
Multi-user Searching of Top-k Objects
with Data on Remote Servers1

Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

Department of Software Engineering, Faculty of Mathematics and Physics
Charles University, Prague, Czech Republic

{ondreicka,pokorny,vojtas}@ksi.mff.cuni.cz

Abstract. This paper focuses on searching the best k objects with more
attributes according to user preferences in the Web environment. Attributes of
an object type are distributed on servers in a disjunctive way, i.e. values of one
attribute are stored in only one remote server on the Internet. In our work, every
user can express his/her preferences for each attribute by a fuzzy function and
mutual relations between the attributes by an aggregation function. We use
client/server architecture and communication via Web Services. We deal with
the usage of Fagin’s NRA algorithm, which can find the best k objects without
accessing all the objects. Because of support of sorting objects according to a
fuzzy function, an indexing method based on B+-tree is used in each remote
server. Moreover, each server is stateless, i.e. independent from any previous
request. Our solution is based on cache memory, which loads objects from
remote servers in batches and thus reduces the amount of network
communication. In this paper we present a system TOPKNET, which can
efficiently find the best k objects for various users with data on remote servers.

1 Introduction

In today’s world, virtually any information is accessible trough the Internet and users
of different systems are trying to find descriptions of objects, such as laptops, jobs,
holidays, etc. The biggest disadvantage is that all the information is scattered trough
out various seemingly unrelated Internet locations. For better understanding, we can
use an example of choosing the best holiday destination. When choosing a holiday,
one must consider many variables, which may change frequently and can be located
on various remote servers, such as airline tickets price, weather forecast,
accommodation prices or distance from points of interest. When a user wishes to do a
more complex search, he/she is forced to access every location separately and put the
obtained data together by himself/herself.

In most cases, these objects are of the same type and have several attributes. Each
object has different attribute values, which differ from each other. According to the
values of these attributes, users are searching for objects that best suit their

1 This work was supported by the grant SVV-2011-263312, by GACR grant P202-10-0761 and
by grant number 9209 of Grant Agency of Charles University (GAUK) in Prague.

2 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

preferences [8][7][5]. Each user prefers different attribute values. In general, the user
is only looking for a few objects that are the best according to his/her preferences.
Sometimes the user is looking for only one best object, for example, for a new job.

The problem of searching the best k objects according to values of different
attributes in the same time is indicated as a top-k problem [10][1][4]. A trivial
solution of the top-k problem requires to load all relevant objects together with the
values of their attributes from remote servers, to evaluate every object’s rating by a
rating function, and finally to select k objects with the highest rating.

In last few years, research of top-k problem solving has been progressing in
various domains such as relational databases [3], XML [6], multimedia search [10] or
distributed systems [9].

In this paper, we assume that attributes of an object type are distributed on servers
in a disjunctive way. In general, we suppose that all the values of single attribute are
situated only on single remote server. We developed system TOPKNET, which is
capable to access all of these servers from single location and to find efficiently the
best k objects according to user preferences based on fuzzy functions.

To the best of our knowledge, there are not many applications of top-k problem in
the Web environment. Authors of [9] describe KLEE framework, which solves the
efficient processing of top-k queries in wide-area distributed data repositories. The
framework tries to minimize a computational cost, which includes network latency
and local peer work. The KLEE framework uses approximate algorithms and searches
for the best k documents but only according to an aggregation function.

In a survey [3] Ilyas et al. describe top-k query processing techniques in relational
database systems. In our system TOPKNET, we used a model of user preferences
based on fuzzy functions with usage of B+-trees. Our solution is original and it has
not been included in exhaustive Ilyas’s survey.

We focus on usage of Fagin’s NRA algorithm [1], which can find the best k objects
without searching all the objects according to a monotone aggregation function.

We focus on multi-user solution, where data is common for all users and each user
can express his/her preferences for each attribute by a fuzzy function and mutual
relations between the attributes by an aggregation function [8][7]. We apply this
model in combination with NRA algorithm. It is possible, when we use a method for
sorting objects according to a fuzzy function with using a B+-tree. This method was
mentioned for the first time in our work [8] and used in several related works, which
solve top-k problem for more users with usage of multidimensional B+-tree [5] or in
more complex tree-oriented data structures [2]. In this work, we adapt this method for
needs of network communication [11].

