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Abstract. Techniques for efficient and distributed processing of hugéound
data streams have made some impact in the database comrbustityputed data
stream processing systems have emerged providing a distilenvironment to
process these potentially unbound streams of data by a peta#ssing nodes. A
wide range of real-time applications process stream-bdatd Sensors and data
sources, such as position data of moving objects, contslyquoduce data that
is consumed by, e.g., location-aware applications. Deipgrah the domain of in-
terest, the processing of such data often depends on depedaific functionality.
For instance, an application which visualizes stream-+bdaéa has stringent tim-
ing constraints, or may even need a specific hardware emagohto smoothly
process the data. Furthermore, users may add additionsiraonts. E.g., for se-
curity reasons they may want to restrict the set of nodespidicipates in pro-
cessing.

In this paper we review context-aware applications whigspite their different
application fields, share common data processing prireijée analyse these
applications and extract common requirements which degarst processing sys-
tems must meet to support these applications. Finally, wes $tow such appli-
cations are implemented using NexusDS, our extensiblaratpocessing mid-
dleware.

1 Introduction

Nowadays sensors exist producing a huge amount of datesttiatd-constrained and
should thus be processed on-the-fly. This sensor data seauftotentially unbound
streams. Techniques for efficient and distributed proogssi huge, unbound data
streams have made some impact in the database communite past decade many
studies have been conducted in the field of data stream [@ioges/stems. These stud-
ies ranged from architectural proposals to sophisticatedgssing techniques targeting
the unbound nature of data streams. Nowadays distributednstprocessing systems
are state-of-the-art since they scale well with increagiakload and thus enable an ef-
ficient processing. These systems often provide a declargtiery language and allow



Sources Operators Sinks

|
(a) Visualization scenario realizing a flow visualiza¢b) Air flow visualized with stream rib-
tion of airflows in buildings. bons in real-time.

Fig. 1. Real-time visualization and the respective visualizatioanario.

to continuously process incoming data streams in a dig&ttashion. The query is
first mapped to operators and in a second step distributedghtable computing nodes.

However, none of the systems reached a general acceptdbilia huge number
of applications and application domains, such as datalthide$his is due to the fact
that they do not consider the specific needs of real-timeiegtjins. Depending on
the domain of interest (e.g., visualization) the proceassihsuch data often depends
on highly domain-specific functionality. For instance, qplécation which visualizes
stream-based data has stringent timing constraints, orrmeay a specific hardware
environment to smoothly process the data. Such a compleicappn scenario and
the resulting visualization is depicted in Fig. 1(a) and.Hi¢pb) respectively. In this
example, the air flow through a building is simulated and afiged as stream ribbons
in real-time. Thereby the air flow adapts also to changingtioos of objects moving
in the building. The processing of such a scenery is a higbiygex task and cannot
be reasonably performed on mobile devices. Thus, dedid¢atstivare must be used.
See [1] for a in-deep explanation of this example scenario.

Furthermore, users may add constraints. E.g., for secig@gons they may want
to restrict the set of nodes that participates in data pedegsAs explained in [2],
there is a permanent adaptation necessity in today’s stpgaoessing systems. At a
last consequence this means that each application domairtshdedicated process-
ing schemes, although they rely on common processing tgohsj i.e., data stream
processing. Therefore, a common basis should be explaitesidid redundant func-
tionality and code as well as to reduce development time armdsedue to usage of
multiple different technologies.

In this paper we argue that many applications, althoughraatig from different
application domains, mostly share common processingiptas This calls for a data
stream processing concept, that allows to express theplarticharacteristics and re-
quirements of each application under concern. Hence, otar steeaming approach,
called NexusDS, has been designed to especially addrespehiics of these domain-
specific applications as well as the heterogeneous execativironment. This tight
integration of applications and system considerably redaevelopment overhead and
enhances infrastructure exploitation as well as overafbpemance.



The remainder of this paper is structured as follows: Ini8a@ we present real
world application scenarios from different applicatiomtiins and extract their require-
ments in Section 3. In a next step we show in Section 4 whyiagistpproaches do
not suffice in supporting those applications. In Section Sintduce NexusDS, our
stream processing middleware that supports the tightiaten of such applications
and provide an evaluation in Section 6. In Section 7 we catecthis paper with a short
summary.

