
 1

Analysis of Temporal Abstraction in
Medical Databases

Mira Balaban1, David Boaz2 and Yuval Shahar2

Department of Information Systems Engineering,
Ben Gurion University, Beer Sheva 84105, Israel

1mira@cs.bgu.ac.il , 2{dboaz,yshahar}@bgumail.bgu.ac.il

Abstract

Physicians and medical decision-support applications, such as for diagnosis, therapy, monitor-
ing, quality assessment, and clinical research, reason about patients in terms of abstract, clini-
cally meaningful concepts, typically over significant time periods. Clinical databases, however,
store only raw, time-stamped data. Thus, there is a need to bridge this gap. We introduce the
Temporal Abstraction Language (TAR) which enables specification of abstract relations involv-
ing raw data and abstract concepts, and use it for defining typical medical abstraction patterns.
For each pattern we further analyze finiteness properties of the answer set.

1 Introduction: Temporal Abstraction

In a historical database, the information that is stored includes temporal attributes stating when the
information is valid. Temporal abstraction [17, 18, 10, 5, 6] is an approach for reasoning about his-
torical databases that allow multiple abstraction levels. The use of temporal abstraction is important
especially for decision support applications which consume abstract concepts, while databases usu-
ally contain primitive concepts. Abstractions can be performed on the atemporal attributes (e.g.,
“150 kgs” might be abstracted to heavy), or on the temporal attributes (e.g., two distinct “heavy”
facts that hold on Monday and Friday might be abstracted into one “heavy” fact that holds during the
interval from Monday to Friday).

One of the first in-depth ontologies for handling many aspects involved in the temporal-
abstraction task is the knowledge-based temporal-abstraction (KBTA) ontology of Shahar [17],
which was implemented within the RÉSUMÉ system and further extended in CAPSUL [5, 6]. The
KBTA distinguishes between the following relation types: events, parameters, and contexts. Events
represent external interventions (e.g., insulin injections, a chemotherapy protocol), parameters repre-
sent the subject state (e.g., blood-glucose values), and contexts represent situations (e.g., diabetes).

Facts can be abstracted (derived) from other facts. The KBTA contains several built in abstrac-
tion mechanisms. In this research we handle the following:

 2

d

| | | | ||

c

| | | | ||

b

| | | | |

lo
w

m
od

er
at

el
y

lo
w

f1 f2

a

50

100

| | | | |

*(51)

*(32)

*(55)

*(22)

*(60)

*(14) *(15) *(16)

Time (weeks)

Platelet count
(thousands/
micro liter)

*(62) *(66)
*(56)

*(52)

*(29)

*(37)

11

Platelet transfusions

Fig. 1. A schematic visualization of temporal abstraction in the bone-marrow transplantation (BMT) do-

main. A patient who has undergone a BMT receives frequent platelet transfusions until the patient’s body re-
covers and starts to produce platelets on its own again. (a) displays extensional facts: platelet_count (*) and
platelet_transfusion (). (b) Displays platelet_state intensional facts. These facts are generated using two
rules: The vertical abstraction rule maps platelet_count values less than 50 into low, and values between 50
and 100 into moderately_low. The interpolation rule concatenates two adjacent close enough platelet_state
facts (points or intervals) with the same value into one long fact. Note that the facts f1 and f2 were not close
enough. (c) Displays for each platelet_transfusion fact its corresponding platelet_half_life value. The plate-
let_half_life is computed as the time (days) it takes for the platelet_count to decrease to one half of the level
that was measured immediately post-transfusion. (d) Displays a recovery fact. recovery is defined as succes-
sive increasing platelet_half_life fact durations, which indicates that the patient produces platelet again, and
recovering.

• The Vertical Abstraction Mechanism – responsible for abstracting from one, or more, simul-
taneous base facts into a new derived fact. The interval of the derived fact is the intersection
of base fact time-intervals. The value of the derived fact is the result a specific map function
application on the base facts. This function maps between different value domains: RD → .
The restriction in the KBTA is that the range is finite (e.g. {low, moderately low, normal,
high}). Actually, the restriction may be relaxed, such that the range is “smaller” than the func-
tion domain. For finite domains, smaller means smaller in size. For infinite domains, for ex-
ample the function can round real numbers to the closest integer. Figure 1 presents a vertical
abstraction relation, where platelet_count (panel a) are the base facts and platelet_state (panel
b) are the derived facts.