Finally, we developed a TOPKNET system [11], which is capable to minimize the
amount of network communication by using the cache memory, which loads the data
from remote servers in batches, and solves the network latency problems.

The paper is organized as follows. Sections 2 and 3 describe a model of user
preferences and Fagin’s NRA algorithm. Section 4 explains principles of the method
for sorting objects according to a fuzzy function. In Section 5, we describe
client/server architecture of the TOPKNET system. Sections 6 and 7 describe details
of the Server and Client parts. Section 8 presents our experiments. Finally, Section 9
includes conclusions and provides some suggestions for a future research.

Multi-user Searching of Top-k Objects with Data on Remote Servers 3

2 User preferences

Nowadays, in many search engines a user can only restrict the values of some
attributes. The result of searching of these search engines can be empty set or a too
large set of objects. The motivation for searching according user preferences is to find
a few best k objects for the user.

In this paper, we focus on searching best k objects with more attributes according
to the user preferences. We suppose a set of objects X with m attributes A1, ..., Am.
Every object x ∈ X has m values A1(x), ..., Am(x) of these attributes.

A user chooses his/her preferences, which determine suitability of an object x ∈ X
in dependence on its m values of attributes. In this work, we use a rating function R
(ranking function), which assigns a rating R(x) for each object x ∈ X.

More formally, we suppose a rating function R with m variables a1, ..., am specified
by scheme R(a1, ..., am): dom(A1) × ... × dom(Am) → [0, 1], where ai ∈ dom(Ai) for
each i = 1, ..., m. We denote a rating of object x as a function R(x) = R(A1(x), ...,
Am(x)) with one variable, where A1(x), ..., Am(x) are values of attributes A1, ..., Am of
the object x, respectively. Then R(x) : X → [0, 1], maps every object x ∈ X into
interval [0, 1], where 0 means no preference and 1 means the highest preference.

According to object ratings it is possible to sort objects from X in descending order
and determine the best k objects. In this work, we suppose that if there are more
objects with the same rating as the rating of the best k-th object, a random object is
chosen. We differentiate between local preferences and global preferences.

2.1 Local preferences

Local preferences reflect how the object is preferred according to only one
attribute. In this case, we express a local preference for i-th attribute Ai, as a fuzzy
function fi. Fuzzy function fi is understood as a mapping fi : dom(Ai) → [0, 1], which
maps every value of actual attribute Ai domain into [0, 1] interval.

Local preferences of the user U for the attributes A1, ..., Am are represented by user
fuzzy functions denoted as f1

U(x), ..., fm
U(x), respectively [8][2]. Then a user fuzzy

function fi
U(x) : X → [0, 1], where i = 1, ..., m, maps every object x ∈ X according to

the value of its i-th attribute Ai(x) into interval [0, 1] and it is possible to sort objects
from X in descending order according to fi

U(x).

Fig. 1. Ordering interpretation of fuzzy function.

Figure 1 shows the ordering-based interpretation of user’s fuzzy functions fU
1(x),

fU
2(x), and fU

3(x). So fU
1(x) originates order of objects x2, x3, x1, x4, for fU

2(x) order of
objects x3, x2, x4, x1, and for fU

3(x) order of objects x3, x4, x2, x1.

4 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

2.2 Global preferences

Global preferences express mutual relations between the attributes A1, ..., Am. For
this purpose, we consider an aggregation function, which we denote as @, with m
variables p1, ..., pm specified as @(p1, ..., pm): [0, 1]m → [0, 1]. The user U can express
global preference by setting his/her user aggregation function @U.

For the user U with his/her fuzzy functions f1
U, ..., fm

U and aggregation function
@U, a user rating function RU originates by means of substitution pi = fi

U in user
aggregation function @U [8][5]. Then RU(x) = @U(f1

U(x), ..., fm
U(x)), for every x ∈ X.

