On a Unifying Framework for Comparing
Knowledge Representation Schemes

Giorgos Flouris, Dimitris Plexousakis, Grigoris Antoniou
Institute of Computer Science, FO.R.T.H.

P.O. Box 1385, GR 71110, Heraklion, Greece
{fgeo, dp, antoniou}@ics.forth.gr

Abstract

Given the numerous knowledge representation models (KR-schemes)
that have been proposed, it would be desirable to have a formal, uni-
fying model for the description of a KR-scheme, as well as a general
method of comparing KR-schemes in terms of expressive power. This
work attempts to fill this gap, by proposing an elegant, yet very general,
model of describing KR-schemes. This formalization is used to describe
any knowledge representation model, including databases, logic-based
schemes, semantic networks etc. It is also applied to introduce a gen-
eral comparison method for KR-schemes and a formal definition of the
reduction of one scheme to another. Using this model, we can reason
about KR-schemes in an abstract manner and to determine whether a
certain reduction is possible or not.

1 Introduction

The task of comparing KR-schemes has received substantial attention in
the literature [2, 6, 9, 15]. As stated in [2], such a comparison requires
that a common framework is established between the compared schemes.
Up to now, there have only been independent approaches to the problem,
establishing such a framework only for the schemes under comparison. Thus,
such methods are applicable (at best) to a small subset of the imaginable
KR-schemes.

In this paper, we propose a general comparison method based on a formal
definition of what a KR-scheme is. This definition is functional and gener-
alizes the ASK and TELL operators (originally proposed in [11, 13]) to any
KR-scheme. We conjecture that this generalization is enough to accommo-
date any imaginable KR-scheme. Using it, we can propose a method for
comparing expressive power which is applicable to any pair of KR~schemes.

2 Definition of a KR-Scheme

2.1 Informal Definitions

The question of what KR is has rarely been directly addressed in the litera-
ture [5]. One of the most thorough attempts to define KR and other relevant
terms is made in [13]. In that book, KR is defined as “the field of study
within AI concerned with using formal symbols to represent a collection of
propositions believed by some putative agent”.

According to [8], “one can characterize a representational language as
one which has (or can be given) a semantic theory”. Thus, a KR-scheme
(representational language) is a formal description of the symbols used for
the representation, as well as their real world semantics. A Knowledge Base
(KB) is then simply an instance of a KR-~scheme, in the sense that it uses
the symbols and the semantics of the given KR-scheme.

2.2 Formalizing a KR-scheme

Despite the vast variety of KR-schemes currently available, some general
properties that hold for all such schemes can be identified. As mentioned
above, all schemes are meant to be used by an entity, that we will generally
refer to as the “user” of the system. The term “user” does not necessarily
refer to a human being; a robot or a sophisticated software (e.g. a mediator,
an agent, a data mining software, a web crawler etc) that in any way uses
the KB can also be classified as a “user” of the system.

Moreover, all KBs store knowledge regarding a domain of interest in a
specific and well-defined format. For example, in a propositional KB, the
knowledge is represented by a propositional expression or a set of proposi-
tional expressions; in a relational database (DB), the knowledge is repre-
sented by a set of tables, which are instances of a certain DB schema. So, in
any KR-scheme, there exists a (usually infinite) set of available possibilities
(states) for the KB. We will call this set the Knowledge Base set (or the KB
set) and denote it by Sk.

In order for the knowledge stored in a KB to be useful, we must equip
the system with querying and updating capabilities [12]. As in [11, 13], we
will use two functions, namely ASK (queries) and TELL (updates). For the
query mechanism, the system designer must have provided the system with
a query language; the acceptable expressions of this language form a set,
the Query set, Sg. The acceptable replies to a query are likewise predeter-
mined; they form another set, the Answer set, S4. The ASK function is the
algorithm that evaluates a query against the current KB and returns the
proper answer. Given the above sets, the ASK function (Query function)
can be formally defined as: ASK : Sg x Sg — S4. Similarly, to perform
updates, a set of acceptable updates must be provided by the system de-
signer, forming the Update set, Syy. The TELL function (Update function)
is the algorithm that maps the current KB to a new one, depending on the
update performed. It can be formally defined as: TELL : S x Sy — Sk.