 3

• The Temporal Interpolation Mechanism (details in [18]) – responsible for bridging two dif-
ferent temporal intervals or points that do not meet, provided that the temporal gap is smaller
than a specific time measure that is determined by the durations of the facts and their values.
Figure 1 in panel b presents an interpolation relation for platelet_state facts. Note how short
facts create longer facts and that the facts f1 and f2 are not close enough to be bridged.

• The Linear Patterns Detection Mechanism – responsible for detection of phenomena that oc-
cur only once. This mechanism generalizes the two previous ones, since it enables the user to
provide an arbitrary set of constraints and functions. Figure 1 in panel c presents a linear pat-
tern, called platelet_half_life, in which the phenomenon is a platelet_transfusion followed by
a platelet_count with value V1, followed by another platelet_count with value V2, where

2
12 VV < . The inferred fact interval is the interval that starts in the platelet_transfusion fact

start and finishes at the end of the second platelet_count fact.
• The Periodic Patterns Detection Mechanism – infers new intensional facts based on detection

of maximal sequences of repeating phenomena that satisfy given criteria. A maximal repeat-
ing sequence is a sequence of facts of the same kind that follow in time and can not be ex-
tended without violating the criteria. A periodic pattern specifies the repeated fact type, a set
of constraints on the sequence and the inferred fact. Figure 1 in panel d presents a recovering
fact. Recovery is specified using a periodic pattern, where the repeating elements are succes-
sive platelet_half_life facts (derived by a linear pattern rule, as explained above) and the con-
straints are that the duration of fact intervals is increasing and that there should be at least
three repetitions. More examples of periodic patterns appear in [5, 6, 10]. There are several
kinds of constraints on sequences: “Each_constraints” are constraint on separate elements
(facts), “Successor_constraints” are constraints between successive elements in sequences
and “Sequence_constraints” are constraints on whole sequences. In the example presented in
figure 1 panel d, the constraint that the durations are increasing is a successor constraint, since
it is applied on adjacent facts in the sequence; the cardinality constraint “at least three repeti-
tions” is a sequence constraint, since it applies to the sequence as a whole.

In this paper we formalize and generalize the above temporal abstraction mechanisms. We present a
temporal abstraction mechanism that subsumes CAPSUL’s linear pattern, as well as other mecha-
nisms types in the KBTA ontology and the RÉSUMÉ system, and analyze the finiteness property of
its answer set. We note that the mechanisms can not be expressed neither in relational algebra due to
the usage of recursion, nor in Datalog due to the usage of functions and the support of the time di-
mension. This mechanism is implemented as the core reasoning in the Idan system [3].

In section 2 we present the TAR language and we define condition for the finiteness of answer
sets. In section 3 we present its account for the KBTA abstraction mechanisms and analyze their fi-
niteness properties. Section 4 discusses future research.

2 The Temporal-Abstraction Rules (TAR) Language

A TAR knowledge-base consists of Rules and Facts, and can be viewed as a subset of deductive da-
tabases.

 4

2.1 TAR Language Syntax

The TAR language contains symbols of three types (for each there are constant and variable sym-
bols; variables start with upper case letters): 1) Individual symbols (e.g., john), 2) Time-interval
symbols (e.g., the day of 1/1/2000) and 3) Value symbols (e.g., 2.3 cm, low, abnormal, and green).
The value symbols (constants or variables) are further partitioned into sub-types, like: Integer, Size=
{small, medium, big}, etc. Each value symbol/ variable is associated with a single type. These types
are termed value-types.

A fact is a TAR atomic formula specified using a predicate symbol with the signature: Individ-
ual × Time-interval × vt, where vt is a value-type. For example height(john, 1/1/1990-1/1/1990, 152
cm) is a fact. That is, atomic formulae have the structure p(d, i ,v), where p is a predicate symbol, d
is a term of type individual, i is a term of type time-interval and v is a term of an appropriate value-
type. A fact is a ground (without variables) atomic formula.

