
Knowledge Representation using Schema Tuple Queries

Michael J. Minock
Department of Computing Science, Umeå, Sweden

Email: mjm@cs.umu.se

Abstract

This paper introduces schema tuple queries and argues for their suitability in repre-
senting knowledge over standard relational databases. Schema tuple queries are queries
that return only whole tuples of schema relations. In particular a subclass of the schema
tuple queries is identified that is decidable for satisfiability and is closed over syntac-
tic query difference. These properties enable the determination of query containment,
equivalence and disjointness. Given this, the identified query class possesses many of
the desirable properties of description logics. Additionally such schema tuple queries
may be directly translated to SQL and applied over standard n-ary database relations.

1 Introduction

The relational model has maintained an enduring impact without rival. At a surface level the
reason for this might seem to be the widely adhered to SQL language and the large number of
commercial systems implemented around that standard. At a deeper level, however, the suc-
cess of the relational model stems from its firm rooting within first order logic. And, of note,
this includes being able to represent full n-ary relations such as the relation AttendsFilm in
the following schema1:

Friend(name, age, gender)

Theater(name, address)

Movie(movieID, title, year)

AttendsFilm(friend, movieID, theater).

IsDirector(movieID, entertainerID)

IsCastMemeber(movieID, entertainerID)

Entertainer(entertainerID, name, dateOfBirth)

Administrators of relational databases commonly define such tables, often using many
more attributes than three. We thus take as an initial requirement that our knowledge repre-
sentation language must be able to intensionally describe any finite extension over a set of
value-oriented n-ary relations. Such intensional expressions are called queries in this work.
Of course in addition to denoting answer sets, ‘queries’ may be put to use in view definition,
constraint specification, meta-data annotation, rule definition, etc.

1Primary keys are underlined, while foreign key attributes are italicized here.

1

The queries that we shall consider are the schema tuple queries2 . Such queries are tuple
relational queries[12] that return only whole tuples from relations of the schema, not arbitrary
combinations of projected attributes. Thus, to obtain movies of the year 1999, we would
write

�
m �Movie � m ��� m � year � 1999 � rather than

� � m � movieID 	 m � title 	 m � year �
� Movie � m ���
m � year � 1999 � . The restriction to return only whole tuples from relations of the schema is
in contrast to the flexibility of normal tuple relational queries and relational algebra. There
are three principle reasons why the schema tuple restriction is made:

The first reason is that set difference is fully defined over schema tuple query answer sets.
Since the atoms of sets are whole tuples, we can speak of taking the ‘typed’ difference be-
tween two tuple sets. For example we may speak of taking the difference between the set of
all movies (s1 � �

m �Movie � m ���), and the movies made in the 1990’s (s2 �
�
m �Movie � m ���

m � year
 1990 � m � year � 2000 �). In fact we can derive such query differences syntacti-
cally without having to materialize answer sets (s1 � s2 � �

m �Movie � m ��� m � year � 1990 �� �
m �Movie � m ��� m � year
 2000 �). We may also speak of taking differences between tu-

ple sets of heterogeneous types. For example the set of all movies (s1) minus the set of all
entertainers (s3 � �

e �Entertainer � m ���), is simply the set of all movies (s1 � s3 � s1). If,
however, we relax the schema tuple query restriction and permit projections and thus non-
typed relations, then we face the prospect of taking differences between non-union compat-
ible, non-typed relations. What meaning could

� � m � movieID 	 m � title 	 m � year �
�Movie � m ��� �� � m � year �
�Movie � m ��� m � year
 1990 � m � year � 2000 � have? These relations are not union-
compatible and thus set difference between them is not well defined.

The second reason for the schema tuple restriction centers around the perspicuity of inten-
sional descriptions. Because tables correspond roughly to the nouns and verbs of a domain,
descriptions should center around collections of such objects. Unrestricted projection would
probably so complicate query expressions that the task of generating crisp, understandable
natural language descriptions would be doomed.