We say that an aggregation function @ is monotone, if @(p1, ..., pm)≤ @(q1, ..., qm),
whenever pm ≤ qm, for every i = 1, ..., m. Because of NRA algorithm (see Section 3),
in this paper we will be using monotone aggregation functions. We can use, e.g., the
average, maximum, minimum, etc., as monotone aggregation function.

For example, for expressing of mutual relations between the attributes in the
aggregation function, it is possible to use weighted average, where weights w1, ..., wm
of single attributes A1, ..., Am determine how much user U prefers single attributes, i.e.

R U(x) = (w1 · f1
U(x) + ... + wm · fm

U(x)) / (w1 + ... + wm)

When the user does not care about i-th attribute Ai, he/she can then set wi = 0.

3 Top-k algorithm

In [1], Fagin et al. proposed top-k NRA (no random access) algorithm, which assumes
that the objects from the set X are, together with values their m attributes A1, ..., Am,
stored in m lists L1, ..., Lm, where i-th list Li contains pairs (x, Ai(x)), i.e. object (or
object identifier) and its value of attribute Ai. When lists L1, ..., Lm are sorted in
descending order according to the values of attributes A1(x), ..., Am(x), respectively,
then NRA algorithm is able to find the best k objects according to a monotone
aggregation function @ [1].

The NRA algorithm uses only sorted access (sequential access) into the lists,
which allows obtaining of the objects from each list Li step by step from the top to the
bottom by single pairs (x, Ai(x)). NRA algorithm obtains objects, in form of pairs (x,
Ai(x)), by sorted access concurrently from sorted lists L1, ..., Lm. For the obtained
objects x ∈ X the algorithm does not know all the values of its attributes. Therefore, it
counts the worst possible rating and the best possible rating of the object x. In this
way, it is possible to guess the value of not yet seen objects from the lists and
algorithm NRA can stop earlier than it comes to the end of all the lists [1]. It means
that not all the object x ∈ X need be accessed.

4 A model of list based on B+-tree

For the multi-user solution with support local preferences based on fuzzy functions
(see Section 2.1), we need to use a new model of lists, which allows obtaining objects
in descending order according to user fuzzy functions f1

U, ..., fm
U.

Multi-user Searching of Top-k Objects with Data on Remote Servers 5

NRA algorithm have to be obtaining objects, in form (x, fU(x)), in descending order
according to fU(x). Therefore, we apply a model of such a list based on well-known
data structure B+-tree [8][5] and introduce an adaptation of a method for sorting
objects according to a fuzzy function with using a B+-tree. Finally, we can use B+-
trees B1, ..., Bm instead of lists L1, ..., Lm in NRA algorithm. In each B+-tree Bi all
objects are indexed by values of i-th attribute Ai.

4.1 Usage of B+-tree

In B+-tree (see, e.g., [12]) objects from X are indexed according to the values of
only one attribute in ascending order. We use a variant of the B+-tree, whose leaf
nodes are linked in two directions. Every leaf node of B+-tree contains pointer to its
left and right neighbor. Moreover, it is possible to cross the B+-tree through the leaf
level and to get all the keys. In this way, it is possible to obtain objects from B+-tree
in descending order according to course of user fuzzy function fU [8][2][5].

When the function fU is monotone on its domain then the following holds. If fU is
nondecreasing, we cross the leaf level of the B+-tree from the right to the left and get
the pairs (x, fU(x)) in the descending order according to fU, because A(x) ≤ A(y) →
fU (x) ≤ fU (y) holds. If fU is nonincreasing, we cross the leaf level of the B+-tree
contrariwise, i.e. from the left to the right.

4.2 A method for sorting objects according to a user fuzzy function

In general, the user fuzzy function fU might not be monotone on attribute domain
dom(Ai). In this case, the domain can be divided into n continuous disjoint intervals I
= {I1, ..., In}, where fU is monotone on each interval of I. This division into monotone
intervals I is determined by the local maximums and local minimums of fuzzy
function fU, which identify bounds of these intervals.