The language contains also a set of external evaluable functions and constraints: A time-
function is a function symbol with the signature (Time-interval∪Value)n→Time-interval (i.e. the
function accepts time-intervals and values, and returns a time-interval). A value-function is a func-
tion symbol with the signature (Time-interval∪Value)n→Value. A constraint is an external n-ary
predicate symbol that accepts time-intervals and values symbols as arguments, and evaluate to
TRUE/ FALSE by calling an external constraints package (e.g., greater_than, during, monday etc).

A TAR rule (to be defined from now on, simply as rule) is a statement of the form:

h(D, I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) | {c1,…,cm}, ifn, vfn

where: h(D, I, V), b1(D, I1, V1),…,bn(D, In, Vn) are atomic formulae (note that the same individ-
ual appears in all atomic formulae, and n≥1), c1,…,cm are constraints, ifn is a time-function symbol,
and vfn is a value-function symbol. The signature of vfn is determined by the types of the value vari-
ables (e.g. if the head predicate is associated with a value-type Size, then the function returned value-
type must be Size as well). h(D, I, V) is the head atom of the rule, h is the head predicate, each bi(D,
Ii, Vi) is a body atom of the rule, bi is a body predicate in the rule, the conjunction of the body atoms
is the body of the rule. Variables that appear in the head are head variables, and variables that ap-
pear in the body are body variables, denoted B

r
. The Interval and Value head variables are distinct

from all body variables. A rule instance is a pair of substitutions (σh, σb), where σh is a substitution
for the head variables, and σb a substitution for the body variables. A ground rule instance is a rule
instance in which all body variables are ground.

Later in this paper (in section 3) we extend the language so that the body of a rule functions as a
general means for retrieving information from the knowledge base (extensional and intensional). In
the simple case of TAR rules, as above, information is retrieved by explicit call to facts. In the gen-
eral case, information can be retrieved by other meta-level tools (e.g., aggregation).

2.2 Semantics of TAR

The Temporal Model: We assume a time line that can be identified with the integers. The model
distinguishes among three temporal data-types. A Time-point is identified with the integers, a Time-

 5

measure that denotes sizes on the time-line and a Time-interval that denotes a segment on the time
line. For example, 3 o’clock is time-point, two hours is a time measure, and it can be from 3 to 5
o’clock or from 8 to 10 o’clock. A measure can be a positive, negative or zero.

Language of Constraints: In the TAR language facts can be constrained by temporal or value con-
straints. Temporal constraints are built-in, and value constraints depend on the application domain.
Constraints can be combined using logical connectives and possibly by cardinality based connec-
tives like at-least-N.

The language temporal built-in constraints are: Calendar constraints over a single time-point.
e.g., wednesday(P1) holds if P1 happened on Wednesday. Point- and Measure-constraints enables
comparison of time-points and time-measures. Following Allen time-interval algebra [1], we define
interval-constraints as predicates equivalent to the 13 basic binary relations between intervals.

TAR language is domain independent. It can be applied on various value types, e.g., numbers,
strings, images, structures etc. For each value type, the user adds external value constraints that are
invoked (evaluated) on query processing. It is the user responsibility to apply the correct constraints
on the appropriate value types.

A TAR semantic structure is a pair J= (D, ⋅ J) of a domain D. The Domain is partitioned into
three parts: Individual, Time-Interval and Value.

• Individual is a finite non-empty domain of individuals (in the medical domain patients are in-
dividuals), e.g., the person whose name is John.

• Time-Interval is an infinite domain of time intervals. An interval is a segment on a discrete
time line, e.g., the segment of time from 1/1/2000 00:00 to 04:00.

• Value is a finite or infinite domain of values. Different value domains are possible in differ-
ent application domains, e.g., 182 centimeters and high-fever.

The time-interval and value symbols in the language are identified with the entities in the Time-
Interval and the various Value domains. That is, the collection of symbols is the semantic domain for
these types.

A time-function symbol denotes a function that accepts time-intervals and values, and returns an
interval. Similarly, a value function symbol denotes a function with the same argument types that
return a value. A relation symbol denotes Individual × Time-Interval × Value. For example: the
meaning of the relation height is a finite set of triplets: {(john, 1/1/1990-1/1/1990, 152 cm), (marry,
1/1/1990-1/1/1990, 160 cm), (john, 1/1/2000-1/1/2000, 185 cm)…}. Constraint symbols denote ex-
ternal constraint predicates. The constraints are partitioned into temporal constraints which are
built-in, and value constraints which are evaluated using external, packages. A set of constraints
must be evaluable for every ground instance of a rule.

