
OWL as Yet Another Data Model to be Integrated

Leonid Kalinichenko1, Sergey Stupnikov
1

1 Institute of Informatics Problems, Russian Academy of Sciences

Vavilov st., 44 bldg. 2, 119333, Moscow, Russia

{leonidk, ssa}@ipi.ac.ru

Abstract. The paper1 argues against cultivation in the ontological community

of the opinion that ontologies are at the "semantic" level, whereas database

schema are models of data at the "logical" or "physical" level. The paper claims

that rather it would be right to consider OWL as yet another data model to be

integrated with other heterogeneous information models. Applying the

SYNTHESIS – an extensible language for heterogeneous information resource

integration and mediator definition – we show how a sound mapping of a

conceptual schemas expressed in OWL 2 QL into SYNTHESIS schemas can be

defined. The soundness of the mapping is justified. The paper shows also how

the integration of the OWL-defined databases into a SYNTHESIS-based

mediator can be provided.

Keywords: OWL 2 QL, SYNTHESIS, conceptual schema, mediator, database

integration, data model mapping.

1 Introduction

During last years the expansion of ontologies into the area of databases and

information systems becomes more and more noticeable. In the beginning of 90ies in

connection with the development of approaches for interoperability of the information

system components the ontologies were identified as essential constituents of the

semantically interoperable systems and were defined as a “formal, explicit

specification of a shared conceptualization” [7]. By 2010 [8] the ontologies evolved to

be viewed as a level of abstraction of data models, analogous to hierarchical and

relational models, intended for modeling knowledge about individuals. Ontologies are

said to be at the "semantic" level, whereas database schemas are models of data at the

"logical" or "physical" level. Due to such positioning, there is an intention to use

ontologies for integrating heterogeneous databases, enabling interoperability among

disparate systems.

Such expansion is based on a simple idea – to apply ontology as a (database)

conceptual schema. In a number of Web publications “ontology” is identified literally

1 This research has been done under the support of the RFBR (projects 10-07- 00342-а, 11-07-

00402-а) and the Program for fundamental research of the Presidium of RAS № 15П (project

4.2).

with “conceptual schema”: “In computer science, an ontology is the attempt to

formulate an exhaustive and rigorous conceptual schema within a given domain, a

typically hierarchical data structure containing all the relevant entities and their

relationships and rules within that domain”. This activity is accompanied with the

introduction of new terms, such as Ontology Based Information Systems (OBIS),

Ontology Based Data Access (OBDA), Ontology Based Data Integration (OBDI) [4].

The respective “ontology based technologies” assume usage of databases on the basis

of application domains conceptualization and relational database access mediated

with the conceptual view over the data. QuOnto system [1, 16] is a well-known

example of implementation of such approach. QuOnto supports reasoning over

ontologies expressed in a description logic of DL-Lite family [5] and answering union

of conjunctive queries over the external relational DBMS (such as Oracle, DB2, SQL

Server, MySQL, etc.). It is worth noting that before its execution, the query is

deductively expanded applying axioms of the conceptual schema and the inference

engine in the respective description logic. It is clearly seen that the researches in the

area of the ”ontology based” information systems are focused on the development of

the ontological languages for conceptual modeling, that is on the development of

conceptual data models based on description logics. The most visible results of such

works are reflected in the OWL 2 QL profile [6] based on the DL-LiteR logic.

In this paper we claim that in the context of databases and information systems

OWL, chosen in the paper as a W3C recommendation and widely used ontological

language [15], might be considered as yet another data model to be integrated with

another heterogeneous information resources in frame of more expressive languages.

In the paper we show that “ontology based” conceptual models can be mapped with

preserving of their semantics into the existing mediation oriented data models used

for heterogeneous database integration. This approach is demonstrated applying the

combined frame-based and object-oriented language SYNTHESIS [14] intended for

canonical information modeling and mediator definition, supported also by methods

and tools for problem solving in application-driven distributed heterogeneous

information environment [2]. It will be shown in this paper how the database

conceptual schemas defined as OWL 2 ontologies can be mapped with preserving of

their semantics into the mediation schemas defined in the SYNTHESIS language to

be integrated with other heterogeneous information resources. The aim of this paper is

to demonstrate a soundness of the mapping for limited subsets of the languages. For

this purpose it is sufficient to use for interpretation of SYNTHESIS schemas the same

structures as used for interpretation of OWL schemas [9]. Using such structures

allows to simplify significantly the proof of soundness and to save space. Also we do

not provide here an exhaustive mapping and proof of soundness but illustrate them by

examples to save space.