Then the leaf level of B+-tree can be divided into corresponding parts according to
these monotone intervals I. It is possible to obtain objects in the descending order
according to fU from each of these parts by crossing them in suitable direction.
Moreover, objects can be obtained concurrently according to fU from all these
corresponding parts of the leaf level of B+-tree.

We introduce a set of candidates C, which contains some objects from the leaf
level of B+-tree. The set of candidates C may contain only one object from each
interval of I. For each object x ∈ C we remember a pointer to the leaf level of B+-tree,
its attribute value and the interval Ii to which it belongs.

A method for sorting objects according to a user fuzzy function with using a B+-
tree is based on two steps:

1. a candidate set C is created that the object x with the highest fU(x) is chosen
from each interval of I.

2. the pair (x, fU (x)) with the actually highest fU(x) is obtained repeatedly.

The following pseudo-code illustrates an algorithm with two procedures, which
describe the method for sorting objects according to a fuzzy function, i.e. getting pairs
(x, fU(x)) from the B+-tree in descending order according to user fuzzy function fU.

6 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

Input: B+-tree, fuzzy function fU ;
begin
 candidate set C := createCandidates(B+-tree, fU);
 while(C ≠ Ø)do
 getNext(B+-tree, C, fU);
 endwihile;
end.

procedure createCandidates(B+- tree, C, fU)
begin
 Create monotone intervals I = {I1, ..., In} according to the course of fU ;
 C := Ø ;
 for each Ii from I do
 if(fU is nondecreasing on the interval Ii)then
 If possible, find the first object x ∈ Ii in leaf level of B+-tree,
 which has A(x) less or equal to upper bound of interval Ii ;
 C := C ∪ {x} ;
 endif;
 if(fU is nonincreasing on the interval Ii)then
 If possible, find the first object x ∈ Ii in leaf level of B+-tree,
 which has A(x) greater or equal to lower bound of interval Ii ;
 C := C ∪ {x} ;
 endif;
 endfor;
 For each x ∈ C remember a pointer to the leaf level of B+-tree,
 A(x) and the interval to which it belongs ;
 return C;
end.

procedure getNext(B+-tree, C, fU)
begin
 From candidate set C choose object x with the highest value fU (x) ;
 Ii := an interval from I, for which x ∈ Ii ;
 C := C – {x} ;
 if(fU is nondecreasing on Ii)then
 If possible, move from object x to the left neighboring object y ∈ Ii
 in leaf level of B+-tree ;
 C := C ∪ {y} ;
 endif;
 if(fU is nonincreasing on Ii)then
 If possible, move from object x to the right neighboring object y ∈ Ii
 in leaf level of B+-tree ;
 C := C ∪ {y} ;
 endif;
 return (x, fU (x));
end.

Multi-user Searching of Top-k Objects with Data on Remote Servers 7

5 Architecture of TOPKNET system

Since this paper focuses on searching the best k objects in network environment, it
was necessary to design a suitable architecture for needs of network communication.

For searching the best k object according to user preferences, we designed a client
application, which is able to obtain objects with their attribute values from remote
servers and efficiently find the best k objects for a user.

Since data is stored on remote servers, we have chosen client-server architecture
and for network communication requirements the Web Services technology,
specifically RPC type of SOAP protocol communicating via HTTP. Server operates
as a service responding to the client application requests.

For large amount of objects stored on a server with values of attribute A, it is not
efficient to load all the objects for searching the best k objects, since the NRA
algorithm does not need to access all the objects (see Section 3). Therefore the client
application loads objects from each server in batches. The client application sends
requests repeatedly to individual servers, which respond to the requests by sending
batches of objects. Figure 2 shows a simplified separation of the TOPKNET system
into server and client component. The following two sections explain more detailed
description of both components.

Fig. 2. Architecture of TOPKNET system.

6 Server

The server part of TOPKNET system handles storage and fast access to data. All the
values of a single attribute A of all the relevant objects are stored on server. The core
of the server part is an algorithm, which manages data and communicates with client
application via Web Service interface.