Temporal-Abstraction Property: Given the rule r=h(D, I, V) ← b1(D, I1, V1),…,bn(D, In, Vn) |
{c1,…,cm}, ifn, vfn, and an interpretation J, we say that the rule is true in J, written J╞ r, if for every
ground instance (σh, σb) of r, where σh is empty, the following holds:

If:
1. All body atoms are satisfied in J, i.e., J╞ (b1(D, I1, V1),…,bn(D, In, Vn))σb
2. All constraints evaluate to TRUE, i.e., (ci)σb=TRUE for every 1≤i≤m

 6

Then:
1. The time variable, I, and the value variable, V, in the head are substituted to the values

obtained by the time function, ifn, and value function, vfn, i.e., define σh’ to be {I=i, V=v}
such that iJ=ifn((B

r
σb)J) and vJ=vfn((B

r
σb)J)

2. The rule head holds in J, i.e., J╞ (h(D, I, V)σh’

This condition is called the Temporal-Abstraction Property of r with respect to interpretation J.

An interpretation J is a model of a knowledge-base if every rule in it fulfills the temporal-
abstraction property with respect to J. An inference mechanism for TAR can be either query driven
i.e., find whether the query holds, in every model of the knowledge base, or can compute the inten-
sional relations. We say that an inference mechanism is complete if it can compute the intensional
relations.

2.3 Well Defined TAR Knowledge-Bases

Datalog programs restrict the rules to guarantee finite intensional relations. In contrast, the rules in
the TAR language contain function symbols and can define infinite relations. This is because the
time and value functions can create unboundedly new values. Clearly, our interest is to characterize
TAR rules that guarantee finiteness. Such knowledge bases are termed well defined. The existence of
a complete terminating inference mechanism implies finiteness. The common approach for comput-
ing intensional relations is bottom-up evaluation of the rules [2, 11, 12], which repeatedly applies
rules until no new fact computed. Termination is guarantied [21] if each round is finite, and the
number of rounds is finite.

Claim 2.1: TAR rules guaranty finite rounds, i.e., in each round, a finite number of facts are
added (note that in the general case, if a rule has an infinite number of instances, this is not necessar-
ily true).

Proof: (sketched) The claim results from the fact that all body relations are finite, and the head
variables are limited by the functions in the rule body.□

An extensive amount of research was devoted to the study of finiteness in deductive databases
and in extended Datalog in particular. There are approaches that study finiteness constraints on infi-
nite arithmetic relations [11, 12, 21]; others study restrictions on concrete domains [14, 15].

Based on claim 2.1, infinity of intensional relations in TAR can arise only when a complete bot-
tom-up inference procedure has an infinite number of rounds. This can happen only if the time and
value functions keep generating new values. For that purpose we introduce the notions of converg-
ing/ diverging functions and the related diverging dependency graph that is derived from the rules.
The idea is that if the latter is restricted to be stratified diverging, the intensional relations are finite.
A similar restriction was used in [14, 15] for guarantying finiteness of answers to queries over se-
quence databases.

Intuitively, a function is converging if it can be associated with some norm over some associ-
ated well-founded domain such that the values of functions applications properly decrease. A func-
tion that is not converging is diverging. The diverging dependency graph of a TAR knowledge-base
is a directed-graph, where nodes are labeled by the predicates, and arcs are either converging, la-

 7

beled “c”, or diverging, labeled “d”. There is a converging arc from b to h if there is a rule with h as
the head predicate, b as a body predicate and the time and value functions are converging; and there
is a diverging arc from b to h if at least one of the rule functions is diverging. A knowledge-base
has a stratified-diverging structure if its diverging dependency graph does not contain cycles with a
diverging arc. Figure 2 shows an example of a knowledge base that is not stratified diverging.

