A Framework for Answering Queries Using Multiple
Representation and Inference Techniques

Nicholas L. Cassimatis
Naval Research Laboratory
4555 Overlook Dr. SW, Code 5513
Washington, DC 20375, USA

cassimatis@itd.nrl.navy.mil

Abstract

The Polylog framework is designed to provide a language for efficiently au-
tomating complex queries of information represented in multiple formats. A Poly-
log program contains a set of modules called specialists that store and make in-
ferences about data in a particular representation. The FOCUsSLOOP algorithm
answers queries by combining the knowledge and computation of all the spe-
cialists. Logic program duals for Polylog programs are introduced to prove that
FocusLoop is sound and complete. A logic program dual makes the same infer-
ences as the Polylog program it corresponds to. By using one program to formally
characterize behavior and another to implement it, the traditional tradeoffs be-
tween provably correct automated question answering, representational flexibility
and efficient execution are greatly reduced. Specialists using representations such
as neural networks, ontologies, logical clauses and constraint graphs have already
been implemented. They demonstrate that complex queries over multiple data
sources can be automated without sacrificing efficiency for soundness and com-
pleteness. Finally, it is shown that FOCUSLOOP generalizes logical deduction
using operations such as resolution, forward inference and subgoaling and that
these are common themes in many computational frameworks. In Polylog, each
operation is implemented using multiple algorithms, enabling the weaknesses and
impasses of one inference or representation technique to be compensated for by
the strengths and resources the others.

1 Introduction

The increasing availability of large stores of data in multiple formats requires new
tools for formulating and answering queries. Because each format (e.g., flat text file,
XML, relational database, geographic information system) is best queried using its
own specialized set of algorithms, executing complex queries that use multiple data
sources is at best cumbersome. Web service protocols such as SOAP provide some
relief in the form of a uniform programmatic interface to data, but they still require a

Polylog has grown out of the author’s work on Polyscheme [4]. Thank you to Ed Hurley for a
conversation about Polyscheme in the context of logic programming.

specific programming effort for each new kind of complex query that combines several
web services.

One solution would be to design a query language that automatically answers
queries over a wide variety of data formats. A problem with such query languages is
that in order to provide sound and complete answers, they confine users to a single
logical language and theorem proving algorithm so that mature semantic and proof
theories for logical languges can be used to soundness and completeness.

Reliance on a single representation and algorithm is in tension with a common
belief among computer scientists that the best computational techniques for solving
a problem vary from domain to domain. Several trends in artificial intelligence are
examples of the benefits of using multiple representation and inference techniques.
For example, researchers in robotics find benefits in combining logical inference [10]
or cognitively-plausible architectures [3] with robot mobility platforms. Researches
modelling human cognition [8, 1] use multiple representations to capture the re-
sourcefulness and complexity of human thought. Information retrieval research [2]
achieves significant efficiencies using several representations for formulating and an-
swering queries.

A specific consequence of relying on a single computational framework is the dif-
ficulty of integrating intelligent reasoning techniques with many kinds of languages,
database, platforms and computer applications, all potentially distributed over a net-
work of computers. Work integrating relational databases with logical programming
systems [7] addresses this issue, but there are no general guidelines for integrating
multiple kinds of computational resources.

A tension therefore exists between automatic, provably correct query answering
and the benefits of integrating multiple inference and representation techniques. The
Polylog framework has been developed to achieve both. Polylog allows programmers
to declare knowledge using multiple representations and provides modules, called spe-
cialists, to make efficient inferences and solve problems using this knowledge. Although
specialists can be implemented using a wide variety of techniques, we introduce the
notion of a Prolog logic program dual for a Polylog program. Because the logic pro-
gram dual is a Prolog program it enables a formal characterization of its corresponding
Polylog program. Because the logic program dual is only used only to formally charac-
terize a Polylog program while Polylog specialists use the more efficient data structures
and algorithms, generally implemented in a nonlogical language, the formal benefits
of Polylog programs do not imply a loss of efficiency.