The algorithm is designed in such way, so as the server could operate statelessly,
thus not to store any additional data for any connection. The server provides only
response for immediate request and is independent on any previous request from
client application. For minimizing the network communication amount, the server
provides objects in batches.

To use local preferences in the NRA algorithm the server has to provide pairs,
which are in format (x, fU(x)), i.e., an object (or object identifier) and rating of its
attribute value A(x) according to user fuzzy function fU. These pairs must be provided
in batches in descending order according to fU, which is the reason why objects are
stored in B+-tree, where they are indexed according to values of the attribute A.

8 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

For the requirements of network communication we need to represent fuzzy
functions in suitable manner. Handling the analytical representation of a function is
unpractical, especially from the implementation point of view. Every fuzzy function
can be approximated by a sequence of linear functions, which can be represented as
sequence of points. In general, the course of user fuzzy functions is not too
complicated; therefore such sequences of points contain only a few points. And that is
why we use this representation of fuzzy functions in network communication.

6.1 Providing objects in batches

Since the server should be stateless and be able to provide objects in batches in
descending order according to user fuzzy function fU, each client application request
has to contain information about this function. In TOPKNET we use for
representation of a fuzzy function a sequence of points.

In case a client application requests the first batch of S objects, we proceed as
shown in Section 4.2. We divide the definition domain of fU according to its course
into the intervals I1, ..., In, where fU is monotone.

The set of candidates C is created on the corresponding intervals in leaf level of
B+-tree by the procedure createCandidates (see Section 4.2). Then the
procedure getNext is executed S times, i.e., S pairs are obtained. In this way the
server will provide the list of pairs Batch containing S objects, in form (x, fU(x)), in
descending order according to fU(x).

The following pseudo-code illustrates the server algorithm.

Input: B+-tree, fuzzy function fU , size S of Batch, set of pairs P ;
Output: list of pairs Batch;
begin
1. if(P = Ø)then
2. C := createCandidates(B+-tree, fU);
3. else
4. C := activateCandidates(B+-tree, fU , P);
5. endif;
6. Batch := create empty list of pairs (x, fU (x)) ;
7. for i:=1 to S do
9. (x, fU (x)) := getNext(B+-tree, C, fU);
10. Add pair (x, fU (x)) into Batch ;
11. endfor;
12. P := elements of C in form (x, A(x)) ;
13. return Batch and P ;
end.

When algorithm returns the list Batch of S pairs for the first time, it is sent as the

first batch to the client application. In this moment the candidate set C contains a
pointer to the leaf level of B+-tree. Further obtaining objects from B+-tree must
continue from the identical state of C.

Multi-user Searching of Top-k Objects with Data on Remote Servers 9

We require statelessness of the server and it is necessary to sent the batch of the
next S objects according to fU in the following request of client application.
Therefore, the response for client application must contain not only the batch of pair,
but also the set C, which determines where getNext procedure last stopped when
obtaining objects from the leaf level of B+-tree.

As it is defined in Section 4.2, for object x ∈ C we remember a pointer to the leaf
level of B+-tree, A(x), and the interval Ii to which the value belongs. Since
transferring of pointers through network communication is overcomplicated, we
represent elements of candidate set C as a set of pairs P, elements of which are pairs
(x, A(x)) consisting of object x (or object identifier) and its attribute value A(x) (see
line 12 of the server algorithm).

Consequently, the server sends, as the response to the client application, the batch
of objects with rating according to fU and the set of pairs P (see line 13 of the server
algorithm). If the client application sends request for the next batch of objects, it must
contain the size of batch S, the sequence of points of fU and the set of pairs P.

In this way we ensured statelessness of the server with minimal increasing the size
of transferred data in both request and response.

The first request from the client application differs from the following ones,
because its set of pairs P is empty. In this case, the set C must be created in leaf level
of B+-tree via procedure createCandidates.

The following requests contain set of pairs P, from which the candidate set C is
reconstructed (see line 4) in order to be able to continue obtaining objects in leaf level
of B+-tree, where the algorithm stopped after obtaining objects in the previous batch.