TAR rules The diverging dependency graph

r1: p2(V) ←p1(V1)| V= V1*2

r2: p2(V) ←p3(V3), p5(V5)| max(2*V5, V3)

r3: p3(V) ←p2(V2)| V= V2

r4: p4(V) ←p2(V2)| V= V2

r5: p4(V) ←p4(V4)| V= s(V4)

Fig. 2. An example of a knowledge base and its diverging dependency-graph (for the sake of simplicity, we
omit the time variables, the constraints and the time function of the rules). p1 and p5 are finite, since they are
extensional predicates. The value functions used in r1, r2, and r5 are diverging. p2 and p3 are finite because
they are not participating in a cycle with a diverging arc. p4 is not finite because it participates in a cycle with
a diverging arc (p4→p4). The knowledge base does not have a stratified-diversion structure, and hence it is
not well defined.

Claim 2.2: A TAR knowledge base with a stratified-diversion structure is well defined.

Proof: (sketched) Recursive applications produce decreasing values in a well-founded domain,
while non-recursive rules can be applied only a finite number of times. All in all, the amount of new
terms is finite.□

In conclusion, the finiteness of intensional relations can derive from the dependency links be-
tween predicates and the convergence of the rule functions. Note that finiteness is not affected by the
constraints.

3 Temporal Abstraction in TAR
The KBTA includes several abstraction mechanisms. In this paper we deal only with the vertical ab-
straction, interpolation, linear pattern detection and periodic pattern detection mechanisms. In this
section we show how these mechanisms are handled in TAR. For that purpose we first describe the
essential knowledge base structures required by these mechanisms.

The herbrand base of a TAR knowledge base is totally ordered by a follow relation. The follow
relation is a binary relation defined on facts. Fact f2 follows fact f1, written follow(f2, f1), if f2.start>
f1.start. In order to characterize periodic patterns we need to identify temporal sequences. A tempo-
ral sequence (shortened sequence) is a finite ordered set of facts that follow in time. In this paper we
use the following notations: f denotes facts, and s and t denote sequences. [f1,…, fn] denotes the se-
quence of facts f1 to fn; the empty sequence ε is denoted []; s[i] denotes the i-th element. In every se-
quence, follow(s[i+1], s[i]) for every element of the sequence.. For a sequence s = [f1,…, fn], the
start of s, denoted s.start, is f1.start; the end of s, denoted s.end, is fn.end; and the interval of s, de-

p 4

p 2

p 1

c
p3

p5

c

c
d d

d

 8

noted s.interval, is [s.start, s.end]. For the sequence s = [f1,…, fn], new facts can be concatenated to
its start or end: s⋅f = [f1,…, fn, f] is defined if follows(f, fn), and f⋅s = [f, f1,…, fn] is defined if follows(
f1, f).

For a concrete TAR knowledge base (i.e. the collection of facts) we can define adjacency and
maximal sequence relations. The followness relationship induces an adjacency relationship between
the knowledge base facts. Fact f2 is adjacent to fact f1, written adjacent(f2, f1), if f2.start > f1.start,
and there is no different fact f3 such that f1.start < f3.start < f2.start. The adjacency relation is func-
tional, i.e., for every fact f1, there is a single adjacent fact f2, not symmetric and not transitive. Note
that adjacency is meaningless for the herbrand base. Sequence s is tight if for every 1≤ i<n: adja-
cent(s[i], s[i+1]).

A sequence s is maximal with respect to a set of constraints C, if for no f in the knowledge base:
s⋅f or f⋅s satisfies C. Maximal sequences s, t are disjoint if for no i, j: s[i]=t[j]; otherwise they are in-
tersecting. s and t are overlapping in time if s.interval intersects t.interval. Practically, it appears
that medical information systems are interested in sequences that are disjoint [4]. Figure 3. describes
several maximal sequences.

a
800 1600 800 1600 800 1600

8 3 9 13 12 15

b 5 8 9 6 14

Fig. 3. Examples of maximal sequences. The panels present sets of arbitrary measures. (a) The measures are
performed every day at 8 and 16 o’clock. The set of constraints, C1, constrains successive elements to be in
gap of 24 hours, and with increasing values. There are two maximal sequences with respect to C1: s1 = [8, 9,
12] and s2 = [3, 13, 15]. The sequences are disjoint, but overlapping in time. Note that the sequence [8, 9] is
not maximal because the fact 12 can be added to the sequence without violating C1. (b) The set of constraints,
C2, constrains successive elements to have increasing values. In this case there are two maximal sequences
with respect to C2: s3 = [5, 8, 9, 14] and s4 = [5, 6, 14]. In this case, the sequences are intersecting since the
elements 5 and 14 appear in both. If the maximal sequence is specified as tight, the only sequences are s5 = [5,
8, 9] and s6 = [6, 14]. These sequences are disjoint and not overlapping in time.