Notice that we pose no restrictions on the contents of the above sets, but

we will require that they are non-empty. The functions ASK and TELL must
be total, but they can be freely defined otherwise; no rationality constraints
are imposed upon them. Thus:

Definition 1 A KR-scheme is a 6-tuple (Sk, Sy, Sg, Sa, ASK, TELL),
where Sk, Sy, Sqg, Sa are non-empty sets and ASK : Sx x Sg — Sa,
TELL : Sk x Sy — Sk, are total functions.

One may argue that this definition, though general, does not take into
account some of the most sophisticated advances in DB technology, such as
triggers, user profiles, active rules or integrity constraints. In fact, it does!
As will be made clear in the following examples, the concept of the set is
so general that virtually any type of (typically homogeneous) information
can be in a set. Regarding the user interaction, it can be classified in two
types. Any operation that only reads data from the KB (“read operation”),
can be modelled using the ASK function in our framework, even though
it may not be a query in the conventional sense (such as the query: “what
integrity constraints are there in the DB?”). Any operation that writes data
to the KB (“write operation”) can be modelled using the TELL function,
even though it may not be an update in the conventional sense (such as the
update: “insert the integrity constraint C to the DB”).

The four sets of our structure contain all the possible symbols (or symbol
sequences) that represent the knowledge of the real world. So the four sets
are at the symbol level of our schema, describing the way that the real
world will be represented. The two functions are the ones that actually give
meaning to the symbols, representing the knowledge level of the schema [14].

Our model unifies several diverse ways of thinking about how knowledge
should be represented. In [16], natural language and logic are presented as
universal languages for all KR-schemes. We conjecture that all KR-schemes
and meta-models, including natural language and logic, can be modelled
using this 6-tuple. A few examples will provide some insight on the reasons
behind this conjecture.

2.3 Formalization Examples

Initially, we will try to model propositional KBs under this formalism. We
will use the AGM paradigm [1]. Assume a propositional language L and the
set of all the wif in L, denoted by L*. Then a KB is a set of propositions, i.e.
an element of P(L*) (the powerset of L*); not all elements of P(L*) apply,
as the set must be closed under logical consequence. Let us denote by D
the subset of P(L*) whose elements (sets of propositions) are closed under
logical consequence. Then S = D. Any proposition in L* can be an update
or a query, so Sy = Sg = L*. We will use the Closed World Assumption,
where the possible answers to any query are either YES or NO, so S4 =
{YES, NO} and the Query function ASK is defined as: ASK(K,Q)=YES iff
K E Q; else ASK(K,Q)=NO. The TELL function can be any belief revision
function (algorithm) satisfying the AGM postulates.

The case of the relational model is somewhat more complex. We will

initially take the simple model, where only tables are used (integrity con-
straints, triggers etc are not allowed). We will assume that SQL is the
data manipulation language. Each DB schema that can be defined is a KR-
scheme of its own. Thus for a DB schema S, we can say that it defines a
KR-scheme where Sk contains all the possible instances of S, Sy contains
all acceptable UPDATE, INSERT and DELETE operations upon S and Sg
contains all the possible SELECT operations. The answer to a query can
be any set of tuples. The ASK function is the algorithm that evaluates user
queries and TELL function is the algorithm that performs the updates upon
the DB; both are implemented in all DBMSs.

A more complex system should also include user profiles, triggers, in-
tegrity constraints, views etc. A KB should include this kind of information;
thus Sk should be expanded to include such objects. Similarly Sy should
be expanded to allow changes upon such objects (for example UPDATE
TRIGGER operations) and Sg should be expanded to allow questions upon
such objects (for example: “what are the preconditions of trigger T?”). The
implementations of SQL that appear in commercial DBMSs include such fa-
cilities. Similarly, the Answer set should be expanded to be able to answer
questions regarding these objects and the ASK and TELL functions should
implement all the above expansions.

Proceeding one step further, we could also consider each DB schema
as a KB on its own right (at a meta-level). Commercial DBMSs allow
the creation and manipulation of the DB schema, by allowing the user to
create tables or change the definition of existing ones. The KR-scheme
of DB schemes can also be modelled using our approach. In this case, it
is important to discriminate between a KR-scheme and a DB scheme: we
are trying to model a KR-scheme whose contents are DB schemes. The
KB set (Sk) of this scheme should contain all the possible sets of tuple
definitions (DB schemas) that can be created using elements from a given,
fixed domain D. The Update set comprises all the commands that alter a
schema (implementations of SQL in commercial DBMSs include this facility)
and the Query set should contain all the possible questions upon the schema.
The Answer set should contain all the possible answers, while the ASK and
TELL functions represent the algorithms implementing these operations.