2 Application Scenarios

We will present three non-trivial applications: (A/jsualization application for mo-
bile devices (B.) storing moving objects’ traces and (C.)management support in
smart factories.

2.1 Visualization Application for Mobile Devices

A complex data stream scenario that goes beyond the cutertaf the art is an
interactive and location-aware visualization applicat#s depicted in Fig. 1(a) (the re-
sulting visualization is shown in Fig. 1(b)). In this exampthe air flow in a room is
simulated and visualized. THgvironment source provides room data. Objects moving
in the room are tracked by tHeosition Tracker source whereas the status of the win-
dows is tracked by th&Mndow Tracker source. The-luid Solver source simulates the
velocity field which depends on the tracked objects. Takculate Sream Lines oper-
ator seeds and calculates streamlines based on the vdlelkityTo visualize the twist
induced by the velocity field, stream ribbons are calcul&teah the streamlines by the
Calculate Sream Ribbons operator. The obtained geometry is rendered byRéreler-
ing operator, which produces image output. This image outputlocen be displayed
on aMobile Client which do not have the capabilities to render complex sceseri
themselves. Preferably, the rendering step is executepemiadized hardware having a
graphics processing unit (GPU) which provides all the céjpials (GL extensions) re-
quired to deliver high quality renderings with good perfamoe. User interaction, such
as to rotate and pan the scene, can be modelled as paranddtzsifor the operators.

Thus, the system must support domain-specific operatarh, astithe Render oper-
ator and the corresponding constraints. E.g., for the &ff=execution of the domain-
specific Render operator the presence of a GPU with certpmbiities is mandatory.

2.2 Storing Moving Objects’ Traces

With the increasing use of sensor technology, the compressisensor data streams is
getting more and more important to reduce both the costsrtifduprocessing as well
as the data volume for persistent storage. An example Sodeatepicted in Fig. 2(a).

A Mobile Device with GPS Sensor produces a stream of position updates, which is first
processed by &election operator to reduce the stream to positions within a givea.are
The resulting stream is partitioned by tendow operator, which form the input for the
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(a) Storing of moving objects’ traces. (b) Management support in smart factories.

Fig. 2. Real-time visualization and the respective visualizatioanario.

Compression operator. The compressed position information can bediara position
History Server for later analysis or can be further processed by subsegpenators.

This allows to move the generic part of the functionality ofithe compression op-
erator and to implement it as an additional operator. Thissiases the performance, as
the different operators can be deployed on different noddsso enhances reusability
of the generic parts [3].

2.3 Management Support in Smart Factories

A lot of influencing factors can cause disturbances in pridogrocesses in today’s
factories [4]. Unsteadiness of the demand for a producth@bs of orders of a cus-
tomer, delayed delivery of raw materials, failures of maelior decreasing quality of
the products require quick adaptation of the productiorcg@ss. To perform such quick
adaptation, it is necessary that the responsible persanspeoduction managers or
maintenance staff, can get information on the current sthtke production facilities,
failures or required actions at any time. The NexusExpl@artool which communi-
cates with the back-end systems via an interface whichl@réai to consume dynamic
data. This interface constitutes a sink for data streamstwiriay run on éesktop
Computer or Mobile Device. Selections based on time, type and location can easily be
implemented as Biltering operator in a data stream system, as shown in Figure 2(b). In
such scenarios, the data stream system can also be useg&mar® measured values
from theSensorsto aHistory Server, making the data available for retrospective failure
analysis.

Data required by the NexusExplorer is often a business seftiee company own-
ing the factory. Thus it is important that applications sashthe NexusExplorer can
restrict the set of nodes for data processing to nodes ownedmnrolled by the com-

pany.