Several other research programs address aspects of this integration problem. As
already discussed, query languages based on logical programming provide sound and
complete answers to queries but strongly limit the representational and computational
techniques that can be used to answer queries. “Unified” architectures such ACT-R
[1] or SOAR [6] attempt to provide frameworks for implementing multiple inference
techniques in one system, but limit themselves to one or two representational formats.
Knowledge interchange formats such as KIF [5] provide a way for sharing knowledge,
but not for sharing computation. Internet-based web services provide a uniform frame-
work for accessing information and computational resources over a network, but as of
yet there is no way of automatically combining these to answer complex queries that

require a combination of these resources.

2 The Polylog Framework

A Polylog program is a collection of modules, called specialists. Each specialist uses
the representation and inference techniques, not necessarily based on logic, that are
most suited to their specialty. Programmers express a specialist’s knowledge using
a syntax tailored to each specialist’s representation. The specialists communicate
among each other with a simple predicate logic language. Queries are posed to the
program using this language and the FOCusLooP algorithm described in this section
answers these queries.

Definition 1. Polylog Program. A Polylog program consists of:

e A set of ordered pairs {...(Si, K1) ...} where each S; is a specialist and each K;
s a text string representing the knowledge of S;;

e A Query Specialist, Sq, which is a logic specialist (described below);
o A set of constants, C; and
o A set of variables, V.

Each specialist in a Polylog program must implement several functions over literals
and truth values. The set of truth values, TV, is {true, false}. Literals are of the
form p(t1,...,tm), where p € C and ti € (C U V). All constants are denoted with
strings beginning with alphabetic characters and all of the variables are denoted with
strings beginning with “?” . A literal L[s| is variant of L[t] if there is a substitution
which makes L[s] equivalent to L[t|]. Each specialist must implement the following
functions. Any programming language may be used.

e ReportTV (literal,tv). This method is used to report to a specialist the truth
value, tv, other specialists assign to a literal.

e StanceOn(literal). Returns true if the specialist can infer that literal is true
and false otherwise.

e GroundLiterals(literal). Returns a set of true ground literals that are equiva-
lent to literal under substitution.

e Subgoals(literal): Returns a set of literals whose truth value would help deter-
mine the truth value of literal.

o Assertions(literal): Returns a set of ground literals that become true once
literal is added to the specialist’s knowledge.

These functions will be further constrained below to enable proofs of soundness
and completeness.

A logic specialist implements the functionality normally expected of a logic pro-
gramming system. Specifically, GroundLiterals() returns literals that achieve a sub-
goal by ground substitution on the specialist’s literals. StanceOn() returns true for a
literal if it is implied by the specialist’s knowledge and the true literals it has learned
through ReportTV (). Newly solved subgoals are returned through Assertions(). Two
examples illustrate how specialists are implemented using a wide variety of represen-
tation techniques. In both cases, the specialists use three different representations.
A logical representation, which is common to all the specialists in a program, allows
the specialists to share information and make requests of each other. The declarative
representation allows the programmer to easily and clearly express the knowledge for
the specialist and the computational representation is used by the specialists to effi-
ciently make inferences.

Logical Declarative Computational
Subcategory(Asian, Restaurant). Restaurant
Subcategory(FastFood, Restaurant). contains: Restaurant
Subcategory(Chinese, Restaurant). Asian,
.. FastFood,
e Asian
FastFood
Asian
contains: l
Chinese, '
Chinese

Figure 1. Representations used by the Ontology Specialist.

Logical Declarative Computational

Category(?r,Chinese) INPUT UNITS:
Category(?r, FastFood) | 1: Category(?r,

- ; s
. Chinese) T‘::'::Jff;;_:-"’:-:_:t?;ﬂ::;'jf
NumberStars(?r,0) 2: Category(?r, .
NumberStars(?r,1)... FastFood) ... < p
User(David) 14: NumberStars(?r, 0) ", .-___.-""'
User(Sarah)... 15: NumberStars(?r, 1) M

26: User(David)

27: User(Sarah) ...
OUTPUT UNITS:

1: Likes(?user, 7r)
WEIGHTS: [.45 .67

.26 .83 .93 ...

