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Abstract. The paper1 argues against cultivation in the ontological community 

of the opinion that ontologies are at the "semantic" level, whereas database 

schema are models of data at the "logical" or "physical" level. The paper claims 

that rather it would be right to consider OWL as yet another data model to be 

integrated with other heterogeneous information models. Applying the 

SYNTHESIS – an extensible language for heterogeneous information resource 

integration and mediator definition – we show how a sound mapping of a 

conceptual schemas expressed in OWL 2 QL into SYNTHESIS schemas can be 

defined. The soundness of the mapping is justified. The paper shows also how 

the integration of the OWL-defined databases into a SYNTHESIS-based 

mediator can be provided. 
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1   Introduction 

During last years the expansion of ontologies into the area of databases and 

information systems becomes more and more noticeable. In the beginning of 90ies in 

connection with the development of approaches for interoperability of the information 

system components the ontologies were identified as essential constituents of the 

semantically interoperable systems and were defined as a “formal, explicit 

specification of a shared conceptualization” [7]. By 2010 [8] the ontologies evolved to 

be viewed as a level of abstraction of data models, analogous to hierarchical and 

relational models, intended for modeling knowledge about individuals. Ontologies are 

said to be at the "semantic" level, whereas database schemas are models of data at the 

"logical" or "physical" level. Due to such positioning, there is an intention to use 

ontologies for integrating heterogeneous databases, enabling interoperability among 

disparate systems. 

Such expansion is based on a simple idea – to apply ontology as a (database) 

conceptual schema. In a number of Web publications “ontology” is identified literally 
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with “conceptual schema”: “In computer science, an ontology is the attempt to 

formulate an exhaustive and rigorous conceptual schema within a given domain, a 

typically hierarchical data structure containing all the relevant entities and their 

relationships and rules within that domain”. This activity is accompanied with the 

introduction of new terms, such as Ontology Based Information Systems (OBIS), 

Ontology Based Data Access (OBDA), Ontology Based Data Integration (OBDI) [4]. 

The respective “ontology based technologies” assume usage of databases on the basis 

of application domains conceptualization and relational database access mediated 

with the conceptual view over the data. QuOnto system [1, 16] is a well-known 

example of implementation of such approach. QuOnto supports reasoning over 

ontologies expressed in a description logic of DL-Lite family [5] and answering union 

of conjunctive queries over the external relational DBMS (such as Oracle, DB2, SQL 

Server, MySQL, etc.). It is worth noting that before its execution, the query is 

deductively expanded applying axioms of the conceptual schema and the inference 

engine in the respective description logic. It is clearly seen that the researches in the 

area of the ”ontology based” information systems are focused on the development of 

the ontological languages for conceptual modeling, that is on the development of 

conceptual data models based on description logics. The most visible results of such 

works are reflected in the OWL 2 QL profile [6] based on the DL-LiteR logic.  

In this paper we claim that in the context of databases and information systems 

OWL, chosen in the paper as a W3C recommendation and widely used ontological 

language [15], might be considered as yet another data model to be integrated with 

another heterogeneous information resources in frame of more expressive languages. 

In the paper we show that “ontology based” conceptual models can be mapped with 

preserving of their semantics into the existing mediation oriented data models used 

for heterogeneous database integration. This approach is demonstrated applying the 

combined frame-based and object-oriented language SYNTHESIS [14] intended for 

canonical information modeling and mediator definition, supported also by methods 

and tools for problem solving in application-driven distributed heterogeneous 

information environment [2]. It will be shown in this paper how the database 

conceptual schemas defined as OWL 2 ontologies can be mapped with preserving of 

their semantics into the mediation schemas defined in the SYNTHESIS language to 

be integrated with other heterogeneous information resources. The aim of this paper is 

to demonstrate a soundness of the mapping for limited subsets of the languages. For 

this purpose it is sufficient to use for interpretation of SYNTHESIS schemas the same 

structures as used for interpretation of OWL schemas [9]. Using such structures 

allows to simplify significantly the proof of soundness and to save space. Also we do 

not provide here an exhaustive mapping and proof of soundness but illustrate them by 

examples to save space. 