3 Comparing Expressive Power

With the above formalism at hand, comparing two given KR-schemes is
possible, even if these two schemes seem to have nothing in common. We
will introduce two different methods of comparison; deciding on the method
that most properly fits our intuitive notion of a scheme being more expressive
than another is a matter of current research.

3.1 Normal Reduction

Consider two KR-schemes S1=(Sk1, Su1, SQ1, Sa1, ASKy, TELLy), So=
(Sk2, Sv2, SqQ2, Sa2, ASKy, TELL5) and suppose that we want to prove

that S is more expressive than Sy. If this is true, then we should be able
to “substitute” each symbol (or symbol sequence) in S; with a symbol (or
symbol sequence) in So. This substitution should be made in such a way
that there is no loss of information during the transition. If the semantics
of the original symbols is preserved, then no loss of information occurs; we
may change the symbols, but not the knowledge they represent. If Sy is
strictly more expressive than S; then it may be able to express knowledge
not available in S7; in this case the opposite reduction (from Ss to Sp) is not
possible. It might also be the case that S; and S5 are incomparable; this
could happen if each scheme contains knowledge which cannot be properly
mapped to the other system.

More formally, each possible KB in S; (any K; € Sk1) must be mapped
to a KB in Sy (say Ky € Sk2). This mapping is a function, which will be
called Knowledge Base Reduction function and denoted by frx : Sk1 — Sk2.
This mapping is not sufficient, because a KR-scheme also consists of up-
dates, queries and answers to queries. Thus, similar assignments must be
made for the Update and Query sets, using the Update Reduction function,
fu : Su1 — Sve2, and the Query Reduction function, fq : Sg1 — Sg2, re-
spectively. For the Answer set, the opposite assignment must be made; once
the substitution has been made, answers will be obtained by S (function
ASK>), so we need a way to “translate” these answers to answers that S
understands (belonging in S41). So, each possible answer in the substituting
system (S2), will be mapped to one answer in the substitutable system (57)
by the Answer Reduction function, fa : Sao — Sai.

Notice that the existence of these four functions by itself should not
constitute evidence that Sy is more expressive than S;. Moreover, request-
ing that these are 1-1 and/or onto is irrelevant for our cause, because our
goal is to preserve the semantics, not the symbols. The conditions required
should be related to the symbol manipulation functions ASK and TELL and
guarantee the preservation of semantics during the transition from S to Ss.

The first property is related to the query mechanism. Assume a KB
Ky € Sk1, a query Q1 € Sg1 and their assigned KB Ky = fg (K1) € Ska,
and query Q2 = fo(Q1) € Sqg2. Suppose that: Ay = ASK;(K1,Q1) € Sai
and Ay = ASK3(K2,Q2) € Saz. These two answers must be the “same”,
in the sense that A; must be the respective answer of A under the Answer
Reduction function (A; = fa(Az2)). Thus, we get (see also Figure 1):

ASKl(Kl,Ql) = fA(ASK2(fK(K1)a fQ(Ql)))
for all Kl S SKl; Ql c SQl

This will be called the Query Preservation property.

The second property is related to the update mechanism. Consider,
two KBs K1, K9 € Sg1 and an update U; € Syp, as well as their respec-
tive KBs fx (K1), fk(K2) € Sko and update fy(U;) € Sye. We would
expect that the KBs K; and Ky are related via the update U; and the

TELL; function (Ko = TELL,(K,Uy)), iff the KBs fx(K7) and fx (K2
are related via the update fy7(Uyp) and the TELLs function (fx(K2)

TELLy(fx (K1), fu(Ur))), that is (see Figure 1):

For any K, Ky € SKl,Ul € Syi:
Ky =TFELL(Kq,Uy) iff
Jx(K2) = TELLy(fr (K1), fu(Ur))

This will be called the Update Preservation property.