The third, and perhaps the most compelling reason for invoking the schema tuple query re-
striction is the existence of a particular subclass of schema tuples queries that is decidable for
satisfiability and is closed over complementation. Though the specification language of this
class falls under the well known Schönfinkel-Bernays class[3] of function free formula with
equality that contain quantifier sequences of only the ������� form, the specification language
here is closed over complementation. The general Schönfinkle-Bernays class, in contrast,
does not remain decidable when closed over complementation (��������� φ ����������� φ). As shall
be shown, the schema tuple query restriction is critical to maintaining the decidability of our
specification language over complementation.

In this paper, we identify two classes of schema tuple queries which use the specification
languages L and Q respectively. Formulas in the language L are signed quantifier sequences
��� over conjunctions of predicates over a single free tuple variable3 . Formulas in the language
Q are finite disjunctions of formulas within L . Of note the language Q is decidable for satis-
fiability and the class of queries specified using Q is closed under syntactic query difference.
These properties enable the determination of query containment (subsumption), equivalence
and disjointness for queries specified in Q .

2The term ‘schema tuple query’ is being newly introduced here and is based on the restriction that such queries
return only schema tuples.

3L does not denote the set of all logical formulas in this work.

2

1.1 Organization of this Paper

Section 2 formally defines the language L and its closure over disjunction, Q . Both L and
Q are proven4 decidable for satisfiability; that is one may determine if there exists a database
state for which a query specified in L or Q would return a tuple. Section 3 shows that queries
built using Q are closed over syntactic query difference and complementation. Based on the
decidability of Q , we may thus decide query containment and equivalence over Q . Section 4
relates this work to prior work and gives future directions. Section 5 gives conclusions.

2 The Languages L and Q

2.1 Foundations

We assume the existence of two disjoint, countable sets: U, the universal domain of atomic
values, and P , predicate names. Let U be a distinct symbol representing the type of U. A
relation schema R is an n-tuple

�
U 	 � � � 	 U � where n
 1 is called the arity of R. A database

schema D is a sequence � P1 : R1 	 � � � 	 Pm : Rm � , where m
 1, Pi’s are distinct predicate names
and Ri’s are relation schemas. A relation instance r of R with arity n is a finite subset of U n.
A database instance d of D is a sequence � P1 : r1 	 � � � 	 Pm : rm � , where ri is an instance of Ri for
i � � 1 � � m � .

Definition 1 (Schema tuples)
A schema tuple τ of the database instance d is the pair � Pi : µ � , where 1 � i � m and µ � ri.

We say that the type of τ is Pi and we say the components of τ are the components of
µ. The schema tuple τ1 is equal to the schema tuple τ2 if and only if τ1 and τ2 match on
type and they match on all components. Thus if τ1 ��� IsDirector : [‘0133093’,‘43252’] �
and τ2 ��� ISCastMember: [‘0133093’,‘43252’] � then t1 �� t2. The positional access opera-
tor is extended to the schema tuples to mirror the standard tuple relational calculus. Thus
τ1
�
2 � � ‘43252’. Furthermore we shall assume that tuple components may be accessed

through attribute names (e.g. τ1 � entertainerID). Finally we shall assume that U is totally
ordered so that arithmetic comparison operators (� , 	 , � ,
 , � and ��) are well defined.

We now recursively define the set of tuple relational formulas. Atomic formulas provide
the base for the inductive definition. The atomic formula P � z � , where P is a predicate name
and z is a tuple variable, means that the tuple referred to by z is a schema tuple of type P.
We term such formulas range conditions. XθY is an atomic formula where X and Y are
either constants or component references (of the form z � a) and θ is one of the arithmetic
comparison operators. We term such formulas to be simple conditions if either X or Y are
constants and to be join conditions if both X and Y are component references. Lastly we
include atomic formula XεC where X is a component reference, C is a set of constants and ε
is a set membership operator (� and
�).We term such formulas set conditions. Finally if F1

and F2 are tuple relational formula, where F1 has some free variable z, then F1 � F2, F1 � F2,
� F1, � � z � F1 and � � z � F1 are also tuple relational formulas.

We now define the notion of a schema tuple query.

4All of the proofs of the theorems in this paper appear in [17].