3 Requirements of Stream-based Applications

The presented sample applications illustrate that marigrdiiit requirements exist
at different levels of query processing as well as integrafirocess. As an example,
we refer to theRender operator which typically requires a GPU. Another example is
the compression of moving object traces. Here, the integraf specific compression



algorithms within the data stream processing pipeline eded. An alternative case,
where we do not need dedicated processing capabilitiesbadaptation at infrastruc-
ture level, is given by the scenarwanagement support in smart factoriesin Section 2.3.
Here it is crucial, that sensitive factory data remains inittertain predefined bound-
aries and is not propagated arbitrarily. All applicatiohare the usage of streamed and
static context data to adapt the actual processing acaptditheir surroundings. The
single steps of the applications map nicely to complex dpesaf a stream processing
system, thus using such systems seems reasonable. In symehave identified the
following main requirements of these applications:

A. Custom data-processingApplications often require functionality to tailor thesy
tem behaviour as well as actual data processing to theiifapeeeds. An example
is the Rendering operator of the visualization application from Section.2rla
large and distributed computing environment it is essétitat new operators can
be added to the stream processing system online, to makep#rator available
fast and easily.

B. Structured and unstructured data support: New application domains may in-
troduce new types of data, such as images or video strearissmians that the
system must allow to implement new operators that go beyloskt provided by
state-of-the-art data stream processing systems.

C. Deployment and execution specification®perators as well as applications may
impose certain constraints to the operator deployment aaduion. E.g., opera-
tors may only be deployed on specific hardware, may requiestaio amount of
memory at runtime, or may even be allowed to be exclusivegceted in a cer-
tain (secure) environment, as for the smart factory exarimpta Section 2.3. For
this reason, the operator model of a data stream processtens must provide a
way to describe operators with their respective deployrardtruntime constraints.
These constraints are defined by operator developers afidafgm developers.

D. Deal with heterogeneous system topologZertain tasks may be computationally
expensive making the usage of dedicated hardware a ngd&$sRecent research,
such as [6], shows that creating dedicated operators rgroinFPGA chips is
beneficial. Data streaming systems must support integrafisuch highly domain-
specific processing logic to exploit this potential. Thisuks in a broad variety of
participating computing nodes, which must be managed bgtileam processing
system.

E. Exploit mobile devices as data source and execution nodds the scenarios de-
scribed beforehand, mobile devices consume data but adsaprdata relevant for
correct processing. E.g., for the visualization pipelioersrio the client receives
a video stream of the rendered scene but must also provideutinent position
and viewing direction to set the viewport correctly. In th@ectory compression
scenario the mobile client provides data of the currenttjposi

4 Related Work

Complex data stream scenarios, as discussed in Sectiors2, aise requirements
that go beyond state-of-the-art data stream processirtgnsgs To support domain-



Custom Structured/ Deployment Heterogeneous Mobile
Data- Unstruct. and System Devices
Processing Data Execution Topology Support
Stream provided relational / desktop
- data source
Globe by query - computers
PLACE* i relational / i desktop data source
- computers
. relational / desktop
Borealis local op. - -
- computers
SystemS local op. relat_lonaI/ deploym. & supercomp.,
arbitrary runt. (comp.) mainframes
objects/ deploym. & deskt. comp., data source
NexusDS global op. arbitrary runt. (part.) mobile dev. & execution

Table 1. Comparison of data stream processing systems

specific requirements and to attract a wide range of stre@applications, stream pro-
cessing systems should support the efficient integratidioofain-specific functionality.
All systems considered in this paper allow to access andegsodata in a distributed
fashion, which is a key feature to efficiently process daadld 1 compares state-of-the-
art distributed data stream systems according to the remeints from Section 3.

StreamGlobe [7] provides a fixed set of operators at each aongpnode. Custom
operators must be included with each query that is submittede system, thus lim-
iting the usability of that operator for this particular que_ater queries have to send
the custom operator again in order to use it. StreamGlobg nlatesupport the process-
ing of unstructured data and does not provide a way to defis®oudeployment and
execution rules.

PLACE?* [8] is a spatio-temporal distributed stream proasgsystem for moving
objects. The integration of custom operators is not comsiland unstructured data
is not supported. The whole execution of queries is perfdrinebackbone servers
that also track the moving objects as they move along. Thezemobile devices are
exploited as data source but not integrated with the actusdygexecution.

In Borealis [9], a system developer must install operataasually at each process-
ing site which makes them locally available. Only structldata is supported limiting
the usage for the scenarios sketched. Borealis neitheosispgpeterogeneous system
topologies, nor operator constraints.