Another approach, including into the functionality of the mediation data model the 

capabilities of OWL directly, consists in extending the mediation data model with the 

dependencies introduced recently in the Datalog0
± 

[3]. Datalog0
±
 generalizes the DL-

Lite logic family preserving tractability and provides a translation from DL-Lite into 

Datalog0
±
. To compare approaches in Section 3 we provide a respective Datalog0

±
 

construct for every pair of OWL and SYNTHESIS constructs mapped to each other. 

The paper is structured as follows. The next section provides a brief introduction 

into the SYNTHESIS data model developed as an extensible language for information 



resource integration. In section 3 a mapping of OWL 2 QL into SYNTHESIS is 

defined and compared with the mapping of DL-Lite into Datalog0
±
. Section 4 justifies 

the soundness of the mapping between schemas expressed in OWL 2 and 

SYNTHESIS. Section 5 shows how the integration of the OWL-defined databases 

into a SYNTHESIS-based mediator can be provided. 

2   SYNTHESIS Data Model as an Extensible Language for 

Information Resource Integration 

The SYNTHESIS language [14] was motivated by the integration of heterogeneous 

information resources and particularly by the subject mediation approach [11] 

application for various subject domains. The approach is significantly based on so 

called "canonical" model – the model used for uniform representation of various 

information models in one paradigm. The model intends to provide for uniform 

(canonical) representation of mediator and heterogeneous resources. The 

SYNTHESIS language facilities determine the canonical information model kernel 

that should be sufficiently rich for refining mapping into it of various models used for 

heterogeneous information resources support [10, 13]. The main principle of 

canonical model synthesis consists in its extensibility providing for preserving various 

data model semantics in the refining mappings. 

Subject mediators support the process of systematic registration and classification 

of resources providing the uniform ontological knowledge and metainformation for 

discovery and composition of information resources relevant to mediator [11]. 

A process of registration of heterogeneous information resources in a subject 

mediator is mostly based on Local As View (LAV) approach [12]. According to LAV 

the schemas of resources being registered are considered as materialized views over 

virtual classes of a mediator. Such registration technique provides for stability of 

application specification during any modifications of specific information resources 

and of their actual presence (their removing, adding new ones, etc.) as well as for 

scalability of mediators w.r.t. the number of resources registered in them. 

The main features of the SYNTHESIS language are briefly outlined in the 

remainder of the section. The SYNTHESIS language is based on a combined semi-

structured and object data model. 

Semi-structured (self-defined) data are represented by frames [14]. Frames are 

used for the definition of any entity of the language including metadefinitions of other 

facilities of the language such as type and class specifications, function and assertion 

specifications and so on. A frame can be considered as a set of attributes called slots. 

Every slot can have several values. An additional metainformation can be associated 

with frames, slots and values. It also takes a form of a frame called a metaframe, a 

metaslot or a metavalue respectively. 

A basic unit of specification in the SYNTHESIS language is a module. A module 

may specify a generalized representation of an information source or a subject domain 

or a conceptual project of an information system. Structured data correspond to 

abstract data types (ADT) specifying a state and a behavior of their instances in terms 

of type attributes and type methods. Type specifications can contain type invariants – 



constraints expressed by closed logic formulae. The language also contains a rich 

collection of built-in datatypes. A set of abstract data types with a subtype relation 

forms a lattice. Subtype relation assumes that subtype invariants imply invariants of a 

supertype and pre- (post-) condition of a method of a supertype is relaxed 

(strengthened) by pre- (post-) condition of the respective method of a subtype. 

Collections of uniformly structured objects are represented by classes. Type and 

class specifications are explicitly separated to underline a role of a class as a 

collection of objects and a role of a type as a specification of state and behavior of 

class instances (objects). Class specifications can also contain invariants. Collections 

can be associated by generalization/specialization (class/subclass) relationship. A 

superclass contains all instances of a subclass, instance type of a subclass is a subtype 

of an instance type of a superclass. Object attributes are considered in their turn as 

objects of association metaclasses establishing relationships among objects from 

association domain and objects from association range. 