Another approach, including into the functionality of the mediation data model the

capabilities of OWL directly, consists in extending the mediation data model with the

dependencies introduced recently in the Datalog0
±

[3]. Datalog0
±
 generalizes the DL-

Lite logic family preserving tractability and provides a translation from DL-Lite into

Datalog0
±
. To compare approaches in Section 3 we provide a respective Datalog0

±

construct for every pair of OWL and SYNTHESIS constructs mapped to each other.

The paper is structured as follows. The next section provides a brief introduction

into the SYNTHESIS data model developed as an extensible language for information

resource integration. In section 3 a mapping of OWL 2 QL into SYNTHESIS is

defined and compared with the mapping of DL-Lite into Datalog0
±
. Section 4 justifies

the soundness of the mapping between schemas expressed in OWL 2 and

SYNTHESIS. Section 5 shows how the integration of the OWL-defined databases

into a SYNTHESIS-based mediator can be provided.

2 SYNTHESIS Data Model as an Extensible Language for

Information Resource Integration

The SYNTHESIS language [14] was motivated by the integration of heterogeneous

information resources and particularly by the subject mediation approach [11]

application for various subject domains. The approach is significantly based on so

called "canonical" model – the model used for uniform representation of various

information models in one paradigm. The model intends to provide for uniform

(canonical) representation of mediator and heterogeneous resources. The

SYNTHESIS language facilities determine the canonical information model kernel

that should be sufficiently rich for refining mapping into it of various models used for

heterogeneous information resources support [10, 13]. The main principle of

canonical model synthesis consists in its extensibility providing for preserving various

data model semantics in the refining mappings.

Subject mediators support the process of systematic registration and classification

of resources providing the uniform ontological knowledge and metainformation for

discovery and composition of information resources relevant to mediator [11].

A process of registration of heterogeneous information resources in a subject

mediator is mostly based on Local As View (LAV) approach [12]. According to LAV

the schemas of resources being registered are considered as materialized views over

virtual classes of a mediator. Such registration technique provides for stability of

application specification during any modifications of specific information resources

and of their actual presence (their removing, adding new ones, etc.) as well as for

scalability of mediators w.r.t. the number of resources registered in them.

The main features of the SYNTHESIS language are briefly outlined in the

remainder of the section. The SYNTHESIS language is based on a combined semi-

structured and object data model.

Semi-structured (self-defined) data are represented by frames [14]. Frames are

used for the definition of any entity of the language including metadefinitions of other

facilities of the language such as type and class specifications, function and assertion

specifications and so on. A frame can be considered as a set of attributes called slots.

Every slot can have several values. An additional metainformation can be associated

with frames, slots and values. It also takes a form of a frame called a metaframe, a

metaslot or a metavalue respectively.

A basic unit of specification in the SYNTHESIS language is a module. A module

may specify a generalized representation of an information source or a subject domain

or a conceptual project of an information system. Structured data correspond to

abstract data types (ADT) specifying a state and a behavior of their instances in terms

of type attributes and type methods. Type specifications can contain type invariants –

constraints expressed by closed logic formulae. The language also contains a rich

collection of built-in datatypes. A set of abstract data types with a subtype relation

forms a lattice. Subtype relation assumes that subtype invariants imply invariants of a

supertype and pre- (post-) condition of a method of a supertype is relaxed

(strengthened) by pre- (post-) condition of the respective method of a subtype.

Collections of uniformly structured objects are represented by classes. Type and

class specifications are explicitly separated to underline a role of a class as a

collection of objects and a role of a type as a specification of state and behavior of

class instances (objects). Class specifications can also contain invariants. Collections

can be associated by generalization/specialization (class/subclass) relationship. A

superclass contains all instances of a subclass, instance type of a subclass is a subtype

of an instance type of a superclass. Object attributes are considered in their turn as

objects of association metaclasses establishing relationships among objects from

association domain and objects from association range.

Formulae are specified applying a typed variant of the first order predicate logic.

3 A Mapping of the OWL 2 QL into the SYNTHESIS

This section is not aimed to formally define an exhaustive mapping of the OWL 2 QL

into the SYNTHESIS. To save space mappings for typical constructs of OWL 2 QL

are defined by examples. Note that OWL specifications are represented in XML-free

functional-style syntax.

