.g., varchar.

The relational type for the ”Generic Entity Type” is stores tuples of entities
of an (H)ER model.

Generic GET ID E Type

Entity Type ID Type varchar

... ...

The relational type for the ”Generic Entity Type Attribute” stores tuples of
entity attributes of an (H)ER model.

Generic Entity GET ID A Name Bulk Value Kind Time Source

Type Attribute ID Type varchar varchar Ref Type timestamp Ref Type

... ... ... ... ... ...

In the relational type ”Generic Relationship Type” the relationship types of an
(H)ER model are mapped.
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Generic GRT ID R Type Kind Time Source

Relationship Type ID Type varchar Ref Type timestamp Ref Type

... ... ... ... ...

In the case of attributes on a relationship type of an (H)ER model we introduce
the relational type for the ”Generic Relationship Type Attributes”.

Generic Relationship GRT ID A Name Bulk Value Kind Time Source

Type Attribute ID Type varchar varchar Ref Type timestamp Ref Type

... ... ... ... ... ...

The relationship between entities of ”Generic Entity Type” and ”Generic Rela-
tionship Type” are mapped to the relational type of ”Related By Role”.

Related Role ID GET ID GRT ID R Name Kind Time Source

By Role ID Type ID Type ID Type varchar Ref Type timestamp Ref Type

... ... ... ... ... ... ...

3.3 Query Transformation

Users create queries about the conceptual model. These queries have to be trans-
formed into queries about the relational model. In our case we have a simple rela-
tional model, so the query has to be transformed into a query for the view model.
The views transform a query into a query on the underlying relational model.
The result of a query will be transformed into a tuple of the bulk composition.
Queries on the presented generic database schema are possible on the elements
of the bulk composition type. The following search conditions are possible:

– t: search for instantiations of entities or relationships by a given type
– ID: search for instantiations of entities by a given set of identifiers, or for

instantiations of relationships by a given sequence of identifying entities
– l: search for instantiations of entities or relationships by defining a set of

attributes

A combination of the three elements as a search condition is achievable.

4 Conclusion

4.1 Achievements of our Approach

The main trick of this approach is the direct data storage of means used in
the data dictionary instead of maintaining a data dictionary. This approach is
somehow similar to the approach used for Amazon’s Simple DB and generalizes
the RDF approach in a way that is easier to maintain. Our approach is not
useful for data-intensive science, but for easily manageable research projects
with mostly stringent scientific objectives represented by the self-defined single
views. Therefore, it supports clearly outlined, agile evolving, and even large
schemata while storing heterogeneous data. The integration of new simple entity
and relationship types is very easy because no new relations are needed in the
DBMS. The requirements for entity and relationship types are a small amount of
attributes, the functional dependencies in the types are reduced to the DK/NF.
Furthermore, we can not specify complex cardinality constraints, and we do not
expect mass updates or huge user queries. Only very complex views require a
physical redefinition in the database at the moment.
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4.2 Research Agenda

One open aspect in this paper is the definition of functions for updating or
deleting entities and relationships.

Furthermore, the CIDOC-CRM ontology contains a hierarchy of entity types.
The views for export need an explicit definition to consider these hierarchies in
user queries because the generic database is used for the storage of instantiations
of entities and relationships. Otherwise, we have a system for the definition of
forms for data input and output. We are working on integrating these hierarchy
definitions and user queries.

Furthermore, we will expand the query transformation to answer logical con-
nections in the search condition. At last, we need performance measures to avoid
bottlenecks in the usage of the system, if the amount of data is increasing.
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