Formulae are specified applying a typed variant of the first order predicate logic. 

3   A Mapping of the OWL 2 QL into the SYNTHESIS 

This section is not aimed to formally define an exhaustive mapping of the OWL 2 QL 

into the SYNTHESIS. To save space mappings for typical constructs of OWL 2 QL 

are defined by examples. Note that OWL specifications are represented in XML-free 

functional-style syntax. 

Schema and class mapping. An OWL schema (for instance, Hermitage – a schema 

describing Hermitage museum digital collection) is mapped into a module of the 

SYNTHESIS language. A class (for instance, artist) is mapped into a class and its 

instance type of the SYNTHESIS language. 
OWL SYNTHESIS 

Ontology( Hermitage  …  ) { Hermitage; in: module;  …  } 

Declaration( Class(artist) ) { artist; in: class; instance_section: Artist;   …   } 

{ Artist; in: type; … } 

Object property mapping. Object properties are represented in the OWL with the 

help of ObjectProperty construct (if a range of a property is a class, for instance, the 

artworks property of the artist class) or DataProperty construct (if a range of a 

property is a built-in datatype).  
OWL SYNTHESIS Datalog0

± 

Declaration( 

  ObjectProperty(artworks)) 

ObjectPropertyDomain( 

  artworks  artist) 

ObjectPropertyRange( 

  artworks  entry) 

InverseObjectProperties( 

  artworks  author) 

{ Artworks;  

 in: association, metaclass; 

 instance_section: { 

  domain: artist; range: entry; }; } 

{ Artist; in: type; 

artworks: {set; type_of_element: 

Entry;}; 

 metaslot  in: Artworks;  

  inverse: Entry.author; end } 

artworks (X, Y) → 

artist(X), entry(Y). 

artworks(X, Y) → 

author(Y, X). 

author(X, Y) → 

artworks(Y, X). 

In the SYNTHESIS language object properties are represented by association 

metaclasses (for instance, the Artworks metaclass) establishing relationships between 



objects from association domain (artist class) and objects from association range 

(entry class). An attribute of an ADT (for instance, the artworks attribute of the Artist 

type) is specified belonging to respective association metaclass. Inverse properties 

(for instance, author) are represented by inverse slot in the metaslot of a respective 

property (artworks). 

Class relationship mapping. Simple cases of subclass relationship (for instance, 

drawing is a subclass of entry) are represented in SYNTHESIS in the superclass slot 

of the respective subclass. More complicated cases (for instance, using 

ObjectSomeValuesFrom, ObjectIntersectionOf, ObjectComplementOf) described in 

OWL by class axioms, are represented in SYNTHESIS by means of class invariants 

(osvf, sco). 
OWL SYNTHESIS Datalog0

± 

SubClassOf( drawing 

  entry ) 

SubClassOf( sculptor 

ObjectSomeValuesFrom( 

    artworks sculpture) ) 

SubClassOf( purePainter 

ObjectIntersectionOf( 

  painter 

  ObjectComplementOf( 

    sculptor))) 

{ drawing; in: class;  superclass: entry; } 

{ sculptor; in: class; 

 instance_section: { 

  osvf: { in: invariant; 

   all s/Sculptor (is_in(sculptor, s) -> 

    ex sc/Sculpture( is_in(sculpture, sc) & 

     is_in(s.artworks, sc)) 

 } } } 

{ purePainter; in: class; 

 instance_section: { 

  sco: { in: invariant; 

   purePainter <= intersect(painter, 

      differ(thing, sculptor))} } } 

drawing (X) → 

entry(X). 

sculptor(X) → 

Y(artworks(X, Y),  

sculpture(Y)). 

purePainter(X) →  

  painter(X),  

  ¬ sculptor(X). 

Here all means universal quantifier, ex means existential quantifier, s/Sculptor is a 

typed variable, is_in predicate means a set membership, –> sign means logical 

implication, <= means a subset relation, intersect and differ mean set intersection and 

difference respectively. 