3

Definition 2 (Schema tuple queries)
A schema tuple query is an expression of the form

�
x �ϕ � , where ϕ is a tuple relational formula

over the single free tuple variable x.

When we write the expression
�
x �ϕ � we normally assume that the expression ϕ is over

the free variable x. For the schema tuple τ, τ � � x �ϕ � iff
�
τ
 x � � ϕ � where

�
t
 x � ϕ means to

substitute the term t in place of x in ϕ. Thus a schema tuple query is simply the intensional
description of a schema tuple set. The actual tuples within this set are the extensional answers
to the query.

We shall now turn our attention to several interesting sub-languages of the tuple relational
formula that may be used to specify safe schema tuple queries.

2.2 L and its Decidability

A basic query component built over the free tuple variable x is a formula of the form
� � y1 � � � y2 � � � � � yn � Ψ, where Ψ is a conjunction of range conditions, simple conditions, set
conditions and join conditions using exactly the tuple variables x,y1,..,yn. A signed basic
query component is either a basic query component or the formula � Θ where Θ is a basic
query component.

Definition 3 (The language L)
The language L consists of all formulas of the form:

P � x � � � � k
i � 1 Φi �

where P � x � restricts the free tuple variable x to range over P and Φi is a signed basic
query component over x.

The following two queries are built using L :

� An SPJ query: “The movies directed by Lucas”
�
m1 � � 1 ��� �

m1 � Movie 	 m1
��
	�
 y1
 	�
 y2
 	

IsDirector 	 y1
�� Entertainer 	 y2
��
y2 � lastName � ‘Lucas’ �
m1 � movieID � y1 � movieID �
y1 � entertainerID � y2 � entertainerID
��

� A query with negation: “The films made in the year 2000 that have not been seen by
any of my male friends”
�
m2 � � 2 ��� �

m2 � Movie 	 m2
��� 	�
 y3
 	�
 y4
 	
Friend 	 y3
�� AttendsFilm 	 y4
��
y3 � gender � ‘male’ �
m2 � movieID � y4 � movieID �
y4 � f riend � y3 � name
��

m2 � year � 2000 �

4

Note that L does not allow for any mixed quantifier sequences within basic query com-
ponents. Thus a query such as “The movies that are shown at all theaters” is not expressible
using L . Cardinality constraints may be expressed in L . Thus, for example, we could specify
a query for the movies that have more than 2 directors.

We now arrive at the main result of this section.

Theorem 1 (L is decidable for satisfiability) [17]
For all

� � L over the free variable x, we may determine if there exists a database instance d
where for some schema tuple τ,

�
τ
 x � � .

2.3 The Language Q

We define the language Q as the set of formula which are disjunctions of formula within L .
Not surprisingly Q is decidable for satisfiability as well.

Definition 4 (The language Q)
q � Q if q is written as a finite expression

�
1 � � � � � � k where each

� � L and
�

is over the free
tuple variable x.

Theorem 2 (Q is decidable for satisfiability)[17]
For all q � Q over the free variable x, we may determine if there exists a database instance d
where for some schema tuple τ,

�
τ
 x � q.

3 Reasoning over L and Q

We now cover several important properties that hold for queries built over L and Q .

3.1 Syntactic Query Difference over L

This theorem states that we may describe the set difference of two queries built over L with a
query built over Q .

Theorem 3 (Syntactic query difference over L is in Q)[17]
Let l1 � L and l2 � L . Then there is a q � Q with the property that for all database instances�
x1 � l1 � �

�
x2 � l2 � �

�
x1 � q �

The following illustrates syntactic query difference between the two example queries of
section 2.2.
�
m1 � � 1 ��� �

m2 � � 2 � � �
m1 � � 1 � �

m1 � m2 � � � 2 � ��
m1 �
	 Movie 	 m1
��

	�
 y1
 	�
 y2
 	
IsDirector 	 y1
 � Entertainer 	 y2
��
y2 � lastName � ‘Lucas’ �
m1 � movieID � y1 � movieID �
y1 � entertainerID � y2 � entertainerID
��

5

	�
 y3
 	�
 y4
 	
Friend 	 y3
�� AttendsFilm 	 y4
��
y3 � gender � ‘male’ �
m2 � movieID � y4 � movieID �
y4 � f riend � y3 � name
�
�

	 Movie 	 m1
��
	�
 y1
 	�
 y2
 	

IsDirector 	 y1
�� Entertainer 	 y2
��
y2 � lastName � ‘Lucas’ �
m1 � movieID � y1 � movieID �
y1 � entertainerID � y2 � entertainerID
��

m1 � year �� 2000
 �

3.2 Closure of Difference and Intersection over Q

We now show that Q stays closed over syntactic difference and intersection. This means
that we may describe the set difference (or intersection) of two queries built over Q with a
third query built over Q . Note that because the entire universe of tuples may be described
with a query specified in Q , syntactic query difference provides us with a way to take query
complements.

Theorem 4 (Syntactic query difference is closed over Q) [17]
Let q1 � Q and q2 � Q . Then there is a q3 � Q such that for all database instances

�
x1 � q1 � ��

x2 � q2 � �
�
x1 � q3 �

Theorem 5 (Syntactic query intersection is closed over Q)[17]
Let q1 � Q and q2 � Q . Then there is a q3 � Q such that for all database instances

�
x1 � q1 ����

x2 � q2 � �
�
x1 � q3 �

3.3 Expressing Constraints

Since functional dependencies constrain the set of legal database states, an expression that
necessarily violates a functional dependency must be ruled to be unsatisfiable. We shall rep-
resent functional dependencies as universally quantified formulas[1]. In turn these formulas
shall be included in the resolution process that decides satisfiability of queries.

Definition 5 (Functional dependencies as formulas)
The functional dependency W � V over the relation R where W is a set of m attributes and V
is a set of n attributes is expressed as the universally quantified formula:
� � x � � � y � � P � x � � P � y � �

y � w1 � x � w1 � � � � � y � wm � x � wm �
y � v1 � x � v1 � � � � � y � vn � x � vn �

As an example, the functional dependency movieId � title year on the relation Movie is
represented by:

6

� � m1 � � � m2 � � Movie � m1 � � Movie � m2 � �
m1 � movieId � m2 � movieId �

m1 � title � m2 � title � m1 � year � m2 � year � �

Note also that domain rules may be encoded as universally quantified formula and in-
cluded in Γ. For example the constraint that all film years are greater than 1927 but less than
or equal to 2002 could be encoded:

� � m1 � � Movie � m1 � �
Movie � m1 � year
 1927 � m1 � year � 2002 �

Finally existence constraints may be specified and added to Γ. For example a simple
formula within L may express the fact that some movies were made in the 1930’s with the
exact title, identifier and year information remaining unknown.

We shall use the formula Γ to denote all of the integrity constraints of the domain. Γ is
simply a conjunction of universally quantified formulas and formulas of the form � � � � . Thus
Γ may be Skolemized without inducing an infinite Herbrand universe. When determining
the satisfiability of

� � L , the CNF representing Γ must simply be conjoined with the CNF
representing

�
before we start the resolution procedure.

3.4 Containment and Equivalence over Q

Theorem 6 (Decidability of
�

,= and disjointness over Q) [17]
if q1 � Q , q2 � Q and Γ expresses the constraints over the domain, then there exists a sound
and complete inference mechanisms to decide if the three predicates:

1.)
�
x1 � q1 � � �

x2 � q2 �
2.)

�
x1 � q1 � �

�
x2 � q2 �

3.)
�
x1 � q1 � �

�
x2 � q2 � � /0.

are necessarily true over the set of all database instances for which Γ holds.

3.5 Translation to standard SQL

There is a very direct correspondence between queries specified in L and standard SQL.
Queries in L mirror the SQL of the form:

SELECT *
FROM R AS x
WHERE
[NOT] EXISTS (sub-query) ... ;

where the sub-query is of the same form but may not use NOT. Naturally simple and
join conditions may be added to such queries and there may be more than one sub-query.
Clearly any general facility that translates Q expressions to SQL, will have to evaluate each
L disjunction separately.