.95 .23 .31 .07.49 ...]

Figure 2. Representations used by the Neural Network Specialist.

Figure 1 shows the representations for an ontology specialist. Its knowledge is
declared by the programmer by enumerating of all the subcategories for each cate-
gory, but it is represented internally using a directed graph. The ontology specialist

implements its functions in the obvious manner by using graph search algorithms. For
example, when asked for a StanceOn() a literal stating that C'hinese is a subcategory
of Restaurant, it walks up the category graph from Chinese until it either reaches
Restaurant or the root and returns the appropriate truth value.

Figure 2 shows the representations for a neural network specialist. The knowl-
edge for this specialist is declared by asserting the propositions that are associated
with each input and output unit and by providing numerical matrices that specify
the connection weights for the network. The specialist implements its functionality
by building instances of neural networks and firing neurons according to the weights
provided by the programmer.

Input: A Polylog program, P, with specialists S;, knowledge Kj;,
query specialist, S, and its knowledge base, K, and the alphabets of
constants C' and variables V'; and query literals Q1, ..., Q.

Output: A set, Answers, of the true ground literals whose arguments
represent substitutions that make the @); true.

FocusLoopr(P,Q1,...,Qn)
empty Foci and Answers sets.
QueryClause = (§Answer(...,v;,...) < Q1,...,Qn),n > 0.
append QueryClause, to knowledge, K, of the query specialist, S,.
Query = fAnswer(...,v;,...).
add QueryClause to Foci.
while Foci is not empty.
FocusLiteral = arbitrarily selected element of Foci.
remove FocusLiteral from Foci.
if FocusLiteral is ungrounded
for each specialist, S;,
add GroundLiterals(FocusLiteral) to Foci.
else
FocusTV = V;(S.FocusTV (FocusLiteral)).
if FocusTV is true and FocusLiteral is a variant of Query
add FocusLiteral to Answers.
for each specialist, S1,
ReportTV (FocusLiteral, FocusTV).
add U;(S;.assertion(FocusLiteral)) to Foci.
add U;(S;.subgoals(FocusLiteral) to Foci.
remove Query from the query specialist’s knowledge, K.
return Answers

Figure 3. FocusLoop Algorithm

Polylog programs answer queries using the FocusLoopP algorithm described in
Figure 3. In the next section, it is proved that, when the specialists conform to certain

“duality conditions”, FOCUSLOOP’s inferences are sound and complete. FOCUSLoOOP
takes a Polylog program and a set of query literals and returns all the variable substi-
tutions that would make the query literals true. FOCUusLoOOP proceeds by “focusing”
on a series of literals until there are no new literals on which to focus. When a ground
literal is focused on, all the specialists judge whether the literal is true or false. The
combined truth values are reported to all the specialists and if a specialist needs to
know the truth of another literal to offer a truth value on the current literal, it asks
to focus on it. If the focus literal is ungrounded, all the specialists ask to focus on lit-
erals in their knowledge bases that ground that literal. When a specialist has enough
information to infer that a literal is true, it asks FOCUSLOOP to focus on it so that
all the other specialists can make inferences based on that literal. This proceeds until
all the literals requested by the specialist have been focused on. FOCUSLOOP then
returns all the substitutions from ground literals that answer the original query.

FocusLooP is superficially similar to resolution theorem proving algorithms be-
cause it continues to ask for subgoals until it reaches ground literals that are known
to be true. When these are focuses on, it infers that the literals that follow are true.
The crucial difference is that each step of resolution algorithms is performed with one
kind of representation (clauses) and operated on by one kind of algorithm (resolution)
and inference is essentially through one mechanism (material implication). In Poly-
log, each of these steps can be performed by multiple representations and algorithms.
Section 4 will expand this contrast.