Reflexive, irreflexive, symmetric and asymmetric object properties mapping. To 

specify these special kinds of properties respective association metaclasses are 

defined in the SYNTHESIS language. For instance, to specify reflexive properties the 

reflexive association metaclass is defined: 
{ reflexive; in: association, metaclass; 

  instance_section: { reflexivity: { in: invariant; 

     all x ((is_in(this.domain, x)->is_in(this, [x, x])) &  

              (is_in(this.range, x)->is_in(this, [x, x]))) 

} } } 

Keyword this here means any association class belonging to reflexive metaclass, 

domain means association class domain, range means association class range, [a, b] 

means a pair of objects related by association. A metaclass of every reflexive property 

becomes a subclass of reflexive (for instance, SameRoom). 
OWL SYNTHESIS Datalog0

± 

ReflexiveObjectProperty( 

  sameRoom ) 

{ SameRoom; in: association, metaclass; 

 superclass: reflexive; } 

room(X) → 

sameRoom(X, X). 

Irreflexive, symmetric and asymmetric properties are mapped similarly. 

Fact mapping. Facts (assertions defining objects’ states) are represented in OWL 

by means of NamedIndividual, ClassAssertion, DataPropertyAssertion, 



ObjectPropertyAssertion constructs. The respective assertions are represented in 

SYNTHESIS by means of object type constants. 
OWL SYNTHESIS Datalog0

± 

Declaration(NamedIndividual( 

 TheLittaMadonna)) 

ClassAssertion( painting 

 TheLittaMadonna ) 

DataPropertyAssertion( 

 author TheLittaMadonna 

  “Leonardo da Vinci” ) 

ObjectPropertyAssertion( 

  inRoom TheLittaMadonna 

 TheLeonardoDaVinciRoom) 

{ TheLittaMadonna;  

in: painting; 

author:  

  “Leonardo da Vinci”; 

inRoom: 

 TheLeonardoDaVinciRoom; 

} 

painting( 

TheLittaMadonna). 

author( 

TheLittaMadonna,  

“Leonardo da Vinci”).  

inRoom( 

TheLittaMadonna, 

TheLeonardoDaVinciRoom 

). 

Subproperties mapping. An example of a subproperty (paintings) of a property 

(artworks) is shown below. In SYNTHESIS the subproperty is represented by a 

specific invariant of the Painting association metaclass. 
OWL SYNTHESIS Datalog0

± 

SubObjectPropertyOf( 

  paintings  artworks) 

all c, p (is_in(this, [c, p]) ->  

  is_in(c.artworks, p) ) 

paintings(X, Y) → 

artworks(X, Y) 

Disjoint properties and disjoint classes mapping. Examples of disjoint properties 

(birthDate and deathDate) of the class artist and disjoint classes are shown below.  
OWL SYNTHESIS Datalog0

± 

DisjointDataProperties( 

  birthDate  deathDate ) 

all a/Artist( is_in(artist, a) -> 

  a.birthDate <> a.deathDate ) 

birthDate(X, Y), 

deathDate(X, Y) → ⊥ 
DisjointClasses( 

  freestanding  relief ) 

intersect(freestanding, relief) = {} freestanding(X),  

relief(X) → ⊥ 

In the SYNTHESIS language disjoint properties and disjoint classes are 

represented by the respective class invariant. Here {} denotes empty set. 

4   Soundness of the Mapping of the OWL into the SYNTHESIS 

Denote as : SOWL×SSYN arbitrary mapping from a set SOWL of schemas represented in 

OWL to a set SSYN of schemas represented in the SYNTHESIS language. Formally 

this mapping is a relation – a set of pairs of OWL and SYNTHESIS well formed 

schemas. Schema o  SOWL is mapped into schema s  SSYN  iff o, s  . 

Let  mapping be sound if for all pairs o, s of schemas o  SOWL and s  SSYN  

such that o, s   the following condition holds: for any interpretation Io of o such 

that Io |= o an equivalent interpretation Is  of s exists such that Is |= s and vice versa. 