The following pseudo-code illustrates the procedure activateCandidates for
the reconstruction of candidate set C from the set of pairs P.

procedure activateCandidates(B+-tree, fU , P)
begin
 Create monotone intervals I = {I1, ..., In} according to the course of fU ;
 C := Ø ;
 for each x ∈ P do
 If possible, find the object x according to its attribute value in B+-tree,
 which is traversed top to bottom only once (starting at the root) ;
 For object x remember a pointer to the leaf level of B+-tree,
 A(x) , and the interval Ii to which it belongs ;
 C := C ∪ {x};
 endfor;
 return C;
end.

7 Client application

The client application of TOPKNET system is able to obtain objects with their
attribute values from remote servers and efficiently find the best k objects for a user.
It uses the Web services interface for communication with remote servers.

10 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

In our solution, we try to minimize the amount of network communication by using
the cache memory, which loads the data from remote servers in batches, and solves
the network latency problems. The client application uses one cache memory for each
single remote server.

7.1 Cache memory

TOPKNET system works on the client/server architecture principle. For the
searching top-k objects it is necessary to be as fast as possible. Therefore, it is not
acceptable for search by the NRA algorithm, which uses sequential access, to wait for
every single object from every list to be loaded from the server. Thus the algorithm
does not access the server directly, but through a cache memory. NRA algorithm then
obtains objects from the cache sequentially in a descending order according to fU. The
objects are obtained as pairs (x, fU(x)), i.e., object (or object identifier) and rating of
object x by fU.

The main part of the cache memory consists of two parallel threads using one
shared list, which contains pairs (x, fU(x)) loaded from the server. These pairs are
sorted in a descending order according to fU. We denote the size of this list as h.

The first thread, we call it consumer, provides pairs for top-k algorithm only. The
second thread, we call it producer, ensures the loading of pairs in batches from
remote servers. The consumer waits only for top-k algorithm to request another pair
(x, fU(x)), it loads the requested value from the shared list and returns it to the
algorithm for further processing.

The main duty of the producer is to manage providing a sufficient amount of pairs
in the shared list, in order to prevent top-k algorithm to wait for it. As soon as the
consumer realizes that the amount of objects in shared list decreases under previously
established level l (e.g. l = h / 2), it wakes up the producer, which starts obtaining
further pairs from server in batches again and increases their amount in the shared list.

However, if the network communication with server is so slow that the producer is
not able replenish the shared list, the consumer is put to sleep and waits for the
producer to inform it that further pairs are now available. If this case occurs too
frequently, it is suitable to increase the size of shared list h or to set higher value of
level l.

7.2 Users of client application

Each one of the remote servers contains all the values of single attribute Ai and is
able to provide the pairs (x, fi

U(x)) in descending order according to user fuzzy
function fi

U. A particular user U of client application can specify his/her local
preferences with fuzzy functions f1

U, ..., fm
U and a global preference with an

aggregation function @U. Then the client application gets pairs (x, fi
U(x)) in batches

from remote servers and can efficiently find the best k objects.

Multi-user Searching of Top-k Objects with Data on Remote Servers 11

8 Implementation and Experiments

The implementation of TOPKNET system has been developed in Java. We used Web
Service framework Apache Axis2 [13] for a communication between the client
application and remote servers, where the network messages are sent in XML format.
The remote servers of the TOPKNET system have been running on the Apache
Tomcat Application Server [14]. These technologies are optimized to work together
and ensure stability of the TOPKNET system.

In this paper, we focus on experiments in a network environment. There have been
used three sets of 100 000 objects with 5 attributes values for testing. It means, we
used five remote servers and a client application. We focused on the time, which is
needed for finding the best k objects in the client application according to a user
preference. We used user preferences, where some attribute values were the most
preferred, and an arithmetic average which has been used as the aggregate function.

We find out that the computation time of NRA algorithm is most dependent on
network communication between client application and remote servers. We used k =
20, i.e. we searched the best 20 objects, because the difference in the computation
time in our particular experiment was relatively small for any k smaller than 250.