Schema and class mapping. An OWL schema (for instance, Hermitage – a schema

describing Hermitage museum digital collection) is mapped into a module of the

SYNTHESIS language. A class (for instance, artist) is mapped into a class and its

instance type of the SYNTHESIS language.
OWL SYNTHESIS

Ontology(Hermitage …) { Hermitage; in: module; … }

Declaration(Class(artist)) { artist; in: class; instance_section: Artist; … }

{ Artist; in: type; … }

Object property mapping. Object properties are represented in the OWL with the

help of ObjectProperty construct (if a range of a property is a class, for instance, the

artworks property of the artist class) or DataProperty construct (if a range of a

property is a built-in datatype).
OWL SYNTHESIS Datalog0

±

Declaration(

 ObjectProperty(artworks))

ObjectPropertyDomain(

 artworks artist)

ObjectPropertyRange(

 artworks entry)

InverseObjectProperties(

 artworks author)

{ Artworks;

 in: association, metaclass;

 instance_section: {

 domain: artist; range: entry; }; }

{ Artist; in: type;

artworks: {set; type_of_element:

Entry;};

 metaslot in: Artworks;

 inverse: Entry.author; end }

artworks (X, Y) →

artist(X), entry(Y).

artworks(X, Y) →

author(Y, X).

author(X, Y) →

artworks(Y, X).

In the SYNTHESIS language object properties are represented by association

metaclasses (for instance, the Artworks metaclass) establishing relationships between

objects from association domain (artist class) and objects from association range

(entry class). An attribute of an ADT (for instance, the artworks attribute of the Artist

type) is specified belonging to respective association metaclass. Inverse properties

(for instance, author) are represented by inverse slot in the metaslot of a respective

property (artworks).

Class relationship mapping. Simple cases of subclass relationship (for instance,

drawing is a subclass of entry) are represented in SYNTHESIS in the superclass slot

of the respective subclass. More complicated cases (for instance, using

ObjectSomeValuesFrom, ObjectIntersectionOf, ObjectComplementOf) described in

OWL by class axioms, are represented in SYNTHESIS by means of class invariants

(osvf, sco).
OWL SYNTHESIS Datalog0

±

SubClassOf(drawing

 entry)

SubClassOf(sculptor

ObjectSomeValuesFrom(

 artworks sculpture))

SubClassOf(purePainter

ObjectIntersectionOf(

 painter

 ObjectComplementOf(

 sculptor)))

{ drawing; in: class; superclass: entry; }

{ sculptor; in: class;

 instance_section: {

 osvf: { in: invariant;

 all s/Sculptor (is_in(sculptor, s) ->

 ex sc/Sculpture(is_in(sculpture, sc) &

 is_in(s.artworks, sc))

 } } }

{ purePainter; in: class;

 instance_section: {

 sco: { in: invariant;

 purePainter <= intersect(painter,

 differ(thing, sculptor))} } }

drawing (X) →

entry(X).

sculptor(X) →

Y(artworks(X, Y),

sculpture(Y)).

purePainter(X) →

 painter(X),

 ¬ sculptor(X).

Here all means universal quantifier, ex means existential quantifier, s/Sculptor is a

typed variable, is_in predicate means a set membership, –> sign means logical

implication, <= means a subset relation, intersect and differ mean set intersection and

difference respectively.

Reflexive, irreflexive, symmetric and asymmetric object properties mapping. To

specify these special kinds of properties respective association metaclasses are

defined in the SYNTHESIS language. For instance, to specify reflexive properties the

reflexive association metaclass is defined:
{ reflexive; in: association, metaclass;

 instance_section: { reflexivity: { in: invariant;

 all x ((is_in(this.domain, x)->is_in(this, [x, x])) &

 (is_in(this.range, x)->is_in(this, [x, x])))

} } }

Keyword this here means any association class belonging to reflexive metaclass,

domain means association class domain, range means association class range, [a, b]

means a pair of objects related by association. A metaclass of every reflexive property

becomes a subclass of reflexive (for instance, SameRoom).
OWL SYNTHESIS Datalog0

±

ReflexiveObjectProperty(

 sameRoom)

{ SameRoom; in: association, metaclass;

 superclass: reflexive; }

room(X) →

sameRoom(X, X).