Some additional terminology will be useful. FOCUSLOOP focuses on a literal each
time it assigns FocusLiteral to it. A specialist assents to a literal if its ReportTV
function returns true for it at least once during FocusLoopr. FOCUSLOOP assents to
a literal if one of the specialists does. A specialist grounds @ to Q[s] if it includes Q]s]
in the return set of its GroundLiterals function during a cycle when FOCUSLOOP is
focusing on Q. A specialist asserts a literal when it assents to the literal after having
returned it in a previous call to its assertions function. FOCUSLOOP asserts a literal
when a specialists asserts it. A specialist makes a subgoal of a literal if a call to its
subgoals function returns that literal at least once during FocusLoopr. FocusLoopr
makes a subgoal of a literal when it focuses on it after a specialist makes it a subgoal.
FocusLoop’s answer for QueryClause = (§Answer(...,v;,...) < Q1,...,Qy) is the
set, of all the literals in Answers after the FOCUSLOOP terminates.

3 FocusLoop is Sound and Complete

In order to characterize the conditions under which FocusLooOP is sound and com-
plete, the notion of a logic program dual (LPD) for a Polylog system is introduced.
An LPD for a Polylog system is a Prolog program that returns the same answers to
queries that the Polylog system does. Because the semantic properties of Prolog are
well understood, a Polylog system’s LPD can be used to characterize its behavior,
for instance, by establishing soundness and completeness while generally nonlogical
programming languages can be used to most efficiently implement the Polylog system.

This paper deals with a subset of Prolog, Datalog, without identity, functions or

negation. In our notation, a Datalog clause is expressed, P «— Q1,...,Q,, where P
and all the @); are literals over the constant alphabet C plus §Answer and the variable
alphabet V. P is the head of the clause and the @Q; form its body.

Because Prolog programs are sound and complete with respect to familiar first-
order semantics, (e.g., as defined in [9]), this paper will prove that FocusLoop makes
sound and complete inferences for a Polylog program by showing that it makes the
same inferences as its LPD. Since the LPD is a Prolog program, FOCUSLOOP’s infer-
ences will be sound and complete with respect to semantic model of the LPD. When
a Prolog program, P, would answer that a literal, L, is true, we write P — L. The
Prolog program obtained by combining the literals and clauses of Prolog programs A
and B is refered to as (AU B).

Definition 2. Specialist Logic Program Dual. An Prolog program, P;, is a logic
program dual (LPD or, simply, dual) for a specialist, S, if S does not assert or make
a subgoal of any particular query or literal more than a finite number of times and if
the following conditions, called the duality conditions, obtain at the end of each cycle
of FocusLoop:

e If (DsUA) — L, where A is the set of all asserted literals so far, S will have
asserted L during or before this cycle.

e I[fH «— By,...,B, is a clause in Ps and FOCUSLOOP has focused on H]|s], then
S will have made, during or before this cycle, a subgoal of each literal in the set,
{B;[t]}, where the domain of t is a (nonstrict) subset of the domain of s and
consistent with s otherwise.

e IfQ is focused on and the ground literal Q[s] is in Ps, then S will have grounded
Q to Qls| at least once during or before this cycle.

o A specialist asserts or assents to literal, L, only if (D; UA) — L, where A is the
program formed by the set of all asserted literals so far.

Logic program duals for the example specialists discussed in the last section il-
lustrate these ideas. The dual for a logic specialist is simply the program formed
by the literals and clauses the programmer specifies for that specialist. The dual
for the neural network specialist is a lookup table for the function the network pro-
duces. This table is formed by a series of clauses such as: Likes(Robert,?r) «
Category(?r,Chinese) + NumberStars(?r,3) + User(Robert). This dual’s compu-
tational inefficiency - it is impossibly large - is irrelevant because the computation
is performed by the neural network, not its dual. This point is elaborated in sec-
tion four. Finally, the dual for the ontology specialist is the list of Subcategory
literals representing the subcategory relationships the programmer supplied for the
specialist together with a transitivity clause: Category(?o,7c2) <« Category(?o,?cl),
Subcategory(?cl, 7c2).

