
Accessing Functional Aspects with Pure SQL

– Lessons Learned –

Matthias Liebisch

Database and Information Systems Group
Friedrich-Schiller-University Jena

07743 Jena, Germany
m.liebisch@uni-jena.de

Abstract. Functional aspects, known as cross-cutting concerns in soft-
ware engineering, embody the extension of a conceptual schema by func-
tionality which is beyond the intrinsic business logic. The support of
functional aspects in a modularized way is the purpose of aspect-oriented
data management. The present paper gives a review of this paradigm and
describes the experiences of accessing the corresponding relational ref-
erence model through pure SQL. This includes an application example,
the definition of a benchmark testbed with a practice-oriented workload
and some key performance indicators. Ultimately the benchmark results
as well as the usage of SQL to access functional aspects are discussed.

Keywords: functional aspects, aspect-oriented data management, ref-
erence model, benchmark results, access issues

1 Introduction

For storing application data, relational database management systems (RDBMS)
based on the relational model[3] have become generally accepted since their in-
troduction three decades ago. In the process of data modeling not only appli-
cation specific business requirements but so called functional aspects must be
considered, for example the ability to handle multilingual or version-controlled
data. These functional aspects, also known as cross-cutting concerns, have an
impact on most parts of the modeling units and can’t be modularized in a sim-
ple way. Similar problems arise when databases are faced with multi-tenancy
requirements, for example in the context of software as a service[1] respectively
cloud computing. Compared to well known traditional approaches, which inte-
grate such aspects with repetitive steps of schema evolution into an existing data
model, the new paradigm of aspect-oriented data management[8] pursues an inte-
gration independent of and encapsulated with respect to the present conceptual
schema. To achieve these aspirations a reference model for the aspect-oriented
data management is described in [9].

The on hand paper analyzes the consequences for accessing this reference
model with pure SQL, i.e. SQL:92, to query and manipulate aspect-specific data.
For this purpose Sec. 2 gives an overview of aspect-oriented data management,

the associated reference model and a sample application. The following main
part in Sec. 3 specifies the whole testbed for a benchmark and presents some
performance results. Finally, the outcome is evaluated in Sec. 4.

2 Fundamentals

This section imparts a survey of the main concepts regarding aspect-oriented
data management and the related reference model. Furthermore an example of
use is described, therewith all basics for the performance benchmark in Sec. 3
are established.

2.1 Aspect-Oriented Data Management

Cross-cutting concerns in software development processes, e.g. logging or ex-
ception handling, are covered for more than 10 years by the concept of aspect-
oriented programming[7,2] to avoid spreading the code for such functional as-
pects over classic business objects. Similar challenges arise at the persistence
layer, e.g. by storing multilingual data without influencing all relevant tables in
a relational database. Therefor the new paradigm of aspect-oriented data man-
agement was established, including the following characteristics. Further details
can be found in [8].

Modularity: All information belonging to a functional aspect should be consol-
idated in a logical modeling unit and not spread over the whole conceptual
schema.

Orthogonality: For arbitrary functional aspects all potential orders of integra-
tion must transform the conceptual schema into semantic equivalent states.
At the same time a given attribute set can be influenced by more than one
functional aspect, but for two different functional aspects no interaction be-
tween their influenced attribute sets is allowed.

Locality: The integration of a functional aspect, that is the extension of the
conceptual schema for representing aspect specific data, should require a
minimum of transformations, at best none.

Universality: To ensure the greatest possible application area with respect to
all relevant RDBMS products the realization of functional aspects should
only be based on SQL:92.

Usability: The application/database administrator must be supported by semi-
automatic tools in the process of functional aspect integration. Furthermore
an user-friendly access to integrated functional aspects is desirable.

2.2 Reference Model

To manage functional aspects in an existing business data model, the refer-
ence model shown in Fig. 1 has to be integrated as an encapsulated schema.
Thereby the tables AspectValue and AspectAssign represent central ele-
ments (aspect weaving data), whereas AspectValue implements the concept