Query Preservation

Update Preservation

g S] Kl X Ql & Al K] X U] ’% K2
% ﬂ e |fo o iR i
— 82 KZ x QZ ASK A2 Kll X U2 TELL E Kzl

Figure 1: Query and Update Preservation properties

Combining the above, we define:

Definition 2 Consider two KR-schemes S1=(Sk1, Svu1, Sg1, Sa1, ASKj,
TELLl) and SQZ(SKQ, SU27 SQQ, SAQ, ASKQ, TELLQ) If there exists a
4-tuple of total functions (fK,fU,fQ,fA), fx : Sk1 — Sk, fu : Su1 —
Sva, fo 1 So1 — Sg2, fa : Saz — Sai, such that the Query and Update
Preservation properties hold, then we say that S; can be (normally) reduced
to So. The 4-tuple (fx, fu, fg, fa) will be called the (normal) reduction
algorithm. If S; can be reduced to Sy then we say that S is (normally) at
least as expressive as Sp, denoted by S; <, S2. Analogously we define =2,
(equivalent expressivity) and <, (strictly greater expressivity).

3.2 Behavioral Reduction

One may argue that the semantics of a KB is actually determined by the
query answers upon the KB. If two KBs give the same answers to all queries,
then they carry the same information, as far as the user is concerned. Hav-
ing this in mind, the Update Preservation property may look a little more
restrictive than necessary. It would be enough to demand that the KBs
K{ = TELLl(Kl,Ul) € Sk1 and Ké = TELLQ(KQ,UQ) € Ska, give the
“same” answers to queries, in the sense of the Query Preservation property.
In this case the user is not able to notice the transition and the semantics
of the original system are preserved. However, this is not enough; the user
can perform a sequence of updates (instead of just one) upon the original
KB, and the resulting KBs (in the two schemes) must be indistinguishable
by the user after this sequence of updates. Indistinguishable in this context
means that the two KBs should give the “same” answers to all queries, in

the sense of the Query Preservation property as before. This generalized
property will be called the Behavior Preservation property.

To formalize this property, we define the iterated update (iterated TELL)
operator, which calculates a sequence of updates upon a KB:
Definition 3 Consider a function TELL : Sk x Sy — Skg. We define, for
any m > 0, the iterated TELL function, TELL™ as:
TELL® : Si — Sk, TELLY(K) = K for all K € Sk
TELL' : Sk x Sy — Sk, TELL'(K,U) = TELL(K,U) for all K € Sk,
Ue Sy
TELL™: Sk xSt — Sk, TELL™(K,Uy,...,Uy) = TELL(TELL™ (K,
Ui,..., Um—l), Um), forall K € Sg,Uq,...,U, € Sy

Using this operator, we can write the Behavior Preservation property as
follows (see also Figure 2):

faA(ASKo(TELLY (fr (K1), fu(Ur),- -, fu(Un)), fo(Q1))) =
= ASK\(TELLT (K1,Un,...,Up), Q1)
for all m > 0, K € SKI, Ul,...,Um € SU1, Ql € SQl

g Sl K1 X UlT%KI'X Uz T% KIHX Q1%A1
'g ﬂ fe |fo fy fo ¢
D]

Figure 2: Behavior Preservation property (for m=2)

Notice that the Query Preservation property is a special case of the
Behavior Preservation property (for m = 0). The latter does not ensure
that the transition keeps the knowledge of the original system intact (the
KBs need not be the “same”), but it does ensure that the behavior of the
two systems will be identical and indistinguishable by the user (the answers
must be the “same”); the semantics are preserved in both cases. We will
call the type of reduction based on this property behavioral reduction:
Definition 4 Consider two KR-schemes S1=(Sk1, Su1, Sg1, Sai, ASKi,
TELLy) and So=(Sk2, Sv2, Sq2, Saz, ASKy, TELL,). If there exists a 4-
tuple of total functions (fK, fU, fQ, fA), fK : SKI — SKQ, fU . SUI — SUQ,
fo : Sg1 — Sq2, fa : Saz — Sai, such that the Behavior Preservation
property holds, then we say that S can be behaviorally reduced to S3. The
4-tuple (fx, fu, fqg, fa) will be called the behavioral reduction algorithm.
If S1 can be behaviorally reduced to S5 then we say that Sy is behaviorally
at least as expressive as Si, denoted by S; <, S3. Analogously we define
&y, (behaviorally equivalent expressivity) and <y, (strictly greater behavioral
expressivity).

4 Discussion

4.1 Initial Results and Examples for Reduction

In this section we will state some results related to our framework. The rele-
vant proofs, as well as a more thorough discussion on the issue can be found
in [7]. Some intuitively desired properties of expressiveness relations and
the connection between the two types of reduction can be initially proved:

Proposition 1 For all KR-schemes S1, So, if S7 <, S9 then S1 < So.
Similarly, if S7 =, S then S7 = S5. The opposite entailments do not hold.
Proposition 2 The relations <, and <, are reflexive and transitive. The
relations =, and &, are symmetric, reflexive and transitive.