7

4 Related Work

This work extends [19] which assumed a universal relation[14] for the global schema and an
extended form of relational algebra for the query language. The main improvement here is to
lift these results to arbitrary relational schemas and to better specify the exact query form in
standard logical notation.

An application of the work is to provide intensional descriptions of the certain, uncertain
and incomplete portions of a user’s query over a data integration system[17]. Typically data
integration systems have significant gaps of coverage over the global (or mediated) schema
they purport to cover. Given this reality, users are interested in knowing exactly which part
of their query is supported by the available data sources. If data sources are described using
the language Qpos

5 and the user’s query is specified using the language L , then one may: 1.)
retrieve certain answers over the data integration system; 2.) generate intensional descriptions
(within the language Q) of the certain, the uncertain and the missing answers to the user’s
query over the available data sources. See [17] for an in depth description of this approach.
Additionally an initial approach to generating the actual natural language description from
expressions within L has been proposed[18]. The approach uses a phrasal lexicon and exploits
the decidability of containment over L .

4.1 Classical Logic

We have identified a family of specification languages for schema tuple queries. Since there
is a direct translation from such queries to domain relational calculus, this work may directly
access the vast body of work on decidability classes for first order formulas[4]. The language
Q essentially falls within the Schönfinkel-Bernays class[3]. This is the class of function free
formula with equality that contain quantifier sequences of only the � � � � form. However, as
mentioned in the introduction, the Schönfinkel-Bernays class does not remain decidable under
complementation, whereas the specification language Q does.

4.2 Relational Query Equivalence and Containment

As expected, the general problem of equivalence between relational algebra[12] expressions
was shown to be undecidable[2]. Other work[10] singled out conjunctive queries (the select-
project-join queries of the relational algebra) as a special case where query equivalence is
decidable. Subsequent work specified a first order query hierarchy over query languages[9].
Roughly speaking, L is contained within the class of conjunctive queries closed over comple-
mentation. Clearly L is not relationally complete.

Recently most work around the question of query containment has adopted Datalog nota-
tion. A conjunctive query(CQ) in Datalog is simply a query where each predicate in the body
of a rule references an extensional database relation. To decide if q1

�
q2 one first freezes[20]

q1 by replacing the variables of its body and head with constants. Then if q2 includes the
frozen head of q1 in its answer set when applied over the canonical database consisting of
just the frozen predicates of q1, we may conclude that q1

�
q2. When no predicate appears

more than once in the body of the rule, a linear time algorithm exists to decide containment,

5Qpos is a restriction of Q which disallows negation

8

otherwise the decision problem is NP-complete. This approach may be enriched to decide
containment between conjunctive queries with inequalities[15](CQ

��). Containment between
conjunctive queries with negation of extensional predicates within their bodies(CQ �) may also
be decided[16]. The complexity of deciding containment over CQ

�� and CQ � is Π2
P. Contain-

ment between Datalog programs (Supporting recursion, but not negation) is undecidable[21].
Containment of a Datalog program within a conjunctive query is doubly exponential[11],
while the converse question is easier.

Though there has been a lot of effort to chart languages over which containment and equiv-
alence may be decided, to the author’s knowledge no prior work has invoked the ‘schema tuple
query’ restriction. Certainly one could imagine a regime in which the schema tuple restriction
would be enforced over non-recursive Datalog. In such a case Q would be contained in the
class of non-recursive Datalog programs with negation in the rule bodies. The class of con-
junctive queries with negation bears resemblance to the class L , however L is not contained
within CQ � , because negation in L may span more than one predicate. For example a single
query in CQ � , could not express the second query of section 2.2.

While we have not yet made an effort to establish the complexity of query containment
over Q , it is clearly NP-hard in terms of query lengths. In fact, based on the fact that general
Schönfinkle-Bernays satisfiability is NEXP, it is likely that the general containment problem
is quite complex. Still since the complexity is worst case and is in query length, we still
anticipate that the approach will scale in real world applications.