AspectTable

PK AspTabID

Schema

TableName

AspectColumn

PK

FK

FK Datatype

Column

Table

AspColID

AspectDatatype

PK AspTypeID

Name

Length

Scale

Aspect meta data Aspect weaving data Aspect master data

Value

RowID

Column

Table

AspValID

FK

FK

PK

FK AspectValue

Aspect

KeyValue

AspAssIDPK

FK

FK

Comment

TableName

Aspect

AspAddID

FK

PK

FK Datatype

Key

Name

AspDefIDPK

AspectDefinition

AspectAdditional

AspectAssign
Comment

KeyValue

Aspect

AspKeyIDPK

FK

AspectKeyValue

AspectValue

FK: Foreign KeyPK: Primary Key

Fig. 1. Reference model to support functional aspects (based on [9])

of the entity-attribute-value (EAV) model[12]. Thus a high degree of flexibility
and dynamic concerning aspect specific assignments is ensured, which works as
follows. At first an aspect specific characteristic (Value) for an arbitrary table
cell, identifiable by the triple (Table, Column, RowID), is stored in table As-
pectValue. Therefor it’s necessary that all original business tables only have
a single attribute primary key. Moreover a generic data type, for example VAR-
CHAR, must be used for AspectValue.Value to handle values of different
data types.

Consecutively in the other central table AspectAssign the assignment of
aspect specific data (AspectValue) to an aspect characteristic (Aspect, Key-
Value) is performed, whereby a unique constraint over (Aspect, KeyValue,
AspectValue) must be satisfied. As depicted in Fig. 1 the foreign key attributes
in AspectValue and AspectAssign references other tables, grouped into ta-
bles for a detailed description of all relevant aspects (aspect master data) and
tables building a very simple but product independent database catalog (aspect
meta data). In every table an internally generated primary key is used instead of
the logical primary key given by the remaining attributes to provide a consistent
layout of and access to the reference model. As mentioned above unique con-
straints must ensure consistency. A more precise description of AspectDefini-
tion, AspectKeyValue, AspectAdditional, AspectDatatype, Aspect-
Column and AspectTable is given in [9].

2.3 Example of Use

To illustrate the approach of this paper a basic bill of material management
(BOM) will be used as sample application. The incomplete schema is shown
in Fig. 2 and consists of two tables. In detail, Module is responsible for all
master data of a single item and in Structure the relationship information
between items can be stored, i.e. how an item is composed1. Beside this pure
business data model, the two functional aspects language and version control
should be integrated such as distribution of multilingual products with different
versions is achievable in a globalized commerce. Thereby both functional aspects
have only an impact on attributes Module.Name, Module.Price and Struc-
ture.Amount, whereas Module.Var works as indicator for variant configu-
ration processes and should be independent from any aspect.

+Language, +Version

PK: Primary Key FK: Foreign Key

Price

Name

ModuleIDPK

BOM.Module

Var

BOM.Structure

PK,FK Parent

Child

Amount

PK,FK

Fig. 2. Example of use (bill of material)

3 Benchmark Testbed

After the reference model for supporting functional aspects in any desired con-
ceptual schema was explained in Sec. 2, the performance of this model is inves-
tigated in the current section. For that at first a description of the test system
and the workload is given. Following this, the approach as well as the results of
the benchmark are explained.

3.1 System

The benchmark was executed on a server of type IBM RS/6000 7025 Model
F80 [11] with the following features:

– hardware: 2 processors RS64-III with 450MHz clock speed and 4GB memory
– operating system: AIX 5.2
– database system: IBM DB2 8.2.4 LUW

1 The primary key (Parent, Child) will be replaced by an artifical key RowID in
the process of aspect integration, see Fig. 3 for resulting schema

The usage of any additional hardware or database system was explicitly not taken
into account, because the essential motivation of this work was a qualitative
performance result of the reference model instead of comparing two test systems
for a given workload. The following parameters of DB2 had to be adjusted so
that the complete processing of the workload described in Sec. 3.2 is ensured:
LOGFILSIZ=4000, STMTHEAP=16384 and APPLHEAPSZ=SORTHEAP=1024, each with
page size of 4KB.

3.2 Workload

In general the workload of an application system is classifiable into handling
individual data (OLTP), usually caused by manual interaction, and processing
mass data (OLAP). For both groups typical use cases in the context of the
example in Fig. 2 are listed in Table 1. Respective to the property of universality
all requests will be grammatically based on SQL:92.

Id Operation Use case (sample request)

O
L
T

P

W1 SELECT Display module properties (get all internationalized data for the
module with key 55).

W2 INSERT Populate module translations (insert name ’module55-spanish’
and price ’55.22’ for module with key 55 under locale ’es-ES’).

W3 UPDATE Modify module names (change name to ’module55-new’ as a new
version for module with key 55).

W4 DELETE Delete module translations (remove all aspect specific data cre-
ated by workload W2 and W3 for module with key 55).

O
L

A
P

W5 SELECT Extraction of module properties (get internationalized data in-
cluding related locale for all modules).

W6 INSERT Data transfer from other systems (import internationalized and
structured module data for locale ’pl-PL’).