Definition 3. Program Logic Program Dual for Polylog Program. A logic
program dual for a Polylog Program is the union of the logic program duals for its
specialists.

A logic program dual is said to be finite iff it is comprised of a finite number of
clauses and literals.

Theorem 1. Termination. If a Polylog program has a finite dual, it terminates.

Proof. FocusLoOOP continues only so long as Foct is not empty. Each specialist can
add a literal to Foci a finite number of times. A specialist can only add a literal to
Foci if it is a literal (or one of a finite number of variants thereof) in the derivation
tree for the query. Derivations trees in finite Prolog programs are finite, the number
of specialists is finite and thus only a finite number of literals might ever be added
to Foci. Because, at each cycle of FOCUSLOOP at least one literal is removed from
Foci, Foci will ultimately be emptied and hence FocusLoop will terminate. [l

Theorem 2. Soundness. For a Polylog program, P, with a dual, Dp, FOCcUsLooOP
assents to a literal, Q), only if Dp — Q.

Proof. FOCUSLOOP assents to) only if one of its specialists, S, assents to it. By the
definition of a logic program dual, S assents to @) only if it is implied by S’s dual,
Dg. Because the literals and clauses of Dg are a subset of Dp and because Dp is
consistent, then Dp — Q. O

Answer completeness is proved first and then completeness will follow as a special
case.

Theorem 3. Answer Completeness. For a Polylog Program, P, with a consistent
and finite dual, Dp, FOCUSLOOP answers a query, QQ, with the set of grounded literals,
{...Qlsi] ...} such that Dp — Q[s;].

Proof. Consider the Prolog derivation tree formed by ground substitution and reso-
lution for each true ground literal Q[s] that Dp implies. It is well known (e.g., [9])
that such a tree exists for every ground literal implied by a Prolog. The trunk of the
tree is a ground literal @[s] and the leaves are ground literals. We prove that the
leaves of every derivation tree for every answer for @)[s] are asserted by FocusLoop
and then show that once FOCUSLOOP asserts the leaves of a derivation tree for Q[s],
FocusLoop will ultimately assert Q[s].

Lemma 1. For each Q[s] implied by Mp and derivation tree, T, for Q]s], if Fo-
cusLooP focuses on variant Q[t] of Q[s], FocusLoop will assert the leaves of T'.

Proof of Lemma 1. The lemma is proved by induction on T'. Each interior node
in T, by definition, is formed by a clause, C, of the form, H|[s] < Bi]s|... By[s] where
H]s] is either the trunk of a tree or a literal in the body of another clause in the tree.
Induction step. If FocusLoopP makes a subgoal of the head, H|[s], then FocusLoopr
will make a subgoal of variants, B;[t], of the body literals. This is because if Dp is
the union of the logic program duals for the specialists, there must be a specialist, S,
whose dual program, Dy, includes C. If FocusLoopr makes a subgoal of H]s|, the
specialist dual conditions require that the specialist makes a subgoal of variants of C’s
body, B;[t]. Base case. The root of the T"is Q[s] and FOcusLooOP focuses on a variant,

Q[t], by assumption. Each literal of the tree, therefore, will have a variant of it focused
on by FocusLoopr. In particular, each leaf of T', L[s], has at least one variant, L[v]
that FocusLoopP will make a subgoal of and focus on. The duality conditions for the
specialists require that any specialist that contains L[s] in its dual must ground L|[v]
to L[s] when Lv] is focused on. Thus, the leaves of T' will be asserted by FocusLoop.

Lemma 2. For each @[s] implied by Dp and derivation tree, T, for Q[s], if Fo-
cusLoop asserts all the leaves of T, it will assert Q[s] before it terminates.