Property 3.1: For a finite knowledge base all maximal sequences are bounded by the size of the
knowledge base. This property results from the absence of repetitions in temporal sequences. It also
implies that the number of maximal sequences is finite.

3.1 TAR Account for KBTA Mechanisms

There are four KBTA mechanisms. We now consider each separately:
• Vertical Abstraction Mechanism: For each abstract parameter a which is abstracted from

{p1,…,pn}, we create a rule:
a(D, I, V) ← p1(D, I1, V1), …, pn(D, In,Vn)|

simultaneous({I1,…,In}),
I=intersection({I1,…,In}),
V=mapa(V1,…,Vn).

where, simultaneous({I1,…,In}) is a compound constraint, that checks that I1,…,In have not
empty intersection; intersection({I1,…,In}) returns the interval intersection of I1,…,In;

 9

mapa(V1,…,Vn) applies the value map of a on V1,…,Vn, and return a value. For example, two
simultaneous platelet_state and wbc_state (state of white blood cells) facts create a mye-
lotoxicity fact. If the base facts values are low, then the myelotoxicity fact value is grade_3.
This rule can be formulated as:

myelotoxicity(D,I,V) ← platelet_state (D, I1, V1), wbc_state (D, I2,V2)|
simultaneous({I1,I2}),
I=intersection({I1,I2}),
V=mapa(V1,V2).

mapa({low,low})=grade_3

Hence, the database instance: {platelet_state (john, 1/2001-12/2002, low), wbc_state (john,
1/2000-12/2001, low)} implies the fact: myelotoxicity (john, 1/2001-12/2001, grade_3).

• Temporal Interpolation Mechanism: the interpolation mechanism interpolates adjacent facts
that are close enough. That is, if facts p(D,I1,V) and p(D,I2,V) are found to be adjacent and
close enough the temporal interpolation mechanism implies a new fact p(D,I3,V) where I3 is
the interval that bridges the interval I1 and I2 by adding the gap between them.

Adjacent facts are close enough if the gap between their intervals is sufficiently small. The
notion of sufficiently small depends on the predicate, the facts value and their duration. For
example, if a patient has over-weight facts on the start and end of the month, we imply that
the patient is over_weighted during all the month. On the other hand, if the patient had fever
(temperature above 39o Celsius) at the start and end of the month, we can not imply that the
fever last during all the month.
For each predicate, p, that has a close enough function, close_enoughp, we create a rule:

p(D, I, V) ← p(D, I1, V),p(D, I2, V) |
p(D, I2, V)=adjacent(p(D, I1, V)),

 close_enoughp(I1,I2,V),
 I=(I1.start, I2.end)

• Linear Pattern Mechanism: A linear pattern specification does not specialize the time or
value functions and the form of the rules itself. Therfore, a general linear pattern can be cap-
tured by an arbitarary TAR rule. Clearly, vertical abstraction and temporal intepolation are
special cases of linear patterns.

• Periodic Pattern Mechanism detects maximal sequences of phenomena. In the special case
where the repetition has an exact upper bound (on the length) the periodic pattern can be
specified as a set of regular TAR rules. For example, if the predicate p is implied from two
to four repetitions of q, it can be defined by three regular TAR rules:

p←q,q| C’, ifn, vfn
p←q,q,q| C’’, ifn, vfn
p←q,q,q,q| C’’’, ifn, vfn

where the constraints C’, C’’ and C’’’ restrict the repetition sequences to be maximal.

However, in the general case, where there is no upper bound (or it is too large), detecting
maximal sequences involves recursion. The recursion is handled by employing an interme-

 10

diate recursive mechanism that accumulates maximal sequences. Let maxSeqq(D, C, Seq)
stand for the application of maximal sequence detection on predicate q for individual D, and
the set of constraints C. Seq is the detected sequence. The periodic pattern is captured by the
following extended TAR rule:

p(D, I, V) ← maxSeqq(D, C, Seq) | {}, ifn, vfn.

Note that the knowledge base level operation maxSeq serves the role of a usual TAR rule
body, since it provides arguments for the constraints (empty in this case), ifn and vfn.