4.3 Description Logics

The description logics[7][13] community has investigated ‘query’ containment under the
name of concept subsumption. Description logics use unary and binary predicates which for-
malize traditional semantic network role/filler systems. As such they are interesting fragments
of logic over predicates of at most two variables[6]. The ability of description logics to reason
over incomplete information makes them suited to complex tasks in data management[5].

The notion of syntactic difference between the concepts A � x � and B � x � may be represented
as A � x ��� � B � x � . Thus the focus here is on the ‘decidable’ description logics which have the
conjunction (�) and complement operator (�). These are the description logics of the type
ALC and beyond[13] which have sound and complete subsumption procedures. A limitation
of description logics however, is their restriction to one and two place predicates.

This may be illustrated by considering the following state of the relation AttendsFilm:

AttendsFilm(friend, movieID, theater).
Peter 0133093 SF
Peter 0234215 Royal
Anna 0234215 SF

If one were to represent this state using only binary relations, then one obvious candidate
would be:

Visits(friend, theater) Sees(friend, movieID) Shows(friend, movieID)
Peter SF Peter 0133093 SF 0133093
Peter Royal Peter 0234215 SF 0234215
Anna SF Anna 0234215 Royal 0234215

9

However if the state of AttendsFilm is represented this way, then the spurious fact that
Peter has seen the movie with ID 0234215 at SF would be concluded.

One possible fix is to insert a special key attribute into the original relation and then build
a unary relation over this key (AF_KEY(key)) and associate all values to values of this key
in three separate relations. Here we see the altered original relation and one of the resulting
binary relations.

AttendsFilm(key, person, movieID, theater) AF_Friend(key, friend)
k1 Peter 0133093 SF k1 Peter
k2 Peter 0234215 Royal k2 Peter
k3 Anna 0234215 SF k3 Anna

and so forth with the binary relations AF_MovieId and AF_Theater.
This approach is problematic on several counts. First there has been ‘surgery’ over the

original relation, which is not always an option – especially in data integration environments.
Secondly, permitting the surgery were allowed, it would permit duplicate person-movieID-
theater triples in the original relation. Finally such an approach would introduces a dummy
variable ‘key’ of dubious conceptual status.

The recent introduction of DLR based description logics which are based on a unary con-
cept and n-ary relationships[8] may hold some promise to represent arbitrary n-ary database
relations. Still, as an example, it is difficult to envision how DLR would represent cyclic
concepts such as “the movies whose director plays an acting role.”

4.4 Future Directions

In addition to extending the expressivity of the class of schema tuple queries, we shall consider
extending the expressivity of the schemas over which such queries apply. The inclusion of
union types seems relatively straight forward. By ‘union types’ we mean a type that may
have tuples from a heterogeneous set of base types where each member of a base type that
satisfies the conditions of the union type are members of the union type. For example we
might have IsInvolved � IsCastMemeber

�
IsDirector. The modeling of IS-A hierarchies

through inclusion dependencies would violate the assumption that tuples are drawn from a
single schema relation. Since union types may be handled, and since the decidability of
containment enables subsumption hierarchies to be built, we conjecture that modeling true IS-
A hierarchies using multiple relations is unnecessary for most domains. Further experiments
will evaluate this claim.

The treatment of non-first normal form schemas shall also be considered. Collection or
row valued attributes might pose a significant challenge, but one idea is to simply allow for
schema attributes to be equal to relational variables to capture row types and to let schema
attributes be equal to a set (or bag) of values to capture collection types. The effect that this
would have has not been explored deeply, but such an extension is probably necessary if this
work is to impact the XML/XQuery world.

Another topic of interest is to investigate the specification of rules, both categorical and
default, through pairs of schema tuple queries. The rule α � β expresses the constraint that
α � � β is unsatisfiable. It will be interesting to establish which forms the schema tuple queries
α and β may take if the overall system is to remain decidable.