Here Io |= o means Io satisfies o [9].  

Denote as  the mapping illustrated by the examples in the section 3. The mapping 

 is a generalization of the examples for arbitrary schemas of OWL and 

SYNTHESIS. The aim of this section is to show that the mapping  is sound. As the 

first step to achieve this goal the semantic structures interpreting schemas of the OWL 

and SYNTHESIS language are to be provided. The interpretations of OWL are 

defined in [9]. The SYNTHESIS language is more expressive than OWL and 

semantic structures required to interpret it are more complicated. SYNTHESIS 



possesses different vocabulary and datatypes. To prove soundness of an exhaustive 

mapping of OWL into SYNTHESIS it is required to relate OWL and SYNTHESIS 

semantic structures. The aim of this paper is to demonstrate a soundness of the 

mapping for limited subsets of the languages. For this purpose it is sufficient to use 

for interpretation of SYNTHESIS schemas the same structures as used for 

interpretation of OWL schemas [9] and neglect differences between vocabularies and 

datatypes. Using such structures allows to simplify significantly the proof of 

soundness and to save space. 

Consider an interpretation I = I, D, C
, OP

, DP
, I

, DT
, LT as a tuple of the 

following components: 

 I – object domain;  

 D – data domain; 

 C 
– class interpretation function that assigns to a class Cl a subset (Cl)

C
  I; 

 OP
 – object property interpretation function that assigns to each object 

property op a subset (op)
OP

  I
  I

; 

 DP 
– data property interpretation function that assigns to each data property 

dp a subset (dp)
DP

  I  D; 

 I 
– individual interpretation function that assigns to each individual o an 

element (o)
I
  I; 

 DT 
– datatype interpretation function that assigns to each datatype dt a subset 

(dt)
DT

  D; 

 LT 
– literal interpretation function that that assigns to each literal l of a 

datatype dt an element (l)
LT

  (dt)
DT

. 

An interpretation I satisfies an OWL schema O if a set of specific conditions 

related to axioms constituting the schema is satisfied [9]. To define that an 

interpretation I satisfies a SYNTHESIS schema S the conditions related to syntactic 

constructs of the SYNTHESIS language are provided in tables below. To simplify 

reasoning the conditions are provided only for constructs of the language shown in the 

previous section. For a syntactic construct a respective semantic condition in terms of 

SYNTHESIS schema vocabulary and interpretation I is provided. 

Notice semantic differences between OWL, Datalog0
± and SYNTHESIS. In OWL 

an interpretation I is a model of a specification o if an interpretation J exists such that 

J coincides with I on all named individuals and J satisfies o [9]. This gap between I 

and J is filled in by the OWL and Datalog0
± systems with the help of inference rules 

(tuple generating dependencies). In SYNTHESIS I is a model of a schema s if I 

satisfies s. But for the purpose of resource integration in mediators with SYNTHESIS 

as a canonical model the OWL ontologies are just resources to be queried and 

inference is carried out inside of such resources [2]. For the mediator the 

interpretation I together with TGDs is equivalent to the interpretation J containing all 

inferred anonymous individuals. So to verify the mapping  it is sufficient to consider 

only interpretations satisfying OWL schemas and not general OWL models. Notice 

also that SYNTHESIS and Datalog0
± constructs shown in the tables of the section 3 

are not semantically equivalent in cases containing TGDs, they are both equivalent to 

an original OWL construct but with different semantics. The reason is explained by 

different purposes of the OWL mappings: the mapping to Datalog0
± is intended to 

support efficient ontological reasoning equivalent to OWL QL and its inference and 



the mapping to SYNTHESIS is intended to implement integration of OWL resources 

in mediators. 

Conditions for object properties. Binding a class (artist) with its instance type (Artist) 

imposes respective constraints on domain and range of attributes constituting the type. 