Irreflexive, symmetric and asymmetric properties are mapped similarly.

Fact mapping. Facts (assertions defining objects’ states) are represented in OWL

by means of NamedIndividual, ClassAssertion, DataPropertyAssertion,

ObjectPropertyAssertion constructs. The respective assertions are represented in

SYNTHESIS by means of object type constants.
OWL SYNTHESIS Datalog0

±

Declaration(NamedIndividual(

 TheLittaMadonna))

ClassAssertion(painting

 TheLittaMadonna)

DataPropertyAssertion(

 author TheLittaMadonna

 “Leonardo da Vinci”)

ObjectPropertyAssertion(

 inRoom TheLittaMadonna

 TheLeonardoDaVinciRoom)

{ TheLittaMadonna;

in: painting;

author:

 “Leonardo da Vinci”;

inRoom:

 TheLeonardoDaVinciRoom;

}

painting(

TheLittaMadonna).

author(

TheLittaMadonna,

“Leonardo da Vinci”).

inRoom(

TheLittaMadonna,

TheLeonardoDaVinciRoom

).

Subproperties mapping. An example of a subproperty (paintings) of a property

(artworks) is shown below. In SYNTHESIS the subproperty is represented by a

specific invariant of the Painting association metaclass.
OWL SYNTHESIS Datalog0

±

SubObjectPropertyOf(

 paintings artworks)

all c, p (is_in(this, [c, p]) ->

 is_in(c.artworks, p))

paintings(X, Y) →

artworks(X, Y)

Disjoint properties and disjoint classes mapping. Examples of disjoint properties

(birthDate and deathDate) of the class artist and disjoint classes are shown below.
OWL SYNTHESIS Datalog0

±

DisjointDataProperties(

 birthDate deathDate)

all a/Artist(is_in(artist, a) ->

 a.birthDate <> a.deathDate)

birthDate(X, Y),

deathDate(X, Y) → ⊥
DisjointClasses(

 freestanding relief)

intersect(freestanding, relief) = {} freestanding(X),

relief(X) → ⊥

In the SYNTHESIS language disjoint properties and disjoint classes are

represented by the respective class invariant. Here {} denotes empty set.

4 Soundness of the Mapping of the OWL into the SYNTHESIS

Denote as : SOWL×SSYN arbitrary mapping from a set SOWL of schemas represented in

OWL to a set SSYN of schemas represented in the SYNTHESIS language. Formally

this mapping is a relation – a set of pairs of OWL and SYNTHESIS well formed

schemas. Schema o  SOWL is mapped into schema s  SSYN iff o, s  .

Let  mapping be sound if for all pairs o, s of schemas o  SOWL and s  SSYN

such that o, s   the following condition holds: for any interpretation Io of o such

that Io |= o an equivalent interpretation Is of s exists such that Is |= s and vice versa.

Here Io |= o means Io satisfies o [9].

Denote as  the mapping illustrated by the examples in the section 3. The mapping

 is a generalization of the examples for arbitrary schemas of OWL and

SYNTHESIS. The aim of this section is to show that the mapping  is sound. As the

first step to achieve this goal the semantic structures interpreting schemas of the OWL

and SYNTHESIS language are to be provided. The interpretations of OWL are

defined in [9]. The SYNTHESIS language is more expressive than OWL and

semantic structures required to interpret it are more complicated. SYNTHESIS

possesses different vocabulary and datatypes. To prove soundness of an exhaustive

mapping of OWL into SYNTHESIS it is required to relate OWL and SYNTHESIS

semantic structures. The aim of this paper is to demonstrate a soundness of the

mapping for limited subsets of the languages. For this purpose it is sufficient to use

for interpretation of SYNTHESIS schemas the same structures as used for

interpretation of OWL schemas [9] and neglect differences between vocabularies and

datatypes. Using such structures allows to simplify significantly the proof of

soundness and to save space.

Consider an interpretation I = I, D, C
, OP

, DP
, I

, DT
, LT as a tuple of the

following components:

 I – object domain;

 D – data domain;

 C
– class interpretation function that assigns to a class Cl a subset (Cl)

C
  I;

 OP
 – object property interpretation function that assigns to each object

property op a subset (op)
OP

  I
  I

;

 DP
– data property interpretation function that assigns to each data property

dp a subset (dp)
DP

  I  D;

 I
– individual interpretation function that assigns to each individual o an

element (o)
I
  I;

 DT
– datatype interpretation function that assigns to each datatype dt a subset

(dt)
DT

  D;

 LT
– literal interpretation function that that assigns to each literal l of a

datatype dt an element (l)
LT

  (dt)
DT

.