W7 UPDATE Data cleansing / normalization (complete the internationalized
module name for locale ’de-CH’ by prefix ’I18N’).

W8 DELETE Archiving / data cleansing (delete all internationalized module
records for locale ’pl-PL’).

Table 1. Workload as verbal specification

3.3 Approach

To get expressive outcomes for the benchmark, the business tables as well as the
aspect tables had to be filled with generated artificial test data. This was done
by a little self-written Java program combined with a JDBC driver for DB2,
which created the content following a simple pattern by incrementing numbers.
The resulting tables are shown in Fig. 3, whereas some tables were truncated
(marked by ’. . . ’) because of the required space. To stay on top of things the
overall quantity structure for all tables is listed in Table 2.

Module

ModuleID Name Price Var

1 module1 1 1

2 module2 2 0

.

3000 module3000 3000 0

AspectDatatype

AspTypeID Name Length Scale

1 Str 25

2 Dec 7 2

3 Int 10

AspectTable

AspTabID Schema TableName

1 BOM Module

2 BOM Structure

Structure

RowID Parent Child Amount

1 1 2 2

2 1 3 1

.

2999 1500 3000 2

AspectColumn

AspColID Table Column Datatype

1 1 Name 1

2 1 Price 2

3 2 Amount 3

AspectDefinition

AspDefID Name Key Datatype

1 I18N Locale 1

2 Version Revision 3

AspectKeyValue

AspKeyID Aspect KeyValue Comment

1 1 de-DE German

2 1 en-GB English

3 1 it-IT Italian

4 1 de-CH Swiss German

5 2 1 initial version

6 2 2 test version

7 1 es-ES Spanish

AspectValue

AspValID Table Column RowID Value

1 1 1 1 module1-english

3001 1 2 1 1.33

6001 1 1 1 module1-italian

9001 1 2 1 1.66

.

AspectAssign

AspAssID Aspect KeyValue AspectValue

1 1 2 1

3001 1 2 3001

6001 1 3 6001

6001 1 3 6001

.

Fig. 3. Business and aspect tables filled with test data

As next step the sample requests described as workload in Sec. 3.2 were
formulated in SQL syntax with respect to the reference model. Thereby no
optimization issues were considered, since this task should be fulfilled by the
database management system. However, internal primary key values of all as-
pect master/meta tables were assumed to be well known during the query gen-
eration, e.g. AspectDefinition.AspDefID=1 for referencing the aspect I18N
(internationalization). Normally this prerequisite can be guaranteed by saving
such meta data in the invoking application. The whole SQL queries used for the
performance test are listed in Fig. 5.

Table #Rows Table #Rows

Module 3000 AspectAssign 45000

Structure 2999 AspectValue 45000

AspectTable 2 AspectKeyValue 7

AspectColumn 5 AspectDefinition 2

AspectDatatype 4 AspectAdditional 0

Table 2. Quantity structure for business and aspect tables

To handle all SQL queries the little Java tool mentioned above was used. By
calling the method java.sql.Statement.executeQuery static SQL statements
are processed whereby the overall execution time of a specific query is measured
by invoking the method System.currentTimeMillis and calculating the differ-
ence as shown in Fig. 4. This approach takes account of additional costs, which
aren’t negligible in case of the OLAP workload for transportation overhead.

timeDuration = System.currentTimeMillis();

if (withResult)

_rs = _stmt.executeQuery(query);

else

for (int i=0; i<queryList.length; i++) _stmt.execute(queryList[i]);

timeDuration = System.currentTimeMillis() - timeDuration;

Fig. 4. Java code fragment to measure the SQL query execution time

For analyzing the request behavior of the workload queries under different
conditions, the existence of index information (shortened as IDX) and/or dis-
tribution statistics[6] (shortened as STAT) are considered. The creation of the
additional indices is restricted on all attributes of the central tables Aspect-
Value and AspectAssign, whereas statistical information is enforced for all
tables of the reference model.