3.2 Analysis of the KBTA rules

A practical question for a KBTA knowledge base is whether it ensures finiteness of intensional rela-
tions? If no, which restriction can be imposed on it in order to ensure finiteness? As described in the
previous section, the main limitation is that the knowledge-base diverging-dependency-graph does
not contain diverging arcs. We will scan the KBTA mechanisms and check this feature.

• Vertical Abstraction: The time function of this mechanism is the intersection function. In-
tersection is converging over the temporal domain, since the result is smaller or equal to the
input arguments, and that the temporal domain is discreet. The value function is restricted to
reduce its domain (the function range is smaller than its domain), as explained in the intro-
duction. Therefore, vertical abstraction can not be applied recursively. Hence, when apply-
ing only vertical abstraction, the intensional relations are finite.

• Temporal Interpolation: This mechanism is recursive by definition (two low platelet_state
facts are bridged into one long low platelet_state fact). Finiteness of interpolated predicates
results from the properties of the temporal interpolation function (the value function is sim-
ply identity). The temporal interpolation function has the property that if I1⊇I2 then the
temporal_interpolation(I1,I2)=I1. Since the number of intervals in the database instance is
finite, and temporal interpolation produces intervals that include the original intervals, then
when applying only temporal interpolation the intensional relations are finite.

• Linear pattern: This mechainsm does not impose any restriction on the rule format or on the
time and value functions. Therefore, linear pattern rules should be restricted by general fi-
niteness methods, like divergence-dependency graphs.

• Periodic Pattern: periodic patterns are similar to simple TAR rules (linear patterns), except
that the body of the rules consists of the maxSeqq application instead of calls to explicit
knowledge base predicates. The general finiteness analysis for simple TAR rules is based on
the assumption that all body relations are finite. For periodic patterns, the maxSeqq applica-
tion functions as a body relation. Therefore if it is finite, the finiteness of the head predicate
derives on the regular analysis for TAR rules. Property 3.1 implies that for every finite
predicate q, invidual D and constraints C, maxSeqq(D, C, Seq) is finite.

 11

4 Related Work

Summarization of patient’s state is an important task of current medical information systems. The
goal is to create an automatic summarization of patient’s current state based on the patient’s data.
Systems like TrenDx of [9], VIA-VENT of [16], M-HTP of [13] and Resume of [17] implement
various abstraction means in order to summarize the data. Temporal abstraction is one such means.
The language suggested in this paper is a first attempt to formulize temporal abstraction.

The TAR language is related to deductive databases and in particular to temporal databases,
since it is an extended Datalog (Datalog with function symbols) language with temporal arguments
[7]. Significant efforts were devoted to the study of finiteness in the presence of function symbols.
One direction involves decision procedures for finiteness of queries [11, 12]. Another direction in-
volves restriction on the knowledge base structure when applied to concrete domains, e.g. sequences
[14, 15]. Constraint databases [19] are also closely related to our subject.

Temporal deductive databases rely on the structure of time, and especially assume the availabil-
ity of a successor function. One direction involves finding a finite representation for an infinite tem-
poral knowledge base [4, 8]. Another direction imposes restriction on the query language in order to
guarantee finite answer sets.

5 Discussion and Future Research

In this paper we have described common medical temporal abstraction mechanisms, based on the
KBTA ontology of Shahar[17, 18]. A language, termed TAR, for temporal abstraction was intro-
duced, finiteness restrictions for TAR knowledge bases are shortly discussed. It is shown that TAR
language abstracts the common temporal abstraction mechanisms of the KBTA, and finiteness of
these mechanisms is analyzed.

In the future, we intend to the further investigate the properties of TAR and its application to
other mechanisms of the KBTA (e.g., contexts, gradients, and rate mechanisms). In particular, we
intend to study maximal sequences and their constraints, and further study interaction between
mechanisms. Finiteness analysis should be deepened, especially for the study of convergence of
functions in the temporal domain. Adding negation is another issue. All improvements and extension
will be evaluated through the current implementation in the IDAN system [3].

Bibliography:

1. Allen, J. F.: Maintaining knowledge about temporal intervals. CACM 26 (11) (1983) 832-843.

2. Bancilhon, F. and R. Ramakrishnan: An amateur’s introduction to recursive query-processing strategies.
ACM SIGMOD Intl. Conf. on Management of data, (1986) 16-52.