Proof of Lemma 2. The lemma is proved by induction on the length of the path
from the leaves to the root in 1. Induction step. Let n be the number of interior
nodes (or “steps”) in T separating a node, H[s], from Q[s]. H]s| is formed by the
clause, C', H « Bq,...,B,. Each of the B; is either a head of a clause in the tree or
a branch of the tree and in either case is n + 1 steps away from Q]s]. If all the literals
n + 1 steps away from @[s| have been asserted, then the specialist dual conditions on
the specialist containing C' imply that the specialist will assert H[s|. Hence, after all
the literals n + 1 steps away from the answer, ()[s|, have been asserted, those literals
n steps away will be asserted. Base case. Let N be the maximum number of interior
nodes separating a leaf in T" to @Q[s]. Each literal N steps from the Q[s] must be leaf
(or its branches would be separated from @[s] by more than the maximum N nodes)
and, by assumption, all the leaves are asserted. Thus, all literals which are separated
by fewer than N nodes from the root of the tree will be asserted by FocusLoop.
Because it is separated from itself by zero nodes, this therefore includes the trunk,
Qls).

These two lemmas together imply that FOCUSLOOP is answer complete. For any
query @, with answers @Q[si] implied by Dp, and derivation tree 7T;, lemma 1 implies
that the leaves of T; will be asserted and lemma 2 implies that once these are asserted,
Q[s;] will be asserted. Because they are each true variants of @, they will be part of
the answer set. O

Theorem 4. Completeness For a Polylog program, P, with a consistent and finite
dual, Dp. If Dp — Q, then FOCUSLOOP will answer query Q with the set {Q}.

Proof. If the query, @, is a ground literal and Dp implies it, then, by answer com-
pleteness, it will be in the answer set. As the only ground variant to a ground literal
is the ground literal itself, only @) will be answered. O

4 Relationship to Logical Deduction

The duality conditions on specialists, and hence FOcusLoOOP, cleave so closely to the
derivation tree for a logical program - and one formed through the comparatively
inefficient process of ground substitution and resolution - that the specialized data
structures and algorithms in a Polylog program do not seem to provide any gain
in efficiency over Polylog program’s logic program dual. Further, it appears as if
programmers must construct correctness proofs for their programs, which is often

difficult for most commonly used programming languages. The explanation of why
this is not so helps pinpoint the power of the Polylog framework and illustrates that
Polylog is a form of generalized logical programming.

4.1 Large Duals, Short Trees and Fast Inference

Because a logic program dual is never executed, specialists can have duals with an
intractably large proof space. For example, a Prolog program that would compute
a Reverse predicate on lists would lead to derivations at least as long as the list
and only then if the programmer is careful to consider the procedural implications of
the structure and order of the program’s clauses. However, a specialist that answers
queries using a Reverse literal can have a dual that is simply a lookup table, i.e., a
series of ground literals such as:

Reverse(zzcvbnm, mnbuczz),
Reverse(zzcvbnn, nnbvcxz),
Reverse(zzcvbno, onbuczz),

This logic program dual is too large to physically realize. The lookup table for
Reverse will be exponentially larger than the longest list a computer’s memory can
hold and thus larger than computer’s memory. Yet the model is easy to understand
and the function it represents can be computed with a small amount of code.

Thus, by separating formal characterization from machine implementation and
using logic programs to describe a specialist’s functionality while using specialized
representations and algorithms to implement that functionality, the Polylog frame-
work achieves the ease, elegance and confidence of declarative programming with the
efficiency and power of multirepresentational programming. Because logic program
duals are often as simple as lookup tables, programmers of Polylog specialists must
not generally be expert in the complexities of logic programming.

4.2 Generalizing Logic Programming

The one case where the logic program dual for a specialist is similar to the specialist’s
implementation is for specialists based on logic. Examining a logic specialist’s func-
tions will illustrate that Polylog generalizes the basic functions of a Polylog program
and facilitates powerful and efficient programs.

Ground resolution. Logic programming systems often perform ground resolu-
tion by searching a list of ground literals. For cases where more efficient algo-
rithms exist, Polylog allows specialists to implement these in the GroundLiterals()
function. For example, an arithmetic specialist might use a C function to resolve
Product(?x,35,105) or a geographical specialist can use spherical geometry to com-
pute Distance(Boston, Fargo,?d).