Some examples may help uncover some less obvious properties of the
above relations. At first, assume any KR-scheme based on some form of
logic (say propositional). We will denote by L* the set of all wffs of the
selected logic and Sowa, Scwa the KR-schemes that occur by using L*
and the Open World Assumption (OWA) and Closed World Assumption
(CWA) respectively. Then, it can be proven that Sowa >, Scwa. Indeed:
Sowa=(Sk, Su, Sq, Saowa, ASKow a, TELL) and Scwa=(Sk, Su, Sg,
Sacwa, ASKcwa, TELL), where S = Sy = Sg = L*, and TELL is some
function that performs updates (any function would do). For Sowa, we
have Sqowa = {YES,NO,UNKNOWN}, and ASKowa(K,Q) =YES
it K = Q; ASKowa(K,Q) = NO iff K = —Q; else ASKowa(K,Q) =
UNKNOWN. For Scwa we have Sycwa = {YES,NO} and ASKcwa
(K,Q)=YES iff K |= Q; else ASKcwa(K,Q) = NO. We take fr, fu, fo to
be the identity functions of their respective domains and f4(Y ES) =Y ES,
fa(NO) = fA(UNKNOWN) = NO. Then: ASKowa(K,Q) = YES iff
K E=Qiff fr(K) = fo(Q) iff ASKewa(fr(K), fo(Q)) =Y ES. Using this
equivalence and the definition of f4, it is easy to prove that the Query and
Update Preservation properties hold. Thus, by definition, Sowa >, Scwa.
For the opposite reduction, notice that all three answers are needed in Sow 4,
so we cannot identify any two answers during the transition to Scow 4 using
fa. On the other hand, f4 cannot be 1-1, because Ssowa is finite and
contains more elements than S4cowa. Thus, the opposite reduction is not
possible. This argument is a special case of a more complex condition (see
proposition 4 below) regarding the “size” of the sets in a KR~scheme and the
possibility of reducing a scheme to another. Therefore: Sowa >, Scwa.

In [3, 4], a belief revision algorithm was introduced based on proposi-
tional KBs. The papers described the update mechanism, but the under-
lying KR-scheme was implicitly described. Dalal used propositional KBs,
so Sg = Sy = Sg = L*, where L* is the set of all wif of the underlying
propositional language L. We assume CWA, so Sy = {YES, NO} and the
ASK function is the CWA query answering function as in the above exam-
ple. The TELL function is the belief revision algorithm described in Dalal’s
papers. As proved in [10], Dalal’s algorithm satisfies the AGM postulates

[1], so for any two KBs K1, K9 € Sk, with K1 = Ky (where the symbol “=”
stands for logical equivalence) and any Uy, Us € Sy with Uy = Us it holds
that TELL(K,,U,) = TELL(K2,Us). Moreover, by the definition of ASK,
for all K1,K9 € Sk with K1 = K5 and all Q1,Q2 € SQ with Q1 = Qa:
ASK(K1,Q1) = ASK(K2,(Q2). Thus, it makes sense to restrict ourselves
to L*/ = (instead of L*) for the sets Sk, Sy and Sg and have an equiv-
alent KR-scheme. This does happen, as the two schemas can be proven
behaviorally equivalent.

4.2 Redundancy

In fact, the above equivalence is an application of a more general property
having to do with “redundant” elements. We say that redundancy appears
when two or more symbols (or symbol sequences) from one of the sets Sk,
Su, Sq represent the “same” real-world knowledge (KB, update or query re-
spectively). Being able to express the same information with more than one
way leads to redundancy. From a practical viewpoint, it might sometimes
be desirable to allow the user to express information with different ways;
this usually makes the system more user-friendly. However, for any scheme
containing redundancy, we should be able to find an equivalent one that
does not contain redundancy, thus eliminating redundant elements without
loss of expressive power. On the contrary, the elimination of non-redundant
elements from a scheme should result in the loss of expressive power. For the
Answer set, redundancy appears when S4 contains answers that the system
never actually gives. Such answers (only) are useless and could be dropped
without loss of expressive power.