If an attribute association metaclass is a subclass of some special metaclass (for 

instance, metaclass SameRoom of the attribute sameRoom is a subclass of the 

reflexive metaclass) then the attribute has to satisfy all invariants of the superclass (the 

sameSalary property has to be reflexive). 
SYNTHESIS construct Condition 

{ artist; in: class; 

 instance_section: Artist;   …   } 

{ Artist; in: type; 

 artworks: {set; type_of_element: Entry;}; 

 metaslot in: Artworks; inverse: Entry.author; end } 

{ Artworks; in: association, metaclass; 

 instance_section: {domain: artist; range: entry; }; } 

 a, e ( (a, e)  (artworks)OP 

 a  (artist)C  e  (entry)C ) 

 

 a, e ( (a, e)  (artworks)OP ↔ 

(e, a)  (author)OP )   

{ SameRoom; in: association, metaclass; 

 superclass: reflexive; 

 instance_section: { domain: entry;  range: entry; }; } 

{ Entry; in: type; 

 sameRoom: {set; type_of_element: Entry;}; 

 metaslot in: SameRoom end } 

 e1, e2 (  

  (e1, e2)  (sameRoom)OP 

  e1  (entry)C   

  e2  (entry)C ) 

 e ( e  (entry)C   

  (e, e)  (sameRoom)OP)  

Conditions for facts. 
SYNTHESIS construct Condition 

{ TheLittaMadonna;  

 in: painting; 

 author: “Leonardo da Vinci”; 

 inRoom: TheLeonardoDaVinciRoom; 

} 

(TheLittaMadonna)I  (painting)C  

((TheLittaMadonna)I, (“Leonardo da Vinci”)LT)  

(author)DP   

((TheLittaMadonna)I,  

  (TheLeonardoDaVinciRoom)I)  (inRoom)OP 

Conditions for subclasses. 
SYNTHESIS construct Condition 

{ drawing; in: class; 

  superclass: entry; } 
(drawing)C  (entry)C 

Conditions for invariants. 
SYNTHESIS construct Condition 

all s/Sculptor (is_in(sculptor, s) -> 

  ex sc/Sculpture(is_in(sculpture, sc) & 

      is_in(s.artworks, sc)) 

 s ( (s)I  (sculptor)C  

 sc ( (sc)I  (sculpture)C )  

  ((s) I, (sc) I)  (artworks)OP ) 

purePainter <= intersect(painter, 

      differ(thing, sculptor)) 
(purePainter)C   

(painter)C  (I \ (sculptor)C) 

a.birthDate <> a.deathDate  b, d ( (a, b)  (birthDate)DP   

  (a, d)  (deathDate)DP  b  d ) 

As far as schemas of OWL and SYNTHESIS are interpreted by the same semantic 

structures it is possible to consider a common interpretation I for both schemas s  

SSYN and o  SOWL mapped to each other by . To prove that  is sound it is sufficient 

to show that I satisfies s iff I satisfies o. So an equivalence of conditions of satisfying 

a schema in OWL [9] and conditions of satisfying a schema in SYNTHESIS 

(demonstrated earlier in this section) is to be shown. 



Generally this equivalence is to be proved by induction over elements constituting 

a schema (classes, properties, facts, axioms). In this section the equivalence is 

demonstrated only by examples from the previous section. Thus main points of the 

proof are illustrated. Left column of the tables contains conditions for OWL 

constructs (considered in the previous section) according to the semantics of OWL 

[9]. Right column of the tables contains conditions (already considered in this section) 

for respective SYNTHESIS constructs. 

 

Conditions for object properties. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

 x, y ( (x, y)  (artworks)OP x  (artist)C) 

 x, y ( (x, y)  (artworks)OP y  (entry)C ) 

(artworks)OP= { (x, y) | (y, x) ∈ (author)OP}  

 a, e ( (a, e)  (artworks)OP 

 a  (artist)C  e  (entry)C ) 

 a, e ( (a, e)  (artworks)OP ↔ 

(e, a)  (author)OP )   

Conditions for relationships among classes. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

(drawing)C  (entry)C (drawing)C  (entry)C 

(purePainter)C   

(painter)C  (I \ (sculptor)C) 

(purePainter)C   

(painter)C  (I \ (sculptor)C) 

