

6th Workshop on

Models@run.time

at MODELS 2011
Wellington, New Zealand, October 17th 2011

Proceedings

Editors

Nelly Bencomo
Gordon Blair
Betty Cheng

Robert France
Cédric Jeanneret

Organization Committee

Nelly Bencomo (Program Chair)
INRIA Paris, France

Gordon Blair (Program Chair)
Lancaster University, UK

Betty Cheng
Michigan State University, USA

Robert France
Colorado State University, USA

Cédric Jeanneret (Program Chair)
University of Zurich, Switzerland

Program Committee

Uwe Assman
Dresden, Germany

Franck Chauvel
Peking University, China

Peter J. Clarke
Florida International University, USA

Fabio M. Costa
Federal University of Goias, Brazil

Franck Fleurey
SINTEF, Norway

Holger Giese
Universität Postdam, Germany

Jeff Gray
University of Alabama, USA

Gang Huang
Peking University, China

Paola Inverardi
Università dell'Aquila, Italy

Jean-Marc Jezequel
IRISA, France

Brice Morin
SINTEF, Norway

Hausi Muller
University of Victoria, Canada

Rui Silva Moreira
Universidade Fernando Pessoa, Portugal

Arnor Solberg
SINTEF, Norway

Mario Trapp
Frauenhofer IESE, Germany

Thaís Vasconcelos Batista
Federal University of Rio Grande do Norte,
Brazil

Liliane Pasquale
LERO, Ireland

Additional Reviewers

Basil Becker
Universität Postdam, Germany

6th Workshop on Models@run.time at MODELS 2011 ii

Preface

Welcome to the 6th Workshop on Models@run.time at MODELS 2011!

This document contains the proceedings of the 6th Workshop on Models@run.time that will
be co-located with the ACM/IEEE 14th International Conference on Model Driven
Engineering Languages and Systems (MODELS). The workshop will take place in
Wellington, New Zealand, on the 17th of October 2011. The workshop is organized by Nelly
Bencomo, Gordon Blair, Betty Cheng, Robert France and Cédric Jeanneret.

From a total of 8 papers submitted 6 full papers were accepted. This volume gathers together
all the 6 papers accepted at Models@run.time 2011. After the workshop, a summary of the
workshop will be published to complement these proceedings.

We would like to thank a number of people who contributed to this event, especially the
members of the program committee and additional reviewers who provided valuable feedback
to the authors. We also thank to the authors for their submitted papers, making this workshop
possible.

We are looking forward to having fruitful discussions at the workshop!

October 2011

 Nelly Bencomo
 Gordon Blair
 Betty Cheng
 Robert France
 Cédric Jeanneret

6th Workshop on Models@run.time at MODELS 2011 iii

Content

Session 1

Language and Framework Requirements for Adaptation Models
Thomas Vogel and Holger Giese .. 1

Towards Adaptive Systems through Requirements@Runtime
Liliana Pasquale, Luciano Baresi and Bashar Nuseibeh ... 13

Model-based Situational Security Analysis
Jörn Eichler and Roland Rieke ... 25

Session 2

Runtime Monitoring of Functional Component Changes with Behavior Models
Carlo Ghezzi, Andrea Mocci and Mario Sangiorgio ... 37

Using Model-to-Text Transformation for Dynamic Web-Based Model Navigation
Dimitrios Kolovos, Louis Rose and James Williams ... 49

Runtime Variability Management for Energy-efficient Software by Contract Negotiation
Sebastian Götz, Claas Wilke, Sebastian Cech and Uwe Assmann .. 61

6th Workshop on Models@run.time at MODELS 2011 iv

Language and Framework Requirements for
Adaptation Models

Thomas Vogel and Holger Giese

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
{thomas.vogel|holger.giese}@hpi.uni-potsdam.de

Abstract. Approaches to self-adaptive software systems use models at
runtime to leverage benefits of model-driven engineering (MDE) for pro-
viding views on running systems and for engineering feedback loops.
Most of these approaches focus on causally connecting runtime mod-
els and running systems, and just apply typical MDE techniques, like
model transformation, or well-known techniques, like event-condition-
action rules, from other fields than MDE to realize a feedback loop.
However, elaborating requirements for feedback loop activities for the
specific case of runtime models is rather neglected.
Therefore, we investigate requirements for Adaptation Models that spec-
ify the analysis, decision-making, and planning of adaptation as part of
a feedback loop. In particular, we consider requirements for a modeling
language of adaptation models, and for a framework as the execution en-
vironment of adaptation models. Moreover, we discuss patterns for using
adaptation models within the feedback loop regarding the structuring of
loop activities. The patterns and the requirements for adaptation models
influence each other, which impacts the design of the feedback loop.

1 Introduction

Self-adaptation capabilities are often required for modern software systems to
dynamically change the configuration in response to changing environments or
goals [5]. Models@run.time are a promising approach for self-adaptive software
systems since models may provide appropriate abstractions of a running sys-
tem and its environment, and benefits of model-driven engineering (MDE) are
leveraged to the runtime phases of software systems [3].