To formally express the above considerations, we must initially resolve
what we mean by the term “same knowledge”. Once again, there are two
viewpoints, the “normal” and the “behavioral” one, depending on the com-
parison method we use:

Definition 5 Let S=(Sk, Su, Sg, Sa, ASK, TELL) be a KR-scheme. We
say that S contains:

e Normal KB redundancy iff there exist Ky, Ko € Sg K1 # Ks, such
that:
For all Q € Sg: ASK(K1,Q) = ASK(K>2,Q)
For all U € Sy: TELL(K,,U) =TELL(K2,U)
There is no Ky € Sk,Uy € Sy: TELL(Ky,Uy) = K3
There is no Ky € Sk,Uy € Sy: TELL(Ky,Upy) = Ko

o Normal update redundancy iff there exist Uy, Us € Sy Uy # Us, such
that for all K € Sg: TELL(K,U,) =TELL(K,Us).

e Normal query redundancy iff there exist Q1,Q2 € Sg Q1 # Q2, such
that for all K € S ASK(K,Q1) = ASK(K, Q2).

o Normal answer redundancy iff there exists an A € Sy, such that for
all K € Sk, Q € Sg, ASK(K,Q) # A.

e Normal redundancy iff it contains any type of (normal) redundancy.

e Behavioral KB redundancy iff there exist Ky, Ko € S K1 # Ka, such
that for all m >0, Uy,...,Un, € Sy, Q € Sg:
ASK(TELL™(K1,Uy,...,Up),Q) =
= ASK(TELL™(K»,Uy,...,Up),Q)

e Behavioral update redundancy iff there exist Uy,Us € Sy Uy # Us,
such that for all m >0, K € Sk, U{,...,U}, € Su, Q € Sg:
ASK(TELL™Y(K,Uy,Uf,...,U.),Q) =
= ASK(TELL™ (K, Uy, Uj,...,U"),Q)

e Behavioral query redundancy iff it contains normal query redundancy

e Behavioral answer redundancy iff it contains normal answer redun-
dancy

e Behavioral redundancy iff it contains any type of behavioral redun-
dancy.

Using this definition we can prove that redundant elements do not add
expressive power to a scheme:
Proposition 3 Suppose any schema S. There exist schemas S, Sy, such
that S, does not contain normal redundancy, Sp does not contain behav-
ioral redundancy and S, =, S, S, = S.

This proposition implies that we lose nothing by restricting our attention
to non-redundant schemes only. When S does not contain redundancy, then
S itself is the schema that satisfies this proposition. However, if S does
contain some type of redundancy, then we can get rid of the redundant
elements without loss of expressive power. Notice that the proposition can
be specialized [7], so that each type of redundancy (KB, update, query,
answer) can be checked separately. We could apply this property in all
belief revision algorithms that satisfy the AGM postulate of preservation
(#5), like Dalal’s algorithm described above. By proposition 3, all such
algorithms have simpler behavioral equivalents.

The proposition below implies that only the redundant elements can be

removed without loss of expressive power:
Proposition 4 Suppose two KR-schemes S7, Ss. If S7 <, Sy and S7 con-
tains no normal redundancy, then for any normal reduction algorithm from
S1 to S, (fk, fu, fg, fa), it holds that fx, fu, fo are 1-1 functions and
f4 is onto. Similarly, if S; <j Se and S contains no behavioral redundancy,
then for any behavioral reduction algorithm from S; to Se, (fx, fu, fo.
fa), it holds that fx, fu, fo are 1-1 functions and f4 is onto.

Thus, if the non-redundant scheme Sy can be reduced to another schema
Sa, then the latter is required to have sets of at least equal cardinality, so
that each symbol of S; can be mapped to a different symbol in S3. Once
again [7], the above proposition can be further specialized: for any type
of redundancy that S7 does not contain, the respective function of the re-
duction algorithm should be 1-1 or onto (depending on the case). Thus,

cardinality becomes important when determining the feasibility of a certain
reduction involving non-redundant schemas (because non-redundant symbol
sets cannot be reduced in size during the reduction).

When attempting a reduction we could check the existence of such func-
tions (1-1 or onto, depending on the case) for each set of the two schemes
under question. This can be easily done using the results provided by set
theory. If such functions do not exist, we can safely conclude by proposi-
tion 4 that the reduction is not possible, thus saving some futile search for
a reduction algorithm. In such a case, this proposition may prove useful
in identifying, using formal methods instead of simple intuition, what the
second KR-scheme lacks in order to be more expressive than the first (for
example enriching the query language could do, while enriching the KB set
could prove useless). This property is especially useful when dealing with
finite sets, where the famous “Pigeonhole Principle” applies. On the other
hand, the existence of such functions does not guarantee that the reduction
is possible; it is merely an indication that it is.