An interpretation I satisfies an OWL schema O if a set of specific conditions

related to axioms constituting the schema is satisfied [9]. To define that an

interpretation I satisfies a SYNTHESIS schema S the conditions related to syntactic

constructs of the SYNTHESIS language are provided in tables below. To simplify

reasoning the conditions are provided only for constructs of the language shown in the

previous section. For a syntactic construct a respective semantic condition in terms of

SYNTHESIS schema vocabulary and interpretation I is provided.

Notice semantic differences between OWL, Datalog0
± and SYNTHESIS. In OWL

an interpretation I is a model of a specification o if an interpretation J exists such that

J coincides with I on all named individuals and J satisfies o [9]. This gap between I

and J is filled in by the OWL and Datalog0
± systems with the help of inference rules

(tuple generating dependencies). In SYNTHESIS I is a model of a schema s if I

satisfies s. But for the purpose of resource integration in mediators with SYNTHESIS

as a canonical model the OWL ontologies are just resources to be queried and

inference is carried out inside of such resources [2]. For the mediator the

interpretation I together with TGDs is equivalent to the interpretation J containing all

inferred anonymous individuals. So to verify the mapping  it is sufficient to consider

only interpretations satisfying OWL schemas and not general OWL models. Notice

also that SYNTHESIS and Datalog0
± constructs shown in the tables of the section 3

are not semantically equivalent in cases containing TGDs, they are both equivalent to

an original OWL construct but with different semantics. The reason is explained by

different purposes of the OWL mappings: the mapping to Datalog0
± is intended to

support efficient ontological reasoning equivalent to OWL QL and its inference and

the mapping to SYNTHESIS is intended to implement integration of OWL resources

in mediators.

Conditions for object properties. Binding a class (artist) with its instance type (Artist)

imposes respective constraints on domain and range of attributes constituting the type.

If an attribute association metaclass is a subclass of some special metaclass (for

instance, metaclass SameRoom of the attribute sameRoom is a subclass of the

reflexive metaclass) then the attribute has to satisfy all invariants of the superclass (the

sameSalary property has to be reflexive).
SYNTHESIS construct Condition

{ artist; in: class;

 instance_section: Artist; … }

{ Artist; in: type;

 artworks: {set; type_of_element: Entry;};

 metaslot in: Artworks; inverse: Entry.author; end }

{ Artworks; in: association, metaclass;

 instance_section: {domain: artist; range: entry; }; }

 a, e ((a, e)  (artworks)OP

 a  (artist)C  e  (entry)C)

 a, e ((a, e)  (artworks)OP ↔

(e, a)  (author)OP)

{ SameRoom; in: association, metaclass;

 superclass: reflexive;

 instance_section: { domain: entry; range: entry; }; }

{ Entry; in: type;

 sameRoom: {set; type_of_element: Entry;};

 metaslot in: SameRoom end }

 e1, e2 (

 (e1, e2)  (sameRoom)OP

 e1  (entry)C 

 e2  (entry)C)

 e (e  (entry)C 

 (e, e)  (sameRoom)OP)

Conditions for facts.
SYNTHESIS construct Condition

{ TheLittaMadonna;

 in: painting;

 author: “Leonardo da Vinci”;

 inRoom: TheLeonardoDaVinciRoom;

}

(TheLittaMadonna)I  (painting)C 

((TheLittaMadonna)I, (“Leonardo da Vinci”)LT) 

(author)DP 

((TheLittaMadonna)I,

 (TheLeonardoDaVinciRoom)I)  (inRoom)OP

Conditions for subclasses.
SYNTHESIS construct Condition

{ drawing; in: class;

 superclass: entry; }
(drawing)C  (entry)C

Conditions for invariants.
SYNTHESIS construct Condition

all s/Sculptor (is_in(sculptor, s) ->

 ex sc/Sculpture(is_in(sculpture, sc) &

 is_in(s.artworks, sc))

 s ((s)I  (sculptor)C 

 sc ((sc)I  (sculpture)C) 