(sculptor)C  { x | ∃y ((x, y) ∈ (artworks)OP   

                                   y ∈ (sculpture)C) } 

 s ( (s)I  (sculptor)C   sc ( (sc)I  

 (sculpture)C )  ((s)I, (sc)I)  (artworks)OP ) 

Conditions for facts. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

(TheLittaMadonna)I  (painting)C 

((TheLittaMadonna)I,  

  (“Leonardo da Vinci”)LT)  (author)DP 

((TheLittaMadonna)I, 

(TheLeonardoDaVinciRoom)I)   

(inRoom)OP 

(TheLittaMadonna)I  (painting)C  

((TheLittaMadonna)I,  

  (“Leonardo da Vinci”)LT)  (author)DP   

((TheLittaMadonna)I, 

  (TheLeonardoDaVinciRoom)I)  

 (inRoom)OP 

Conditions for reflexive properties. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

(paintings)OP  (artworks)OP  c, p ((c, p)  (paintings)OP   

  (c, p)  (artworks)OP) 

Conditions for subproperties. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

 x ( x  I  (x, x)  (sameRoom)OP)  e ( e  (entry)C   (e, e)  (sameRoom)OP) 

Conditions for disjoint properties and disjoint classes. 
Conditions for OWL constructs Conditions for SYNTHESIS constructs 

(birthDate)DP  (deathDate)DP =   a (a  (artist)C  

   b, d ( (a, b)  (birthDate)DP   

    (a, d)  (deathDate)DP   b  d )) 

(freestanding)C  (relief)C =  (freestanding)C  (relief)C =  

It is easy to see that conjunction of conditions for OWL and conjunction of 

conditions for SYNTHESIS are equivalent. In simplest cases they are the same (for 

instance, some conditions for relationships among classes) or distinguished only by 

variable names. This allows to conclude that the mapping  illustrated in the previous 

section is sound. 



5   Integration of the OWL resources into a Subject Mediator 

In this section a cultural heritage domain for a subject mediator example is 

considered. A limited subset of a respective mediated schema is provided in the table 

1. The more detailed schema of a subject mediator for the cultural heritage domain is 

provided in [12].  

Table 1. Mediator schema example 

CulturalHeritage; in: module; 

type: 

{ Person; in: type;  name: string; }, 

{ Creator; in: type; supertype: Person; 

  culture: string; 

  works: {set; type_of_element: Heritage_Entity;}; }, 

{ Heritage_Entity; in: type; supertype: Entity; 

  title: string; created_by: Creator;   

  place_of_origin: Address; date_of_origin: time; 

  in_collection: Collection; }, 

{ Painting; in: type; supertype: Heritage_Entity; 

  dimensions: {sequence; type_of_element: integer;}; }, 

{ Collection; in: type; in_repository: Repository; }, 

{ Repository; in: type; 

  name: string;  

  collections: {set; type_of_element: Collection;}; }; 

class_specification: 

{ creator; in: class;  

   instance_section: Creator; }, 

{ heritage_entity; in: class; 

   instance_section: 

Heritage_Entity; }, 

{ painting; in:class;  

   superclass: heritage_entity; 

   instance_section: Painting; }, 

{ museum; in: class; 

   instance_section: Repository; }; 

 

Consider an OWL information resource – Hermitage digital collection – relevant 

to the cultural heritage mediator. A subset of the Hermitage schema expressed in 

OWL is shown in the left column of the table 2. A respective representation of the 

schema in the SYNTHESIS language required for uniformity of the resource and the 

mediator specifications is shown in the right column of this table. The Hermitage 

OWL schema is mapped into the Hermitage SYNTHESIS module in accordance with 

the mapping  described in section 3. To save space declarations of classes entry, 

drawing, artist, place and properties name, author, style, place_of_origin, date, 

height, width, artworks like Declaration(Class(entry)) and 

Declaration(DataProperty(name)) are omitted. 