Most models@run.time efforts to self-adaptive software systems focus on
causally connecting models to running systems, and just apply typical or well-
known techniques from MDE or other fields on top of these models. These tech-
niques are used for engineering a feedback loop that controls self-adaptation by
means of monitoring and analyzing the running system and its environment,
and the planning and execution of changes to the running system [13].

For example, the causal connection has been a topic for discussions at the
last two workshops on models@run.time [1, 2], or the work of [17] particularly
addresses the causal connection, and it just applies MDE techniques, like model
transformation, on top to show their technical feasibility. We proposed an ap-
proach to use incremental model synchronization techniques to maintain mul-

6th Workshop on Models@run.time at MODELS 2011 1

tiple, causally connected runtime models at different abstraction levels, and
thereby, we support the monitoring and the execution of adaptations [18, 19].

While causal connections provide basic support for monitoring and for exe-
cuting changes, they do not cover the analysis and planning steps of a feedback
loop, which decide if and how the system should be adapted. For these steps,
techniques originating from other fields than MDE are used. Most approaches [4,
7, 8, 11, 12, 14] employ rule-based mechanisms in some form of event-condition-
action rules that exactly specify when and how adaptation should be performed,
and thus, the designated target configuration is predefined. In contrast, search-
based techniques just prescribe goals that the system should achieve. Triggered
by conditions or events and guided by utility functions they try to find the best
or at least a suitable target configuration fulfilling these goals [10, 15].

All these approaches focus on applying such decision-making techniques for
the analysis and planning steps, but they do not systematically investigate the
requirements for such techniques in conjunction with models@run.time. Elicit-
ing these requirements might help in engineering new or tailored decision-making
techniques for the special case of models@run.time approaches to self-adaptive
systems. Therefore, we elaborate requirements for such techniques by taking
an MDE perspective. The techniques should be specified by models, which we
named Adaptation Models in an attempt to categorize runtime models [20]. How-
ever, the categorization does not cover any requirements for runtime models.

In this paper, we discuss requirements for adaptation models, and in partic-
ular requirements for languages to create such models and for frameworks that
employ and execute such models within a feedback loop. By language we mean
a broad view on metamodels, constraints, and model operations, which are all
used to create and apply adaptation models. Moreover, we discuss patterns for
using adaptation models within the feedback loop. The patterns and the require-
ments for adaptation models influence each other, which impacts the design of
the feedback loop by providing alternatives for structuring loop activities.

The rest of the paper is structured as follows. Section 2 discusses related work,
and Section 3 sketches the role of adaptation models in self-adaptive systems.
Section 4 discusses the requirements for adaptation models, while Section 5
presents different patterns of employing adaptation models within a feedback
loop. Finally, the paper concludes and outlines future work in Section 6.

2 Related Work

As already mentioned in the previous section, most models@run.time approaches
to self-adaptive software systems focus on applying techniques for decision-
making and do not systematically elaborate on their requirements [4, 7–12, 14,
15]. A few approaches merely consider the requirement of performance and ef-
ficiency for their adaptation mechanisms to show and evaluate the applicability
at runtime [10, 11, 15]. Likewise, several decision-making mechanisms are pre-
sented in [16] that primarily discusses their specifics for mobile applications in
ubiquitous computing environments by means of performance and scalability re-
garding the size of the managed system and its configuration space. In general,

6th Workshop on Models@run.time at MODELS 2011 2

rule-based mechanisms are considered as efficient since they exactly prescribe the
whole adaptation, while for search-based approaches performance is critical and
often improved by applying heuristics or by reducing the configuration space.

This is also recognized by [9] that attests efficiency and support for early
validation as benefits for rule-based approaches. However, they suffer from scal-
ability issues regarding the management and validation of large sets of rules.
In contrast, search-based approaches may cope with these scalability issues, but
they are not as efficient as rule-based approaches and they provide less support
for validation. As a consequence, a combination of rule-based and search-based
techniques is proposed in [9] to balance their benefits and drawbacks.

To sum up, if requirements or characteristics of decision-making techniques
are discussed, these discussions are limited to performance, scalability, and sup-
port for validation, and they are not done systematically. One exception is the
work of Cheng [6] who discusses requirements for a self-adaptation language
that is focused on specifying typical system administration tasks. However, the
requirements do not generally consider self-adaptive software systems and they
do not address specifics of models at runtime. Nevertheless, some of the require-
ments that are described in this paper are derived from this work.

3 Adaptation Models

Before discussing requirements for adaptation models, we sketch the role of these
models based on a conceptual view on a feedback loop as depicted in Figure 1.

Fig. 1. Feedback Loop and Runtime Models (cf. [20])

The steps of monitoring and analyzing the system and its environment, and
the planning and execution of changes are derived from the autonomic comput-
ing element [13], while we discussed the different models and a usage scenario of
models in the loop in [20]. Reflection Models describe the running system and
its environment and they are causally connected to the system. According to
observations of the system and environment, the monitor updates the reflection
models. Reasoning on these models is done by the analyze step to decide whether
the system fulfills its goals or not, and thus, whether adaptation is required or
not. The reasoning is specified by Evaluation Models, which can be constraints
that are checked on reflection models. If adaptation is required, the planning
step devises a plan defining how the system should be adapted, which is guided

6th Workshop on Models@run.time at MODELS 2011 3

by Change Models to explore the system’s variability or configuration space. De-
ciding on the designated target configuration is guided by evaluation models to
analyze different adaptation options, and the selected option is applied on reflec-
tion models. Finally, the execute step involved in the causal connection performs
the adaptations on the running system to move it to the target configuration.