 ((s) I, (sc) I)  (artworks)OP)

purePainter <= intersect(painter,

 differ(thing, sculptor))
(purePainter)C 

(painter)C  (I \ (sculptor)C)

a.birthDate <> a.deathDate  b, d ((a, b)  (birthDate)DP 

 (a, d)  (deathDate)DP  b  d)

As far as schemas of OWL and SYNTHESIS are interpreted by the same semantic

structures it is possible to consider a common interpretation I for both schemas s 

SSYN and o  SOWL mapped to each other by . To prove that  is sound it is sufficient

to show that I satisfies s iff I satisfies o. So an equivalence of conditions of satisfying

a schema in OWL [9] and conditions of satisfying a schema in SYNTHESIS

(demonstrated earlier in this section) is to be shown.

Generally this equivalence is to be proved by induction over elements constituting

a schema (classes, properties, facts, axioms). In this section the equivalence is

demonstrated only by examples from the previous section. Thus main points of the

proof are illustrated. Left column of the tables contains conditions for OWL

constructs (considered in the previous section) according to the semantics of OWL

[9]. Right column of the tables contains conditions (already considered in this section)

for respective SYNTHESIS constructs.

Conditions for object properties.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

 x, y ((x, y)  (artworks)OP x  (artist)C)

 x, y ((x, y)  (artworks)OP y  (entry)C)

(artworks)OP= { (x, y) | (y, x) ∈ (author)OP}

 a, e ((a, e)  (artworks)OP

 a  (artist)C  e  (entry)C)

 a, e ((a, e)  (artworks)OP ↔

(e, a)  (author)OP)

Conditions for relationships among classes.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

(drawing)C  (entry)C (drawing)C  (entry)C

(purePainter)C 

(painter)C  (I \ (sculptor)C)

(purePainter)C 

(painter)C  (I \ (sculptor)C)

(sculptor)C  { x | ∃y ((x, y) ∈ (artworks)OP 

 y ∈ (sculpture)C) }

 s ((s)I  (sculptor)C   sc ((sc)I 

 (sculpture)C)  ((s)I, (sc)I)  (artworks)OP)

Conditions for facts.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

(TheLittaMadonna)I  (painting)C

((TheLittaMadonna)I,

 (“Leonardo da Vinci”)LT)  (author)DP

((TheLittaMadonna)I,

(TheLeonardoDaVinciRoom)I) 

(inRoom)OP

(TheLittaMadonna)I  (painting)C 

((TheLittaMadonna)I,

 (“Leonardo da Vinci”)LT)  (author)DP 

((TheLittaMadonna)I,

 (TheLeonardoDaVinciRoom)I) 

 (inRoom)OP

Conditions for reflexive properties.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

(paintings)OP  (artworks)OP  c, p ((c, p)  (paintings)OP 

 (c, p)  (artworks)OP)

Conditions for subproperties.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

 x (x  I  (x, x)  (sameRoom)OP)  e (e  (entry)C  (e, e)  (sameRoom)OP)

Conditions for disjoint properties and disjoint classes.
Conditions for OWL constructs Conditions for SYNTHESIS constructs

(birthDate)DP  (deathDate)DP =   a (a  (artist)C 

  b, d ((a, b)  (birthDate)DP 

 (a, d)  (deathDate)DP  b  d))

(freestanding)C  (relief)C =  (freestanding)C  (relief)C = 

It is easy to see that conjunction of conditions for OWL and conjunction of

conditions for SYNTHESIS are equivalent. In simplest cases they are the same (for

instance, some conditions for relationships among classes) or distinguished only by

variable names. This allows to conclude that the mapping  illustrated in the previous

section is sound.

5 Integration of the OWL resources into a Subject Mediator

In this section a cultural heritage domain for a subject mediator example is

considered. A limited subset of a respective mediated schema is provided in the table

1. The more detailed schema of a subject mediator for the cultural heritage domain is

provided in [12].