Forward inference. Logic programs use material implication on a clause to infer

that its head is true if the literals in its body are true. A specialist’s Assertions()
function allows other algorithms to be used for forward inference when they are more
efficient. For example, a neural network specialist computes the truth value of literals
by applying a threshold function to an output unit’s activation formed by network
propagation.

Subgoals. When a logic program cannot retrieve the answer to a query it resolves
a clause’s head with the query and tries to prove the resulting literals in the clause’s
body. A specialist’s Subgoals() function can use other algorithms when they are more
appropriate. For example, when trying to determine if an object is of category C, the
ontology specialist can use graph search algorithms to find all the categories that are
ancestors of C' in the category graph and make a subgoal of determining whether the
object belongs to one of those categories.

Operations such as ground resolution, forward inference and subgoaling are thus
not specific to logic programming. They are common themes that occur in many
computational frameworks. FocusLooP reformulates logical derivations in terms of
operations and allows specialists with other representation and inference techniques
to implement these functions. The combined Polylog program is thus more powerful
because weaknesses and impasses in one inference or representation technique are
compensated for by the strengths and resources of another.

5 Conclusions

The Polylog framework is designed to attain the benefits of logical, declarative and
multirepresentational programming in querying multiple sources of information in mul-
tiple formats. Given a set of specialized modules, program can be written by declaring
knowledge using a wide variety of representations without concern for procedural de-
tails and rely on FocusLooOP to answer queries. Logic program duals that mirror
the functionality of Polylog specialists enable proofs that FOCUSLOOP’s answers are
sound and complete so long as the specialists conform to certain duality conditions.
Duality conditions also provide a set of guidelines for adding specialists to a program,
preserving soundness and completeness. Polylog programs are fast and efficient be-
cause the functionality described by the logic program duals can be implemented using
the (potentially nonlogical) techniques best suited for a domain. Specialists that have
been implemented thus far demonstrate that Polylog enables the integration of intel-
ligent reasoning techniques with the vast amount of information and computational
resources available in other languages, on other platforms and on multiple machines
over a network. FoCUSLOOP reformulates logical deduction in terms of operations
such as ground resolution, forward inference and subgoaling, shows that these are
common themes in many computational frameworks and allows each of these func-
tions to be fulfilled by many nonlogical representations and algorithms. Thus, Polylog
provides efficient and robust programs by enabling the weaknesses of one inference or
representation technique to be compensated for by the strengths of others.

References

1]

2]

John R. Anderson and Christian Lebiere. The Atomic Components of Thought.
Lawrence Erlbaum Associates, 1998.

Nicholas J. Belkin, Colleen Cool, W. Bruce Croft, and James P. Callan. Effect of
multiple query representations on information retrieval system performance. In
Research and Development in Information Retrieval, pages 339-346, 1993.

Magdalena D. Bugajska, Trafton Alan C. Schultz, Matthew Taylor J. Gregory,
and Farilee E. Mintz. A hybrid cognitive-reactive multi-agent controller. In In
Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 339-346, 1993.

Nicholas L. Cassimatis. Polyscheme: A Cognitive Architecture for Integrating
Multiple Representation and Inference Schemes. Ph.D. dissertation, Massachus-
setts Institue of Technology, 2002.

Hans Chalupsky, Tim Finin, Rich Fritzson, Don McKay, Stu Shapiro, and Gio
Weiderhold. An overview of kqml: A knowledge query and manipulation lan-
guage. Technical report, KQML Advisory Group, April 1992.

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33:1-64, 1987.

Jack Minker. Logic-based approach to data integration. Theory and Practice of
Logic Programming, 2:293-321, May 2002.

Marvin Minsky. The Society of Mind. Simon and Schuster, New York, New York,
1986.

Ulf Nilsson and Jan Maluszynsi. Logic, Programming and Prolog. John Wiley
and Sons, New York, New York, 2nd edition, 1995.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, Cambridge, MA, 1995.