During the registration of the Hermitage resource in the subject mediator classes of 

the resource are described as LAV views over virtual classes of the mediator. A view 

has a form of a conjunctive query. A pair of views aimed to illustrate the result of the 

registration is shown below. 
drawing(d/Drawing[name, author, style, place_of_origin, date, height, width])  

painting(d/Painting[name: title, author: created_by, place_of_origin,  

   date: date_of_origin, r_name: in_collection.in_repository.name,  

   height: dimensions.elem(1), width: dimensions.elem(2)]),  

creator(c/Creator[author: name, style: culture]),  

r_name = 'Hermitage', date.year >= 1100, date.year < 1990 

artist(a/Artist[name, artworks])  creator(a/Creator[name, works]) 

Expression T[a, b] here denotes a reduct of the type T to attributes a, b. Expression 

T[c: a] denotes renaming of the attribute a to c. 



Table 2. Resource schema example 

OWL SYNTHESIS 

Ontology( Hermitage  

SubClassOf(drawing entry) 

DataPropertyDomain(name entry) 

DataPropertyRange(name xs:string) 

ObjectPropertyDomain(author entry) 

ObjectPropertyRange(author artist) 

DataPropertyDomain(style entry) 

DataPropertyRange(style xs:string) 

ObjectPropertyDomain(place_of_origin entry) 

ObjectPropertyRange(place_of_origin place) 

DataPropertyDomain(date entry) 

DataPropertyRange(date xs:date) 

DataPropertyDomain(height drawing) 

DataPropertyRange(height xs:integer) 

DataPropertyDomain(width drawing) 

DataPropertyRange(width xs:integer) 

DataPropertyDomain(name artist) 

ObjectPropertyDomain(artworks artist) 

ObjectPropertyRange(artworks entry)   

) 

{ Hermitage; in: module; 

type: 

{ Entry; in: type; 

  name: string; style: string; date: time; 

  author: {set; type_of_element: Artist;}; 

  place_of_origin: Place;  }, 

{ Drawing; in: type; supertype: Entry; 

   width: integer; height: integer;  }, 

{ Artist; in: type; 

   name: string; 

   artworks: {set; type_of_element: Entry;}; } 

{ Place; in: type; }; 

 

class_specification: 

{ entry; in: class; instance_type: Entry; }, 

{ drawing; in: class; superclass: entry; 

   instance_type: Drawing; }, 

{ artist; in: class; instance_type: Artist; }, 

{ place; in: class; instance_type: Place; } 

} 
 

Views used for integration of other resources (Uffizi and Louvre digital collections) 

in the CulturalHeritage mediator are provided in [12]. The resources to be integrated 

together with Hermitage collection may be represented in various data models such as 

relational one, XML, ODMG ODL and so on. Views are crucial for rewriting queries 

over mediator into queries over resources. In this paper we show rather simple views 

and avoid complicated issues of view construction taking into account resource and 

mediator invariants as it is a future work. One more thing required for rewriting is a 

mapping between a mediator query language and a resource (OWL) query language. 

We neglect the mapping of query languages mostly due to the fact that there exist a 

lot of different ontology oriented query languages but no standard of OWL query 

language. 

6   Conclusion 

The paper enters into controversy in the context of expansion of ontologies into the 

area of databases and information systems and cultivation of the opinion that 

ontologies are at the "semantic" level, whereas database schema are models of data at 

the "logical" or "physical" level. We show that in the area of databases and 

information systems OWL would rather be considered as yet another data model to be 

integrated with other heterogeneous information models in frame of more expressive 

languages. In the paper we demonstrate that “ontology based” conceptual models can 

be mapped with preserving of their semantics into the existing data models, 

specifically those that are used for mediation of heterogeneous databases. This makes 

possible to integrate in such mediators existing databases implemented in OBDA 



under OWL schemas with another, conventional databases. Applying the 

SYNTHESIS – an extensible language for heterogeneous information resource 

integration and mediator definition – we show how a sound mapping of a conceptual 

schemas expressed in OWL 2 QL into SYNTHESIS schemas can be defined. The 

soundness of the mapping is justified. The paper shows also how the integration of the 

OWL-defined databases into a SYNTHESIS-based mediator can be provided. 
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