Table 1. Mediator schema example

CulturalHeritage; in: module;

type:

{ Person; in: type; name: string; },

{ Creator; in: type; supertype: Person;

 culture: string;

 works: {set; type_of_element: Heritage_Entity;}; },

{ Heritage_Entity; in: type; supertype: Entity;

 title: string; created_by: Creator;

 place_of_origin: Address; date_of_origin: time;

 in_collection: Collection; },

{ Painting; in: type; supertype: Heritage_Entity;

 dimensions: {sequence; type_of_element: integer;}; },

{ Collection; in: type; in_repository: Repository; },

{ Repository; in: type;

 name: string;

 collections: {set; type_of_element: Collection;}; };

class_specification:

{ creator; in: class;

 instance_section: Creator; },

{ heritage_entity; in: class;

 instance_section:

Heritage_Entity; },

{ painting; in:class;

 superclass: heritage_entity;

 instance_section: Painting; },

{ museum; in: class;

 instance_section: Repository; };

Consider an OWL information resource – Hermitage digital collection – relevant

to the cultural heritage mediator. A subset of the Hermitage schema expressed in

OWL is shown in the left column of the table 2. A respective representation of the

schema in the SYNTHESIS language required for uniformity of the resource and the

mediator specifications is shown in the right column of this table. The Hermitage

OWL schema is mapped into the Hermitage SYNTHESIS module in accordance with

the mapping  described in section 3. To save space declarations of classes entry,

drawing, artist, place and properties name, author, style, place_of_origin, date,

height, width, artworks like Declaration(Class(entry)) and

Declaration(DataProperty(name)) are omitted.

During the registration of the Hermitage resource in the subject mediator classes of

the resource are described as LAV views over virtual classes of the mediator. A view

has a form of a conjunctive query. A pair of views aimed to illustrate the result of the

registration is shown below.
drawing(d/Drawing[name, author, style, place_of_origin, date, height, width]) 

painting(d/Painting[name: title, author: created_by, place_of_origin,

 date: date_of_origin, r_name: in_collection.in_repository.name,

 height: dimensions.elem(1), width: dimensions.elem(2)]),

creator(c/Creator[author: name, style: culture]),

r_name = 'Hermitage', date.year >= 1100, date.year < 1990

artist(a/Artist[name, artworks])  creator(a/Creator[name, works])

Expression T[a, b] here denotes a reduct of the type T to attributes a, b. Expression

T[c: a] denotes renaming of the attribute a to c.

Table 2. Resource schema example

OWL SYNTHESIS

Ontology(Hermitage

SubClassOf(drawing entry)

DataPropertyDomain(name entry)

DataPropertyRange(name xs:string)

ObjectPropertyDomain(author entry)

ObjectPropertyRange(author artist)

DataPropertyDomain(style entry)

DataPropertyRange(style xs:string)

ObjectPropertyDomain(place_of_origin entry)

ObjectPropertyRange(place_of_origin place)

DataPropertyDomain(date entry)

DataPropertyRange(date xs:date)

DataPropertyDomain(height drawing)

DataPropertyRange(height xs:integer)

DataPropertyDomain(width drawing)

DataPropertyRange(width xs:integer)

DataPropertyDomain(name artist)

ObjectPropertyDomain(artworks artist)

ObjectPropertyRange(artworks entry)

)

{ Hermitage; in: module;

type:

{ Entry; in: type;

 name: string; style: string; date: time;

 author: {set; type_of_element: Artist;};

 place_of_origin: Place; },

{ Drawing; in: type; supertype: Entry;

 width: integer; height: integer; },

{ Artist; in: type;

 name: string;

 artworks: {set; type_of_element: Entry;}; }

{ Place; in: type; };

class_specification:

{ entry; in: class; instance_type: Entry; },

{ drawing; in: class; superclass: entry;

 instance_type: Drawing; },

{ artist; in: class; instance_type: Artist; },

{ place; in: class; instance_type: Place; }

}

Views used for integration of other resources (Uffizi and Louvre digital collections)

in the CulturalHeritage mediator are provided in [12]. The resources to be integrated

together with Hermitage collection may be represented in various data models such as

relational one, XML, ODMG ODL and so on. Views are crucial for rewriting queries

over mediator into queries over resources. In this paper we show rather simple views

and avoid complicated issues of view construction taking into account resource and

mediator invariants as it is a future work. One more thing required for rewriting is a

mapping between a mediator query language and a resource (OWL) query language.

We neglect the mapping of query languages mostly due to the fact that there exist a

lot of different ontology oriented query languages but no standard of OWL query

language.