SystemS [10] allows to add custom operators locally at eaobgssing site, pro-
vided they do not require third party libraries. Otherwigesystem administrator must
configure and install additional software packages befugeperator can be used. To
the best of our knowledge, beside NexusDS, SystemS is tlyelatd stream processing
system that is capable of handling structured as well agustated data. SystemsS is
designed for clusters of computing nodes and thus assunmsdemeous computing
nodes according to our classification.



NexusDS shares a few concepts with the discussed systetiffers in several
ways: Arbitrary custom operators can be added to NexusDSvaate available at a
global scope by publishing them via a repository site maddneNexusDS. Further-
more, the operator model of NexusDS supports structureceie/unstructured data
and the operators can be deployed and executed accordipglioaion-specific con-
straints specified within the query graph. NexusDS supjgorésiety of devices ranging
from simple mobile devices with a reduced set of capabilitiedesktop computers with
dedicated hardware installed.

5 NexusDS

NexusDS [11] is a distributed stream processing middleviargeting the require-
ments from Section 3, thus providing enhanced support florpdex application scenar-
ios demanding for specialized techniques. In the followirggdescribe how NexusDS
satisfies each single requirement.

5.1 Custom Data Processing Logic

Applications formulate their data processing scheme bynohefia query graph that
represents the data sources as well as the data procedsingp@rator set of NexusDS
is extensible, i.e., an application developer can integeaen highly specialized and
domain-specific operators. For this, developers of suchabpes enrich the actual op-
erator implementation by descriptors which are attachatidooperator aseta data
describing the operator. The operator meta data include characteristics such acthe
cepted and delivered data types, the number ofnputs and outputs, the operatoexe-
cution requirements specifying special software and hardware requiremenig,esets
allowing to specify commonly used settings for the operatmameters. When inter-
connecting operators, only inputs and outputs of the sartaefdianat can be combined.
By building on this flexible meta data concept arbitrary @pers can be integrated into
NexusDS.

5.2 Support Structured as well as Unstructured Data

NexusDS uses the Augmented World Model (AWM) [12] as the dasiuctured
context-data format. The AWM is an object-oriented, exitdesdata model tailored
to the needs of location-based applications. Like commgaadioriented data models,
the AWM supports (multi-) inheritance. In contrast to tho&®/M objects do not have
a fixed structure, but are sets of attributes, where the typieecobject is just an addi-
tional attribute. An object can even contain multiple imstes of the same attribute, in
which additional meta data can be used to distinguish tharnss.

For the Nexus system, this concept has two main advantaigetty,ft greatly facil-
itates the integration of data coming from different pr@ril Different representations
of the same object can be integrated by unifying the two sédigh even works, when
the two data providers disagree about the type of the ohjB&tsolving such incon-
sistencies can be either done by the system in an addititeyal ar can be left to the



application. Secondly, the concept of multi-attributdevaé to represent dynamic at-
tributes like the position of a mobile object. In this cases bbject contains multiple
instances of the position attribute, where each instanctaots an additional meta data
item representing the temporal validity of this instance.

In addition to AWM objects, NexusDS can also handle applbcaspecific data
streams, which allows, e.g., operators generating a vitteara (unstructured data).
For this, application developers have to develop the spegferators processing the
application-specific data. Developers must also providedispective serialization and
deserialization operators to support distributed prangss

5.3 Definition of the Actual Deployment and Execution

Data processing schemes in NexusDS are formulated as quegritsy TheNexus
Plan Graph Model and Nexus Execution Graph Model (NPGM and NEGM) arrange
the operators used for data processing and support thetabefiof deployment and
runtime constraints. The difference betwegxan graph andexecution graph is that the
execution graph specifies the whole deployment (physicaiaiprs, execution environ-
ments, etc.) whereas the plan graph isybrid graph model to orchestrate data-flow
graphs composed of boxes. Boxes are an abstraction andlcant®s? sources, sinks, or
operators. Hybrid graph model means NPGM allows to definpenties of the query
graph bydeployment and runtime constraints. The annotation of the query graph by
constraints allows to influence the actual deployment m®ead furthermore defines
the runtime behaviour of the boxes. NPGM query graphs aralinettly deployable
as there may exist boxes that are not mapped to a concreteahygerator (logical
boxes) and the distribution of the physical operators Iktstknown. Before execution,
NPGM graphs must be mapped to an executable representiddN]) which in the
next step can be deployed and executed on the availablstinfcaure.