By Adaptation Models we generally consider evaluation and change models
regardless of the concrete rule-based or search-based techniques that are em-
ployed for the analysis and planning steps, and thus, for the decision-making.
This view on adaptation models is similar to [14], which just presents one adap-
tation model for the specific approach, but no general discussion of such models.

4 Requirements for Adaptation Models

In this section we describe requirements for adaptation models to be used in
self-adaptive software systems to analyze and decide on adaptation needs, and
to plan and decide on how to adapt the running system. We assume that the
self-adaptive system employs runtime models, which influences the requirements
for adaptation models. At first, we discuss requirements for a modeling language
that is used to create adaptation models. Then, we elaborate the requirements for
a framework as the execution environment for adaptation models. Being in the
early requirements phase, we take a broad MDE view on the notion of languages
as combinations of metamodels, constraints, and model operations, which are all
used to create and apply adaptation models.

Likewise to the common understanding that requirements for real-world ap-
plications cannot be completely and definitely specified at the beginning of a
software project, we think that the same is true for the requirements discussed
here. It is likely that some of these requirements may change, become irrelevant,
or new ones emerge when engineering concrete adaptation models for a specific
self-adaptive system and domain. Thus, we do not claim that the requirements
are complete and finalized with respect to their enumeration and definitions.

4.1 Language Requirements for Adaptation Models

Language requirements (LR) for adaptation models can be divided into func-
tional and non-functional ones. Functional requirements target the concepts that
are either part of adaptation models or that are referenced by adaptation mod-
els. These concepts are needed for the analysis, decision-making, and planning.
Thus, functional requirements determine the expressiveness of the language. In
contrast, non-functional language requirements determine the quality of adapta-
tion models. At first functional, then non-functional requirements are discussed.

Functional Language Requirements
LR-1 Functional Specification/Goals: Enabling a self-adaptive system

to continuously provide the desired functionality to users or other systems, adap-
tation models have to know about the current functional specification or goals of
the system. The functional specification or goals define what the system should

6th Workshop on Models@run.time at MODELS 2011 4

do, and this information needs to be available in an operationalized form to re-
late it with the actual behavior of the running system. This is the foundation
for adapting the functional behavior of the system.

LR-2 Quality Dimensions: While LR-1 considers what the system should
do, quality dimensions address how the system should provide the functionality
in terms of quality of service (QoS). To support QoS-aware adaptations, quality
dimensions, like performance or security, must be characterized by adaptation
models (cf. [6]).

LR-3 Preferences: Since multiple quality dimensions (LR-2) may be rel-
evant for the managed system, preferences across the dimensions must be ex-
pressed to trade-off and balance competing qualities (cf. [6]). Likewise, prefer-
ences for goals (LR-1) are necessary if several valid behavioral alternatives are
feasible and not distinguished by the quality dimensions.

Thus, the language for adaptation models must incorporate the concepts
of goals (LR-1), quality dimensions (LR-2), and preferences (LR-3) in an opera-
tionalized form, such that they can be referenced or described and automatically
processed by concrete adaptation models. This operationalized form should be
derived from the requirements of the self-adaptive system. Goals, quality dimen-
sions, and preferences serve as references for the running system as they state
what the system should do and how it should be.

LR-4 Access to Reflection Models: Adaptation models must reference
and access reflection models to obtain information about the current situation of
the running system and its environment for analysis, and to change the reflection
models to effect adaptations. Thus, a language for adaptation models must be
based on the languages of reflection models.

LR-5 Events: Adaptation models should reference information from events
emitted by the monitor step when updating the reflection models due to runtime
phenomena of the system. Besides serving as a trigger for starting the decision-
making process, events support locating the phenomena in the system and re-
flection models (LR-4). Thus, evaluating the system and its environment (LR-6)
may start right from the point in the reflection models where the phenomena
have occurred. Events provided by the monitor step and signaling changes in the
running system support reactive adaptation, while the decision-making process
for proactive adaptations can be triggered periodically.

LR-6 Evaluation Conditions: A language for adaptation models must
support the specification of conditions to evaluate the running system and its
environment (cf. [6]). These conditions relate the goals (LR-1), quality dimen-
sions (LR-2), and preferences (LR-3) to the actual running system represented
by reflection models (LR-4). Therefore, conditions may refer to events notifying
about runtime phenomena (LR-5) as a starting point for evaluation, and they
should be able to capture complex structural patterns for evaluating the software
architecture of the running system.

LR-7 Evaluation Results: Adaptation models must capture the results of
computing the evaluation conditions (LR-6), because these results identify and
decide on adaptation needs especially when the conditions are not met by the

6th Workshop on Models@run.time at MODELS 2011 5

system. Adaptation models may annotate and reference the evaluation results
in reflection models (LR-4) to locate adaptation needs in the running system.