 12

3. Boaz, D. and Y. Shahar: IDAN: A Distributed Temporal-Abstraction Mediator for Medical Databases.
Proceedings of the 9th Conference on Artificial Intelligence in Medicine—Europe (2003), Protaras, Cy-
prus.

4. Baudinet, M., Chomicki, J., and Wolper, W.: Temporal Deductive Databases. In Temporal Databases:
Theory, Design, and Implementation. Benjamin/Cummings, pages 294- 320, 1993.

5. Chakravarty, S. and Y. Shahar: CAPSUL: A Constraint-Based Specification of Repeating Patterns in
Time-Oriented Data. Annals of mathematics and artificial intelligence (AMAI); Vol. 30 (2000) 3-22.

6. Chakravarty, S., and Y. Shahar. Specification and detection of periodicity in clinical data. Methods of In-
formation in Medicine 40(5), 410-420, 2001. Reprinted in: Haux, R., and Kulikowski, C. (eds), Yearbook
of Medical Informatics 2003, Stuttgart: F.K. Schattauer and The International Medical Informatics Asso-
ciation, forthcoming.

7. Chomicki, J.: Temporal Query Languages: A Survey. In Dov M. Gabbay and Hans J. Ourgen Ohlbach,
editors, Temporal Logic: International Conference on Temporal Logics (ICTL'94), volume 827, pages
506{534. Springer-Verlag, 1994.

8. Chomicki, J., Imielinski, T.: Temporal deductive databases and infinite objects. In Seventh ACM Sympo-
sium on Principles of Databases Systems, pages 61-73, Austin, Texas, Mar. 1998.

9. Haimowitz, I.J. and Kohane, I.S., “Managing temporal worlds for medical trend diagnosis.” Artificial Intelligence in
Medicine, 8(3): 299–321 (1996).

10. Keravnou, E.T., "Temporal abstraction of medical data: Deriving periodicity." In: Intelligent Data Analy-
sis in Medicine and Pharmacology (Lavrac, N., Keravnou, E.T. and Zupan, B., eds.), Kluwer, 1997,
pp.61-79.

11. Kiffer, M.: On the Decidability and Axiomatization of Query Finiteness in Deductive Databases. JACM
vol 45, no 4, Jully 1998, pp. 588-633.

12. Krishnamurthy, R., R. Ramakrishnan, and O. Shmueli: A Framework for Testing Safety and Effective
Computability of Extended Datalog. Proc. Sixth ACM Symposium on Principles of Database systems,
(1988) 154-163.

13. Larizza, C., Moglia, A., and Stefanelli, M., “M-HTP: A system for monitoring heart transplant patients,”Artificial In-
telligence in Medicine, 4: 111–126 (1992).

14. Mecca, G. and A. J. Bonner: Sequences, Datalog and Transducers. In Fourteenth ACM SIGMOD Intern.
Symposium on Principles of Database Systems (PODS’95), San Jose, California, (1995) 23-35.

15. Mecca G. and A.J. Bonner. Query Languages for Sequence Databases: Termination and Complexity.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 13(3): 519-525, May/June 2001.

16. Miksch, S., Horn, W., Popow, C. and Paky, F., “Utilizing temporal data abstraction for data validation and therapy
planning for artificially ventilated newborn infants,” Artificial Intelligence in Medicine, 8: 543–576 (1996).

17. Shahar, Y.: A Framework for knowledge-based temporal abstraction in clinical domains. Artificial intelli-
gence 90(1-2) (1997) 79-133.

18. Shahar, Y.: Dynamic Temporal Interpretation Contexts for Temporal Abstraction. Annals of Mathematics
and Artificial Intelligence. 22(1-2) (1998) 159-92.

19. Revesz, P. Z.: Constraint databases: A survey. In L. Libkin and B. Thalheim, editors, Semantics in Databases, number
1358 in LNCS, pages 209–246. Springer, 1998.

20. Tansel, A., J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. Temporal Databases:
Theory, Design and Implementation. Benjamin/ Cummings, 1993.

21. Ullman, J. D.: Principles of database and knowledge-base systems. (1988) volume1 chapter 3.