To create a NEGM graph the NPGM graph is fragmented into sydftraccording
to annotated constraints. These fragments are deployedxautited on different het-
erogeneous and distributed nodes. Query graph fragmemiata highly complex task.
We adopt a meta-heuristic approach that allows us to eftigiéind a suitable query
graph fragmentation. By deploying and executing the fragmevith their respective
boxes on different computing nodes, NexusDS can efficigmthcess complex tasks,
such as the streamline calculation scenario.

5.4 Deal with Heterogeneous System Topology

Operators may require specialized hardware, such as a G&find suitable pro-
cessing nodes, NexusDS operators must be annotated wisttraiois describing the
requirements in terms of hardware and software resourd¢es$tis meta data is used
during the transformation from NPGM to NEGM to constrain fiaéection of suitable
nodes for the specific operator and to guarantee a valid geylot decision. Conse-
quently, the execution environments also must be annotétbdhe same kind of con-
straints. This information is used to match operators t@pete execution environments
satisfying the operator requirements.



5.5 Exploit Mobile Devices as Data Source and Execution Node

Nowadays mobile devices have multiple sensors that collatat of the mobile de-
vice’s context. As shown in Section 2.1, this data is oftepantant in order to make a
stream query graph work properly, e.g., for setting the aféaterest according to the
current mobile device’s position. Processing capabilidémodern mobile devices have
increased in the past decade but are still not suited fornuixecof complex operators,
such as the streamline calculation and postponed rendefingmplex sceneries. In
NexusDS, mobile devices can be integrated as data soureesdlas processing nodes
executing certain tasks, e.g., filtering data elementsrbefending them to subsequent
processing nodes.

6 Performance Evaluation

We have evaluated our work by implementing the scenarioeptes in Section 2.1
in NexusDS. Different domain-specific operators have begriémented that exploit
the capabilities NexusDS offers. The resulting applicat®oshown in Fig. 1(b). The
test platform consisted of up to four commodity PCs with QB&PUs, 4 GB DDR2
main memory, and GBit Ethernet interconnection. The mablééform receiving the
rendered images was a HTC Nexus One. All operators were mgsieed in C++ (to
fully exploit GPU capabilities) and embedded in NexusDSaklhis written in Java.
The native visualization application (without the overth@d NexusDS) reached a run-
time of approx. 49.4 seconds on a single node for each retider@ge. The same
application, integrated in the NexusDS system, perforrhedsme task on the same
node in approx. 51.1 seconds, resulting in a small overheadaithe NexusDS frame-
work. When exploiting the distribution capabilities of NesDS we achieve a speed-up
factor for the query graph of approx. 5.9 for a distributedf@uration with 16-way
parallelism of performance-critical operatbrssing four nodes. If we consider only
performance-critical operations for this configuratioe®a speed-up factor of approx.
8.4 is measured. This indicates NexusDS scales well witteasing parallelism, show-
ing the scalability of our system w.r.t the parallelism cfualization operators that rely
on the flexibility of NexusDS [1].

7 Conclusion

As demonstrated by the complex examples presented in 8zt is mandatory
to provide an adaptable execution environment for stregm@aplications. In this paper
we have discussed requirements of such applications. Hpgdieations, although orig-
inating from different application domains and having elifint processing constraints,
share a common processing principle, i.e., data streanegsoty. They are often em-
bedded in a utterly heterogeneous and distributed infretstre ranging from desktop
computers to mobile devices. Therefore a data stream BioceSystem needs to sup-
ply adequate techniques to provide a tight integration ahdgard and non-standard

% Performance-critical operators are operators requirifigige amount of computation time
compared to the other operators in the query graph.



processing schemes. These techniques reach from theatitegof specific operators
to the manipulation of the actual graph deployment. Nexuslespecially tailored to
meet these requirements. By the unique techniques probigldxusDS it is possible
to realize applications relying on highly domain-specifioicepts.

These features raise new challenges including the developaf a query engine

that is aware of the domain-specific constraints and thdbésgghem when searching
for a query graph distribution.
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