6 Conclusion

The paper enters into controversy in the context of expansion of ontologies into the

area of databases and information systems and cultivation of the opinion that

ontologies are at the "semantic" level, whereas database schema are models of data at

the "logical" or "physical" level. We show that in the area of databases and

information systems OWL would rather be considered as yet another data model to be

integrated with other heterogeneous information models in frame of more expressive

languages. In the paper we demonstrate that “ontology based” conceptual models can

be mapped with preserving of their semantics into the existing data models,

specifically those that are used for mediation of heterogeneous databases. This makes

possible to integrate in such mediators existing databases implemented in OBDA

under OWL schemas with another, conventional databases. Applying the

SYNTHESIS – an extensible language for heterogeneous information resource

integration and mediator definition – we show how a sound mapping of a conceptual

schemas expressed in OWL 2 QL into SYNTHESIS schemas can be defined. The

soundness of the mapping is justified. The paper shows also how the integration of the

OWL-defined databases into a SYNTHESIS-based mediator can be provided.

References

1. Acciarri, A., Calvanese, D. et al.: QUONTO: QUerying ONTOlogies. In: AAAI 2005, pp.

1670--1671. (2005)

2. Briukhov D., Kalinichenko L., Martynov D., Skvortsov N., Stupnikov S., Vovchenko A.,

Zakharov V., Zhelenkova O. Application driven mediation middleware of the Russian

virtual observatory for scientific problem solving over multiple heterogeneous distributed

information resources. In: Scientific Information for Society – from Today to the Future:

21st CODATA Conference, pp. 80--85. (2009)

3. Cali, A., Gottlob, G., Lukasiewiczz, T. A General Datalog-Based Framework for Tractable

Query Answering over Ontologies. In: PODS 2009, pp. 77--86. ACM (2009)

4. Calvanese, D. et al.: Ontology-based database access. In: 15th Italian Conf. on Database

Systems, pp. 324--331. (2007)

5. Calvanese, D. et al.: Reasoning Ontologies and Databases: The DL-Lite Approach. In: Web

2009. LNCS, vol. 5689, pp. 255--356. Springer, Berlin Heidelberg (2009)

6. Calvanese, D. et al.: OWL 2 Web Ontology Language: Profiles. W3C,

http://www.w3.org/TR/owl2-profiles/ (2009)

7. Gruber, T. R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.

J. Human-Computer Studies 43, 907--928. (1995)

8. Gruber, T. R.: "Ontology". In: Liu, L., Özsu M. T. (eds.) Encyclopedia of Database

Systems. Springer (2008)

9. Horrocks, I., Parsia, B., Sattler, U.: OWL 2 Web Ontology Language Direct Semantics.

W3C, http://www.w3.org/TR/owl2-direct-semantics/ (2009)

10. Kalinichenko, L.A.: Canonical model development techniques aimed at semantic

interoperability in the heterogeneous world of information modeling. In: CAiSE INTEROP

Workshop, pp. 101--116. Riga Technical University, Riga (2004)

11. Kalinichenko, L.A., Briukhov, D.O., Martynov, D.O., Skvortsov N.A., Stupnikov, S.A.:

Mediation Framework for Enterprise Information System Infrastructures. In: The 9th

International Conference on Enterprise Information Systems, vol. Databases and

Information Systems Integration, pp. 246--251. Funchal (2007)

12. Kalinichenko, L.A., Martynov, D.O., Stupnikov, S.A. Query rewriting using views in a

typed mediator environment. In: ADBIS 2004. LNCS, vol. 3255, pp. 37--53. Springer,

Berlin-Heidelberg (2004)

13. Kalinichenko L.A., Stupnikov S.A.: Heterogeneous information model unification as a pre-

requisite to resource schema mapping. In: V Conference of the Italian Chapter of

Association for Information Systems, pp. 373--380. Springer Physica Verlag (2009)

14. Kalinichenko, L.A., Stupnikov, S.A., Martynov, D.O.: SYNTHESIS: a Language for

Canonical Information Modeling and Mediator Definition for Problem Solving in

Heterogeneous Information Resource Environments. IPI RAS, Moscow (2007)

15. Patel-Schneider, P. F.: OWL 2 Web Ontology Language New Features and Rationale. W3C,

http://www.w3.org/TR/owl2-new-features/ (2009)

16.QuOnto Querying ONTOlogies, http://www.dis.uniroma1.it/quonto/?q=node/30

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-new-features/
http://www.dis.uniroma1.it/quonto/?q=node/30