LR-8 Adaptation Options: Adaptation models must capture the variabil-
ity of the system to know the options for adaptation. These options define the
configuration space for the system and how reflection models (LR-4) can be
modified to adapt the running system.

LR-9 Adaptation Conditions: Adaptation models must consider adap-
tation conditions since not all adaptation options (LR-8) are feasible in every
situation. Thus, conditions should constrain all adaptation options to applicable
ones for certain situations (cf. [6]). To characterize a situation for an adaptation
option, conditions should refer to reflection models (LR-4), events (LR-5), evalu-
ation results (LR-7), or other adaptation options. Likewise to such pre-conditions
for adaptation options, post-conditions and invariants should be considered.

LR-10 Adaptation Costs and Benefits: Adaptation models should char-
acterize costs and benefits of adaptation options (LR-8) as a basis to select among
several possible options in certain situation (cf. [6]). Costs should indicate that
adaptations are not for free, and benefits should describe the expected effects
of options on the goals (LR-1) and quality dimensions (LR-2) of the system.
By relating costs and benefits to the preferences of the system (LR-3), suitable
adaptation options should be selected and applied on the reflection models.

LR-11 History of Decisions: Adaptation models should capture history
of decisions, like evaluation results (LR-7) or applied adaptation options (LR-8)
to enable learning mechanisms for improving future decisions.

Non-functional Language Requirements
LR-12 Modularity, Abstractions and Scalability : An adaptation model

should be a composition of several submodels rather than a monolithic model
to cover all concepts for decision-making. For example, evaluation conditions
(LR-6) and adaptation options (LR-8) need to be part of the same submodel,
and even different adaptation options can be specified in different submodels.
Thus, the language should support modular adaptation models. Moreover, the
language should enable the modeling at different abstraction levels for two rea-
sons. First, the level depends on the abstraction levels of the employed reflection
models (LR-4), and second, lower level adaptation model concepts should be
encapsulated and lifted to appropriate higher levels. For example, several simple
adaptation options (LR-8) should be composable to complex adaptation options.
Language support for modularity and different abstractions promote scalability
of adaptation models.

LR-13 Side Effects: The language should clearly distinguish between con-
cepts that cause side effects on the running system and those that do not. For
example, computing an evaluation condition (LR-6) should not affect the run-
ning system, while applying an adaptation option (LR-8) finally should. Making
the concepts causing side effects explicit is relevant for consistency issues (FR-1).

LR-14 Parameters: The language should provide constructs to parameter-
ize adaptation models. Parameters can be used to adjust adaptation models at
runtime, like changing the preferences (LR-3) according to varying user needs.

6th Workshop on Models@run.time at MODELS 2011 6

LR-15 Formality : The language should have a degree of formality that
enables online and offline validation or verification of adaptation models, e.g., to
detect conflicts or thrashing effects in the adaptation mechanisms.

LR-16 Reusability : The core concepts of the language for adaptation mod-
els should be independent of the languages used for reflection models in an
approach. This leverages the reusability of the language and adaptation models.

LR-17 Ease of Use : The design of the language should consider its ease
of use, because adaptation models are created by software engineers. This influ-
ences, among others, the modeling paradigm, the notation, and the tool support.
Preferably the language should be based on a declarative modeling paradigm,
which is often more convenient and less error-prone than an imperative one.
Imperative constructs should be deliberately used in the language. Likewise, ap-
propriate notations and tools are required to support an engineer in creating,
validating or verifying adaptation models.

4.2 Framework Requirements for Adaptation Models

In the following we describe framework requirements (FR) for adaptation mod-
els. By framework we consider the execution environment of adaptation models,
which determines how adaptation models are employed and executed in the
feedback loop. Thus, only requirements specific for such a framework are dis-
cussed. Typical non-functional requirements for software systems, like reliability
or security, are also relevant for adaptation mechanisms, but they are left here.

FR-1 Consistency : The execution or application of adaptation models
should preserve the consistency of reflection models and thus, the consistency of
the running system. For example, when adapting a causally connected reflection
model, the corresponding set of model changes should be performed atomically
and correctly. Thus, the framework should evaluate the invariants, pre- and
post-conditions (LR-9) for adaptation options (LR-8) at the model level, before
adaptations are executed to the running system.

FR-2 Incrementality : The framework should leverage incremental tech-
niques to apply or execute adaptation models to promote efficiency. For exam-
ple, events (LR-5) or evaluation results (LR-7) annotated to reflection models
should be used to directly locate starting points for evaluation or adaptation
planning, respectively. Or, adaptation options (LR-8) should be incrementally
applied on original reflection models rather than on copies. Incrementality could
avoid costly operations, like copying or searching potentially large models.

FR-3 Reversibility : Supporting incremental operations on models (FR-2),
the framework should provide the ability to incrementally reverse performed op-
erations. For example, the configuration space has to be explored for adaptation
planning by creating a path of adaptation options (LR-8) applied on reflection
models. Finding a suitable path might require to turn around and to try alterna-
tive directions without completely rejecting the whole path. Thus, do and undo
of operations leverages, among others, incremental planning of adaptation.