5 Conclusion and Future Work

We introduced a general method for comparing any pair of KR-schemes,
no matter how different, in terms of expressive power. It was based on a
universal method of formally describing a KR-scheme and used the notion
of “reduction”, which refers to the “translation” of the knowledge expressed
under one scheme in terms of the other without loss of information.

This work is intended as an aid to such attempts of “translations” (like
[2, 6,9, 15]). Ideally, we would like to find an algorithm that could compare
two schemes in terms of expressive power; using our framework, we can prove
that this is an undecidable problem in the general case and intractable in
the special case where the two schemas contain finite symbol sets. Given
this negative result, we would like to establish other conditions under which
a reduction is or is not possible (like proposition 4). Such results could be
used to prove or disprove the existence of a reduction algorithm before any
attempt to find one.

We could also expand the notion of reduction; one way to do so is by
allowing the mapping of each query/update of the weaker system to a se-
quence of queries/updates in the stronger one (instead of only one). Another
interesting (but less general) method can be found in [16]. The properties
of each of the comparison methods is a matter of current research.

Finally, given that each DB schema can be considered a separate KR-
scheme, we can study the limitations of the expressive power of each DB
schema in terms of some other interesting KR-scheme with known expressive
power or with respect to a specific real world application.

References

[1]

C. Alchourron, P. Gardenfors, D. Makinson. On the Logic of Theory
Change: Partial Meet Contraction and Revision Functions. The Journal
of Symbolic Logic, 50: 510-530, 1985.

A. Borgida. On the Relative Expressiveness of Description Logics and
Predicate Logics. Artificial Intelligence, 82(1-2):353-367, 1996.

M. Dalal. Investigations Into a Theory of Knowledge Base Revision:
Preliminary Report. In Proceedings of the Seventh National Conf. on
Artificial Intelligence, 475-479, 1988.

M. Dalal. Updates in Propositional Databases. Technical Report, DCS-
TR-222, Dept. of Computer Science, Rutgers Univ., 1988.

R. Davis, H. Shrobe, P. Szolovitz. What is a Knowledge Representation?
Al Magazine, 14(1): 17-33, 1993.

G. Flouris, D. Plexousakis. Belief Revision Using Table Transforma-
tion. Technical Report ICS-FORTH, TR-290, 2001.

URL: http://www.ics.forth.gr/isl/publications/paperlink /flourisTR-
290.pdf

G. Flouris, D. Plexousakis, G. Antoniou. Describing Knowledge Repre-
sentation Schemes: a Formal Account. Technical Report ICS-FORTH,
TR-~320, 2003.

URL: http://www.ics.forth.gr/isl /publications/paperlink /TR~
320April2003.pdf

P. Hayes. The logic of frames. In Metzing, editor, Frame Conceptions
and Text Understanding. de Gruyter, Berlin, 1979.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M.
Scholl. RQL: A Declarative Query Language for RDF. In Proceedings
of the 11%" International Conf. on the WWW, Hawaii, 592-603, 2002.

H. Katsuno, A. Mendelzon. Propositional Knowledge Base Revision and
Minimal Change. Technical Report KRR-TR-90-3, Technical Reports
on Knowledge Representation and Reasoning, Univ. of Toronto, 1990.

H. Levesque. Foundations of a Functional Approach to Knowledge Rep-
resentation. Artificial Intelligence, 23:155-212, 1984.

H. Levesque, R. Brachman. Expressiveness and Tractability in Knowl-
edge Representation and Reasoning. Computational Intelligence, 3: 78-
93, 1987.

H. Levesque, G. Lakemeyer. The Logic of Knowledge Bases. MIT Press,
Cambridge, Massachusetts, 2000.

A. Newell. The Knowledge Level. Artificial Intelligence, 18(1): 87-127,
1982.

D. Plexousakis. Semantical and Ontological Considerations in Telos: a
Language for Knowledge Representation. Computational Intelligence,
9(1): 41-72, 1993.

J. Sowa. Knowledge Representation. Brooks/Cole, Pacific Grove, Cali-
fornia, 2000.