10

This work is being implemented in a system called STEP (Schema Tuple Expression Pro-
cessor). STEP translates queries specified in L and Q into expression in domain calculus and
then uses the theorem proving system SPASS (http://spass.mpi-sb.mpg.de/) to obtain
satisfiability decisions. STEP has a broker subsystem that does query planning over data inte-
gration systems and STEP has a natural language generation subsystem that generates query
description using a phrasal lexicon. STEP is able to uniformly perform complex subsumption
tests in under one tenth of a second on a SPARC 10 workstation. STEP also routinely pro-
duces natural language descriptions of queries in under one second. Though initial results are
very promising, there is still a fair amount of system development necessary before STEP can
be applied robustly to real problems.

5 Conclusions

This paper has introduced the decidable sub-classes of schema tuple queries specified in the
languages L and Q . Formulas in the language L are signed quantifier sequences (� �) over
conjunctions of predicates over a single free tuple variable. Formulas in the language Q are
finite disjunctions of formulas within L . Query containment (subsumption), equivalence and
disjointness may be decided for queries specified in L or Q . Within the class of queries spec-
ified using Q , one may express the difference between two queries as a third query within the
class. This ability to calculate syntactic query difference enables the generation of intensional
descriptions of query differences and intersections.

Though the approach is limited to only queries returning full schema tuples, such limi-
tations may often be overcome by considering a virtual, highly decomposed version of the
schema. Problems concerning aggregate operators appear to run deeper. Still, assuming that
the global schema can be adequately decomposed and that support for aggregate operators
can be isolated to ‘last step’ client processes, the schema tuple query assumption may be
appropriate for many, if not most, real world schemas.

6 Bibliography

References

[1] S. Abiteboul, R. Viannu, and V. Hull. Foundations of Database Systems 3rd edition.
Addison Wesley, 1995.

[2] A. Aho, Y. Sagiv., and J. Ullman. Equivalences of relational expressions. SlAM Journal
on Computing, 8(2):218–246, 1979.

[3] P. Bernays and M. Schönfinkel. Zum entscheidungsproblem der mathematischen logik.
M.A., 99:342–372, 1928.

[4] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives
of Mathematical Logic. Springer-Verlag, 1997.

[5] A. Borgida. Description logics in data management. TKDE, 7(5):671–682, 1995.

11

[6] A. Borgida. On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82:353–367, 1996.

[7] R. Brachman and J. Schmolze. An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9(2):171–216, 1985.

[8] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description logic
framework for information integration. In Principles of Knowledge Representation and
Reasoning, pages 2–13, 1998.

[9] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of
Computer Systems and Sciences, 25(1):99–128, 1982.

[10] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proc. 9 of the ACM Sym. on the Theory of Computing, pages 77–90., 1977.

[11] S. Chaudhuri and M. Vardi. On the equivalence of recursive and nonrecursive datalog
programs. In Sym. on Principles of Database Systems, pages 55–66, 1992.

[12] E. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor,
Database Systems, pages 33–64. Prentice-Hall, 1972.

[13] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor, Studies in Logic, Language and Information, pages 193–238, 1996.

[14] R. Fagin, A. Mendelzon, and J. Ullman. A simplified universal relation assumption and
its properties. ACM Transactions on Database Systems, 7, 1982.

[15] A. Klug. On conjunctive queries containing inequalities. Journal of the ACM,
35(1):146–160, 1988.

[16] A. Levy and Y. Sagiv. Queries independent of updates. In Proc. of VLDB, pages 171–
181, 1993.

[17] M. Minock. Data integration under the schema tuple query assumption. Technical
Report 03.08, The Univeristy of Umeå, Umeå, Sweden, June 2003.

[18] M. Minock. A phrasal generator for describing relational database queries. In Proc. of
the 9th EACL worshop on natural language generation, Budapest, Hungary, April 2003.

[19] M. Minock, M. Rusinkiewicz, and B. Perry. The identification of missing information
resource agents by using the query difference operator. In COOPIS ’99. IEEE Computer
Society Press, 1999.

[20] R. Ramakrishnan., Y. Sagiv, J. Ullman, and M. Vardi. Proof tree transformation theo-
rems and their applications. In Sym. on Principles of Database Systems, pages 172–181,
1989.

[21] O. Shmueli. Decidability and expressiveness of logic queries. In Sym. on Principles of
Database Systems, pages 237–249, 1987.

12