FR-4 Priorities: The framework should utilize priorities to organize modu-
lar adaptation models (LR-12) to efficiently and easily identify first entry points

6th Workshop on Models@run.time at MODELS 2011 7

for executing or applying adaptation models. For example, priorities can be as-
signed to different evaluation conditions (LR-6) based on their criticality, and
the framework should check the conditions in decreasing order of their criticality.

FR-5 Time Scales: The framework should simultaneously support differ-
ent time scales of analysis and adaptation planning. For example, in known and
mission-critical situations quick and precisely specified reactions might be nec-
essary (cf. rule-based techniques), while in other situations comprehensive and
sophisticated reasoning and planning are feasible (cf. search-based techniques).

FR-6 Flexibility : The framework should be flexible by allowing adaptation
models to be added, removed and modified at runtime. This supports including
learning effects, and it considers the fact that all conceivable adaptation scenarios
could not be anticipated at development-time. Moreover, it is a prerequisite of
hierarchical control where the adaptation mechanisms as specified by adaptation
models are managed by another, higher level control loop [13, 20].

Using these language and framework requirements for adaptation models, we
investigate their dependencies on different patterns or designs of feedback loops.

5 Feedback Loop Patterns for Adaptation Models

In the following we discuss feedback loop patterns for adaptation models and
how the functional language requirements (cf. Section 4.1) map to these pat-
terns, while considering the framework requirements (cf. Section 4.2). The non-
functional language requirements are not further addressed here because they
are primarily relevant for designing a language for adaptation models and not for
actually applying such models. The patterns differ in the coupling of the analy-
sis and planning steps of a feedback loop, which influences the requirements for
adaptation models. Moreover, the adaptation model requirements likely impact
the patterns and designs of the loop. Thus, this section provides a preliminary
basis for investigating dependencies between requirements and loop patterns.

5.1 Analysis and Planning – Decoupled

The first pattern of the feedback loop depicted in Figure 2 decouples the analysis
and planning steps as originally proposed (cf. Section 3). The figure highlights
functional language requirements (LR) at points where the concepts of the corre-
sponding requirements are relevant. This does not mean that adaptation models
must cover all these points, but they must know about the concepts.

In response to events notifying about changes in the running system or en-
vironment, the monitor updates the reflection models and annotates the events
(LR-5) to these models. The analyze step uses these events to locate the changes
in the reflection models and to start reasoning at these locations. Reasoning is
specified by evaluation models defining evaluation conditions (LR-6) that relate
the goals (LR-1), qualities (LR-2), and preferences (LR-3) to the characteristics
of the running system. These characteristics are obtained by accessing reflection
models (LR-4). Analysis is performed by evaluating the conditions and probably
enhanced by consulting past analyses (LR-11). This produces analysis results
(LR-7) that are annotated to the reflection models to indicate adaptation needs.

6th Workshop on Models@run.time at MODELS 2011 8

Fig. 2. Decoupled Analysis and Planning Steps

The planning step uses these results (LR-7) attached to reflection models (LR-4)
to devise a plan for adaptation. Planning is based on change models specify-
ing adaptation options (LR-8) and their conditions (LR-9), costs and benefits
(LR-10). This information and probably plans devised in the past (LR-11) are
used to find suitable adaptation options to create potential target configurations
by applying these options on reflection models. These reflection models prescrib-
ing alternative target configurations are analyzed by applying evaluation models
to select the best configuration among them. In contrast to the analyze step
that uses evaluation models to reason about the current configuration (descrip-
tive reflection models), the planning step uses them to analyze potential target
configurations (prescriptive reflection models). Finally, the selected adaptation
options (LR-8) are effected to the running system by the execute step.

This pattern is similar to the generic idea of search-based approaches, since
planning is done by exploring adaptation options (LR-8, 9, 10) that are evaluated
(LR-6, 7, 11) for their fitness for the preferenced system goals (LR-1, 2, 3) based
on the current situations of the system and environment (LR-4). Explicitly cover-
ing all language requirements for adaptation models, this pattern rather targets
comprehensive and sophisticated analysis and planning steps working at longer
time scales (FR-5), while efficiency concerns could be tackled by incrementality.

This pattern leverages incrementality (FR-2) since the coordination between
different steps of the loop is based on events, analysis results, and applied adap-
tation options, which directly point to location in reflection models for start-
ing analysis, planning, or executing changes. Moreover, analysis and planning
steps may incrementally interleave. Based on first analysis results that are pro-
duced by evaluation conditions with highest priorities (FR-4), a planning process
might start before the whole system and environment have been completely ana-
lyzed. However, incrementality requires the reversibility of performed operations
(FR-3) to ensure consistency of reflection models (FR-1), e.g., when alternative
adaptation options are tested online on reflection models and finally discarded.

In our categorization of runtime models, we distinguished two kinds of adap-
tation models based on the feedback loop steps: evaluation models for the analyze
step, and change models for the planning step [20]. This distinction is backed by
the different language requirements each of these kinds of models are addressing.