-- [W1] --
SELECT CAST(T1.Value AS VARCHAR(50)) AS Name, CAST(T2.Value AS NUMERIC(7,2)) AS Price

FROM AspectValue T1 INNER JOIN AspectValue T2 ON T1.RowID = T2.RowID
INNER JOIN AspectAssign T3 ON T1.AspValID = T3.AspectValue
INNER JOIN AspectAssign T4 ON T2.AspValID = T4.AspectValue

WHERE T1.Table = 1 AND T1.Column = 1 AND T2.Table = 1 AND T2.Column = 2
AND T3.KeyValue = T4.KeyValue AND T3.Aspect = 1 AND T1.RowID = 55;

-- [W2] --
INSERT INTO AspectValue (AspValID, Table, Column, RowID, Value)

VALUES (-20, 1, 1, 55, ’module55-spanish’), (-21, 1, 2, 55, ’55.22’);
INSERT INTO AspectAssign (AspAssID, Aspect, KeyValue, AspectValue)

VALUES (-20, 1, 7, -20), (-21, 1, 7, -21);

-- [W3] --
INSERT INTO AspectValue (AspValID, Table, Column, RowID, Value)

SELECT -30, 1, 1, ModulID, Name FROM Modul WHERE ModulID = 55;
INSERT INTO AspectAssign (AspAssID, Aspect, KeyValue, AspectValue)

VALUES (-30, 2, 5, -30);
UPDATE Modul SET Name = ’module55-new’ WHERE ModulID = 55;

-- [W4] --
DELETE FROM AspectAssign WHERE AspAssID IN (-20, -21, -30);
DELETE FROM AspectValue WHERE AspValID IN (-20, -21, -30);

-- [W5] --
SELECT T1.RowID As ModuleID, T5.KeyValue, CAST(T1.Value AS VARCHAR(50)) AS Name,

CAST(T2.Value AS NUMERIC(7,2)) AS Price
FROM AspectValue T1 INNER JOIN AspectValue T2 ON T1.RowID = T2.RowID

INNER JOIN AspectAssign T3 ON T1.AspValID = T3.AspectValue
INNER JOIN AspectAssign T4 ON T2.AspValID = T4.AspectValue
INNER JOIN AspectKeyValue T5 ON T4.KeyValue = T5.AspKeyID

WHERE T1.Table = 1 AND T1.Column = 1 AND T2.Table = 1 AND T2.Column = 2
AND T3.KeyValue = T4.KeyValue AND T3.Aspect = 1

ORDER BY T5.KeyValue, T1.RowID;

-- [W6] --
INSERT INTO AspectKeyValue (AspKeyID, Aspect, KeyValue, Comment)

VALUES (8, 1, ’pl-PL’, ’Polish’);
INSERT INTO AspectValue (AspValID, Table, Column, RowID, Value)

VALUES (45001, 1, 1, 1, ’module1-polish’), (48001, 1, 2, 1, ’1.11’), ...,
(48000, 1, 1, 3000, ’module3000-polish’), (51000, 1, 2, 3000, ’3000.11’);

INSERT INTO AspectAssign (AspAssID, Aspect, KeyValue, AspectValue)
VALUES (45001, 1, 8, 45001), (48001, 1, 8, 48001), ...,

(48000, 1, 8, 48000), (51000, 1, 8, 51000);

-- [W7] --
UPDATE AspectValue

SET Value = CONCAT(’I18N’,Value)
WHERE Table = 1 AND Column = 1

AND AspValID IN (SELECT AspectValue FROM AspectAssign WHERE Aspect = 1 AND KeyValue = 4);

-- [W8] --
DECLARE GLOBAL TEMPORARY TABLE DelRows (AspValID int) ON COMMIT PRESERVE ROWS NOT LOGGED;
INSERT INTO SESSION.DelRows (AspValID)

SELECT T1.AspValID
FROM AspectValue T1 INNER JOIN AspectAssign T2 ON T1.AspValID = T2.AspectValue

WHERE T2.Aspect = 1 AND T2.KeyValue = 8 AND T1.Table = 1;
DELETE FROM AspectAssign WHERE Aspect = 1

AND KeyValue = 8 AND AspectValue IN (SELECT AspValID FROM SESSION.DelRows);
DELETE FROM AspectValue WHERE AspValID IN (SELECT AspValID FROM SESSION.DelRows);
DELETE FROM AspectKeyValue WHERE Aspect = 1 AND KeyValue = ’pl-PL’;

Fig. 5. Workload as SQL requests

3.4 Results

As already recognized in the process of transforming the workload in proper SQL
queries, the EAV concept used in AspectValue have a huge impact for query
generation and especially their execution time. The latter one is confirmed in
Table 3, which contains the averaged measurement time after three iterations
for all requests described in Sec. 3.2. The fastest scenario concerning the usage
of index and/or statistical information is highlighted.