We tested the TOPKNET system with a usage of various values of network
latency, which was simulated by a delay of server response. We focused on
dependence of computation time of NRA algorithm according to size of cache
memory. Naturally, the best of results have been achieved by zero network latency
and the biggest size of cache memory. Figure 3 shows the results of this comparison.

Fig. 3. Computation time of the TOPKNET system for different values of network latency and
cache memory size.

9 Conclusion

We developed the TOPKNET system, which can efficiently find the best k objects
for various users with data on remote servers.

12 Erik Horničák, Matúš Ondreička, Jaroslav Pokorný, and Peter Vojtáš

Our solution for server part of TOPKNET system assumes that fuzzy function and
data on the server are not changing during NRA algorithm computation. It will be
interesting to solve problem in a more dynamic environment, e.g. data stored in
B+-tee on the server is changing very fast.

Moreover, this solution permits that the size of batch can be different in each
request of client application. This property can be utilized for further, more advanced
optimization of the network communication.

In [4] the authors describe heuristics for NRA algorithm, which can automatically
change a progress in sorted access to the lists. Similarly, a motivation for future
research could be to develop some heuristics based on different network latency for
each of the servers. For example, it is possible to monitor communication latency of
servers during the run of NRA algorithm and it would be more suitable to adjust the
properties of cache memory so that it could change its settings, i.e. h and l (see
Section 7.1), automatically.

References

1. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal of
Computer and System Sciences 66, 2003, pp. 614-656.

2. Ondreička, M., Pokorný, J.: Efficient Top-K Problem Solvings for More Users in Tree-
Oriented Data Structures. In: Proc. of IEEE Fifth International Conference on Signal Image
Technologies and Internet-Based System, Marrakech, Morocco, 2009, pp. 345-354.

3. Ilyas, I. F., Beskales, G., and Soliman, M. A.: A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv. 40, 4, Oct. 2008, pp. 1-58.

4. Gurský, P., Vojtáš, P.: Speeding Up the NRA Algorithm, in SUM 2008 - Scalable
Uncertainty Management, Napoli , Italy, Springer, Sep. 2008, pp. 243-255.

5. Ondreička, M., Pokorný, J.: Extending Fagin's algorithm for more users based on
multidimensional B-tree. In: Proc. of ADBIS 2008, P. Atzeni, A. Caplinskas, and H.
Jaakkola (Eds.), LNCS 5207, Springer-Verlag Berlin Heidelberg, 2008, pp. 199-214.

6. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: efficient and
versatile top-k query processing for semistructured data. The VLDB Journal, Vol. 17, No. 1,
January 2008, pp.81-115.

7. Gurský P., Vaneková V., Pribolová, J.: Fuzzy User Preference Model for Top-k Search. In:
Proc. of IEEE World Congress on Computational Intelligence, Hong Kong, 2008.

8. Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for multiple
users preference. In: Proc. of 2007 IEEE International Conference on Fuzzy Systems, July
24-26, 2007, London, England, pp. 1101-1106.

9. Michel, S., Triantafillou, P., and Weikum, G.: KLEE: a framework for distributed top-k
query algorithms. In: Proc. of the 31st international Conference on Very Large Data Bases,
Trondheim, Norway, 2005, VLDB Endowment, pp. 637-648.

10. Chaudhuri, S., Gravano, L., Marian, M.: Optimizing Top-k Selection Queries over
Multimedia Repositories. IEEE Trans. On Knowledge and Data Engineering, August 2004,
Vol. 16, No. 8, pp. 992-1009.

11. Horničák, E.: Preference querying, indexing, optimization. Master’s thesis, Charles
University, Faculty of Mathematics and Physics, Prague, 2011, (in Slovak).

12.Comer, D.: The Ubiquitous B-Tree. ACM Computing Surveys, Vol. 2, No. 11, June 1979,
pp. 121-138.

13. Apache Axis2 - a Web Services / SOAP / WSDL / XML engine. http://axis.apache.org/
14.Apache Tomcat 6.0 Application Server. http://tomcat.apache.org