6th Workshop on Models@run.time at MODELS 2011 9

Fig. 3. Coupled Analysis and Planning Steps

5.2 Analysis and Planning – Coupled

In contrast to decoupling the analyze and planning steps, they can be closely
integrated into one step, which is sketched in Figure 3. Based on events (LR-5)
the integrated analyze/plan step computes evaluation conditions (LR-6) that
are directly mapped to adaptation options (LR-8). If a condition is met, the
corresponding adaptation options are applied on the reflection models and finally
executed to the running system. Access to reflection models (LR-4) is realized
by the analyze/plan step as a link between adaptation and reflection models.

In Figure 3, the language requirements written in brackets are not explicitly
covered by adaptation models, because this pattern precisely specifies the adap-
tation mechanism by directly relating evaluation conditions to the application
of adaptation options. Thus, this relation or mapping implicitly covers some of
the language requirements listed in brackets. For example, it is assumed that
the applied adaptation options modify the running system’s configuration in a
way that fulfills the desired goals, qualities and preferences (LR-1, 2, 3).

Considering the events and the mapping of evaluation conditions to adap-
tation options, this pattern is similar to rule-based approaches using event-
conditions-action rules. Likewise to such rules covering the whole decision-making
process, and due to the integration of analysis and planning into one step, the
clear distinction between evaluation and change models is blurred. Therefore,
both kinds of models are combined to adaptation models in Figure 3.

Thus, this pattern targets adaptation mechanisms requiring quick reactions
to runtime phenomena by enabling adaptation at rather short time scales (FR-5).
Moreover, efficiency is improved by incrementality (FR-2) and priorities (FR-4).
The steps may incrementally coordinate each other through locating events and
applied adaptation options in reflection models in order to incrementally evaluate
conditions and execute adaptation options to the running system. Priorities may
be used to order evaluation conditions for quickly identifying critical situations
that need urgent reactions, while conditions for non-critical situations can be
evaluated without strict time constraints.

The framework requirement of consistency (FR-1) is not explicitly covered,
since it is assumed that the mapping of condition to adaptation options preserves

6th Workshop on Models@run.time at MODELS 2011 10

consistency by design of such rule-based mechanisms. Since these mechanisms
strictly prescribe the adaptation, there need not to be any options left that have
to be decided at runtime. This reduces the need for reversible operations (FR-3).

5.3 Discussion

Regarding the two different feedback loop patterns and their effects on adapta-
tion models, we can make two observations. First, it might be necessary to com-
bine both patterns in a self-adaptive system if simultaneous support for different
time scales (FR-5) is required, or if the nature of a self-adaptive system requires
both flavors of rule-based and search-based decision-making mechanisms. Sec-
ond, we think that these two patterns span a range of several other patterns. By
explicitly covering more and more language requirements, the adaptation mod-
els and thus, the adaptation mechanisms get more elaborate, and we may move
stepwise from the coupled pattern (cf. Section 5.2) toward the decoupled one
(cf. Section 5.1). Which pattern and adaptation models suit best depends on the
concrete self-adaptive system, especially on the system’s domain requirements.

Finally, the requirement of flexibility (FR-6) has not been discussed for the
two patterns. However, it is relevant for both of them since it is usually not pos-
sible to anticipate all adaptation scenarios at development-time. Thus, changing
adaptation models at runtime is required to adjust the adaptation mechanisms.

6 Conclusion and Future Work
In this paper we have elaborated the requirements for adaptation models that
specify the decision-making process in self-adaptive software systems using mod-
els@run.time. In particular, requirements for a modeling language incorporating
metamodels, constraints, and model operations for creating and applying adap-
tation models have been discussed, as well as requirements for a framework that
executes adaptation models. Moreover, we discussed patterns of a self-adaptive
system’s feedback loop with respect to the requirements for adaptation models.

As future work, we plan to analyze existing approaches to self-adaptation
regarding their fitness to the requirements presented in this paper. This anal-
ysis is challenging since it requires in-depth descriptions of approaches, which
are often not available. However, it would give us feedback on the relevance and
completeness of these requirements, and it may identify further need for research
on adaptation models. Moreover, we want to engineer a language and framework
for adaptation models, which are suitable for our approach [18, 19]. A particu-
lar challenge is to engineer a single language that fulfills most of the require-
ments presented in this paper, and it likely will be required to integrate several
languages into the framework. However, having profound knowledge about the
requirements is a promising start to systematically engineer adaptation models
for self-adaptive software systems based on models@run.time techniques.