Scenario OLTP OLAP

W1 W2 W3 W4 W5 W6 W7 W8

4343 251 147 1220 1053401 17417 2626 168385

+IDX 226 126 180 37 3413 23121 217280 19568

+STAT 3815 249 92 105 4318 12811 2260 158186

+IDX+STAT 995 146 73 24 1792 20219 5078 16201

Table 3. Workload execution times (in ms)

4 Conclusion

The on hand paper gave a short introduction to functional aspects in data mod-
eling processes and motivated the need to handle them. Therefor a flexible ref-
erence model using the EAV concept was presented and explained based on an
application example. As clarified by the results in Sec. 3.4, pure SQL is not an
effective way to access functional aspects in this reference model. Even if only
the workload for OLTP is observed, the execution time of about 200ms for a
simple SELECT request is much too long. This circumstances will exacerbate
by increasing the quantity structure in AspectValue and AspectAssign to
real values. Furthermore the necessary join operations for these tables scale with
the number of selected attributes. Finally the generation of such a SQL query is
very inconvenient.

The prime reason for all these problems is the missing support for pivoting
tables with dedicated SQL elements[14]. The pivot operation (’rows to columns’)
is needed to represent or process EAV-based tables as regular tables. Leaving
the SQL standard, some DBMS products have already an implementation of
such a dedicated PIVOT operation, for example MS SQL Server 2005[4]. How-
ever, non-standardized methods violate the property of universality (see Sec. 2).
An overview and comparison of access methods for functional aspects using the
reference model can be found in [10]. Because of the evaluation results in that
paper, further work will be focused on specification and implementation of an
API[13], which provides an applicative interface to functional aspects as anal-
ogously suggested in [5]. Alternatively other storage concepts can be analyzed,

for example ORDBMS, XML and NoSQL, whether they are more suitable for
functional aspects and how they can effectively utilized.

References

1. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant
databases for software as a service: schema-mapping techniques. In: SIGMOD Con-
ference. pp. 1195–1206 (2008)

2. Chitchyan, R., Sommerville, I., Rashid, A.: An Analysis of Design Approaches for
Crosscutting Concerns. In: Workshop on Aspect-Oriented Design (held in conjunc-
tion with the 1st AOSD Conference) (2002)

3. Codd, E.F.: A relational model of data for large shared data banks. CACM 13(6),
377–387 (1970)

4. Cunningham, C., Graefe, G., Galindo-Legaria, C.A.: PIVOT and UNPIVOT: Op-
timization and Execution Strategies in an RDBMS. In: (e)Proceedings of the 30th
International Conference on Very Large Data Bases. pp. 998–1009 (2004)

5. Dinu, V., Nadkarni, P., Brandt, C.: Pivoting approaches for bulk extraction of
Entity-Attribute-Value data. Computer Methods And Programs in Biomedicine
82(1), 38–43 (2006)

6. Fechner, D.: Distribution statistics uses with the db2 optimizer – create efficient
access plans for faster sql (2006), http://www.ibm.com/developerworks/data/

library/techarticle/dm-0606fechner/index.html, [09.06.2011]
7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Irwin, J., Lo-

ingtier, J.M.: Aspect-Oriented Programming. In: ECOOP. pp. 220–242 (1997)
8. Liebisch, M.: Aspektorientierte Datenhaltung - ein Modellierungsparadigma. In:

Proceedings of the 22nd GI Workshop Grundlagen von Datenbanken 2010. pp.
13–17. Bad Helmstedt, Germany (May 2010)

9. Liebisch, M.: Supporting functional aspects in relational databases. In: Proceed-
ings of the 2nd International Conference on Software Technology and Engineering
(ICSTE 2010). pp. 227–231. San Juan, Puerto Rico, USA (Oct 2010)

10. Liebisch, M.: Analyse und Vergleich von Zugriffstechniken für funktionale Aspekte
in RDBMS. In: Proceedings zum 23. GI-Workshop Grundlagen von Datenbanken.
pp. 25–30. Obergurgl, Österreich (May 2011)

11. Lutz, S., Manohar, S.: RS/6000 7025 Model F80: Technical Overview and Intro-
duction. IBM, Austin, TX (May 2000)

12. Nadkarni, P., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., Miller, P.: Orga-
nization of Heterogeneous Scientific Data Using the EAV/CR Representation. In:
JAMIA. pp. 478–493. 6 (1999)

13. Pietsch, B.: Entwurf einer Zugriffsschicht für funktionale Aspekte in DBMS. Stu-
dienarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena (Mar 2011)

14. Wyss, C.M., Robertson, E.L.: A formal characterization of PIVOT/UNPIVOT. In:
Proceedings of the 14th ACM CIKM. pp. 602–608 (2005)

http://www.ibm.com/developerworks/data/library/techarticle/dm-0606fechner/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0606fechner/index.html