References
1. Bencomo, N., Blair, G., Fleurey, F., Jeanneret, C.: Summary of the 5th Inter-

national Workshop on Models@run.time. In: Dingel, J., Solberg, A. (eds.) MOD-
ELS’10 Workshops, LNCS, vol. 6627, pp. 204–208. Springer (2011)

6th Workshop on Models@run.time at MODELS 2011 11

2. Bencomo, N., Blair, G., France, R., Munoz, F., Jeanneret, C.: 4th International
Workshop on Models@run.time. In: Ghosh, S. (ed.) MODELS’09 Workshops,
LNCS, vol. 6002, pp. 119–123. Springer (2010)

3. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduc-
tion. Computer 42(10), 22–27 (2009)

4. Chauvel, F., Barais, O.: Modelling Adaptation Policies for Self-Adaptive Compo-
nent Architectures. In: M-ADAPT’07. pp. 61–68 (2007)

5. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J. et al.: Software Engi-
neering for Self-Adaptive Systems: A Research Roadmap. In: Software Engineering
for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer (2009)

6. Cheng, S.W.: Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, USA (2008)

7. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Au-
tonomous Distributed Component-based Systems. In: Models@run.time’06 (2006)

8. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jézéquel, J.M.: Modeling and
Validating Dynamic Adaptation. In: Chaudron, M. (ed.) MODELS’08 Workshops,
LNCS, vol. 5421, pp. 97–108. Springer (2009)

9. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A.,
Selic, B. (eds.) MODELS’09. LNCS, vol. 5795, pp. 606–621. Springer (2009)

10. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
Architecture Models for Runtime Adaptability. Software 23(2), 62–70 (2006)

11. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rain-
bow: Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer
37(10), 46–54 (2004)

12. Georgas, J.C., Hoek, A., Taylor, R.N.: Using Architectural Models to Manage and
Visualize Runtime Adaptation. Computer 42(10), 52–60 (2009)

13. Kephart, J.O., Chess, D.: The Vision of Autonomic Computing. Computer 36(1),
41–50 (2003)

14. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair,
G.: An Aspect-Oriented and Model-Driven Approach for Managing Dynamic Vari-
ability. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter, M. (eds.) MOD-
ELS’08. LNCS, vol. 5301, pp. 782–796. Springer (2008)

15. Ramirez, A.J., Cheng, B.H.: Evolving Models at Run Time to Address Functional
and Non-Functional Adaptation Requirements. In: Models@run.time’09. CEUR-
WS.org, vol. 509, pp. 31–40 (2009)

16. Rouvoy, R.: Requirements of mechanisms and planning algorithms for self-
adaptation. Deliverable D1.1 of MUSIC (EU-FP6 project) (2007)

17. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE Tools at Runtime:
Experiments upon Runtime Models. In: Models@run.time’10. CEUR-WS.org, vol.
641, pp. 25–36 (2010)

18. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: SEAMS’10.
pp. 39–48. ACM (2010)

19. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MOD-
ELS’09 Workshops, LNCS, vol. 6002, pp. 124–139. Springer (2010)

20. Vogel, T., Seibel, A., Giese, H.: The Role of Models and Megamodels at Runtime.
In: Dingel, J., Solberg, A. (eds.) MODELS’10 Workshops, LNCS, vol. 6627, pp.
224–238. Springer (2011)

6th Workshop on Models@run.time at MODELS 2011 12

Towards Adaptive Systems through
Requirements@Runtime?

Liliana Pasquale1, Luciano Baresi2, Bashar Nuseibeh1,3

1 Lero - Irish Software Engineering Research Centre, Ireland
{liliana.pasquale|bashar.nuseibeh}@lero.ie

2 Politecnico di Milano, Italy
baresi@elet.polimi.it

3 The Open University, Milton Keynes, United Kingdom
b.nuseibeh@open.ac.uk

Abstract. Software systems must adapt their behavior in response to
changes in the environment or in the requirements they are supposed
to meet. Despite adaptation capabilities could be modeled with great
detail at design time, anticipating all possible adaptations is not always
feasible. To address this problem the requirements model of the system,
which also includes the adaptation capabilities, is conceived as a run-
time entity. This way, it is possible to trace requirements/adaptation
changes and propagate them onto the application instances. This paper
leverages the FLAGS [1] methodology, which provides a goal model to
represent adaptations and a runtime infrastructure to manage require-
ments@runtime. First, this paper explains how the FLAGS infrastructure
can support requirements@runtime, by managing the interplay between
the requirements and the executing applications. Finally, it describes how
this infrastructure can be used to adapt the system, and, consequently,
support the evolution of requirements.

1 Introduction

Software systems must be able to adapt to continue to achieve their require-
ments while they are executing. The need for adaptation may be triggered by
different events: the application reaches a particular execution state, the con-
text changes, established requirements are not satisfied, or the objectives of the
system change. Some of these events can be foreseen in advance, and thus the
corresponding adaptation capabilities, foreseen adaptations, can be planned and
designed carefully, while others cannot and adaptation capabilities, unforeseen
adaptations, must be devised completely at runtime. Note that, besides pre-
dictability, there is a tradeoff between the number of different events the system
is able to react to (completeness) and the cost of embedding these reactions from
the beginning. Furthermore, even if all possible adaptations could be anticipated

? This research has been funded by Science Foundation Ireland grant 03/CE2/I303 1
and the European Commission, Programmes: IDEAS-ERC, Project 227977 SMScom,
and FP7 Network of Excellence 215483 S-Cube.

6th Workshop on Models@run.time at MODELS 2011 13

from the beginning, some of them may become useless when requirements evolve,
due to new business objectives or users’ needs.

In the last years, different modeling notations [2,3,1] have been proposed
to engineering adaptations at the requirements level. RELAX [2] is a notation
to express uncertain requirements, whose assessment is affected by the impre-
cision of measurements. Adaptation can be designed by relaxing non-critical
requirements for guaranteeing that the critical ones are still satisfied. Aware-
ness requirements [3] are used to represent the requirements of the activities
in the feedback loop. They may trigger a set of changes in the requirements
model and must be aware of the satisfaction of the other requirements of the
system. However, these research contributions are mainly focused on modeling
foreseen adaptations, and neglect requirements evolution. In our previous work
we propose the FLAGS [1] methodology. Similarly to the other approaches, it
allows the designer to elicit adaptation together with the other conventional
(functional and non functional) requirements of the system. Adaptation capa-
bilities are represented as adaptation goals that are added to the KAOS [4] goal
model. However, FLAGS also conceives requirements as runtime entities [5], and
provides a suitable infrastructure to dynamically support their evolution.

This paper clarifies how FLAGS supports requirements@runtime. In particu-
lar, the goal model is conceived as a runtime entity and is fed by the data coming
from the running application instances. The goal model can dynamically change
to accommodate new/changing requirements. We assume that applications are
expressed as BPEL [6] processes. Adaptation actions modeled at requirements
level can affect the underlying architecture/execution environment (e.g., by re-
structuring the process activities or changing some partner services). They can
also modify the process definition and the goal model, thus changing the ac-
tual requirements of the system. Finally the paper exemplifies how the FLAGS
methodology supports the requirements evolution. In particular, every time the
requirements change, their modifications must be propagated onto the process
and adaptations must evolve accordingly. Note that we do not focus on the au-
tomatic identification of new requirements/adaptations capabilities, and assume
that they are manually added by the designer.

The paper is structured as follows. Section 2 describes how the FLAGS model
can be used to represent adaptations. Section 3 illustrates the runtime infras-
tructure to support requirements@runtime. Section 4 describes how the infras-
tructure activates adaptations at runtime and supports the interplay between
the requirements and the running application. Section 5 discusses some related
approaches and concludes the paper.

2 Modeling Adaptations with FLAGS

This section classifies different kinds of adaptation, and demonstrates how they
can be elicited through FLAGS. We use an example of a web portal, Click&Eat,
which collects information regarding different restaurants that deliver food at
home and allows customers to order food from one of them.

6th Workshop on Models@run.time at MODELS 2011 14

2.1 Adaptation Classification

Adaptations can be classified along several dimensions [7]. For the objectives of
this paper we just consider their effect and anticipation.

– Effect. Adaptations may just change the underlying implementation or may
also modify the actual requirements of the system. In the first case, they can
be performed automatically and may affect one or all application instances.
• Single Instance. These adaptations are suitable to cope with transient

events and can modify the execution flow of a process instance or one of
its partner links. Hence, the effects of these adaptations are temporary
and do not have an impact on the process definition.

• All Instances. They restructure the process by changing the definition
of all (executing and future) process instances. Hence, the effects of these
adaptations are permanent.

Despite it can be feasible to apply temporary actions to all process instances
or permanent actions on a single instance, we did not find useful to introduce
this further distinction for our purposes.
In case some requirements cannot be satisfied, due to, for example, lack of
resources or premature design choices, or to accommodate context changes,
adaptation actions modify the requirements model —including the adapta-
tion capabilities— and propagate their effect on all application instances.

– Anticipation. Adaptations can be planned ahead of time or not. Foreseen
adaptations are modeled by the designer along with the other conventional
requirements of the system. This way the underlying process can adapt au-
tonomously when a specific scenario takes place (e.g., a goal is violated, a
specific event happens). Unforeseen adaptations are determined by changes
in the requirements that may take place after an application is already on
the market, due to new users needs, or mutations in the organization, laws
and business opportunities. Requirements changes may also be due to the
execution of an adaptation that modifies the requirements model. In all these
cases, new adaptations must be identified, or some of the existing adaptations
may no longer be useful or may need to be modified. Despite requirements
changes cannot be identified automatically, the way new requirements impact
on the underlying application can be detected semi-automatically through
requirements traceability.

2.2 Adaptation Elicitation

Adaptation goals must be specified over the conventional requirements of the
system. Figure 1(a) shows a FLAGS model of Click&Eat. The general objective
of the system is to manage the customers’ requests (goal G1). Customers want
to browse available restaurants to view offered food items and their cost (goal
G1.1). To this aim they must search a set of potential restaurants (goal G1.1.1)
and select one among them (goal G1.1.2). The search can be performed by name
(operation SearchByName) or by kind of provided food (operation SearchBy-
Type). All customers must register (goal G1.2) to be able to make an order (goal

6th Workshop on Models@run.time at MODELS 2011 15

G1.3). This application also aims to collect the customers’ feedbacks regarding a
selected restaurants (goal G1.4). Finally the average satisfaction of all customers
must be high (goal G1.5).

G1
[Manage

Requests]

AND

Select
Food

CalcTotal

LoginOp

Insert
Address

SearchBy
Type

G1.3
[Make
order]

G1.1
[Choose

restaurant]

G1.5
[High cust.

satisfaction]

G1.2
[Register]

RegisterOp

Notify

G1.4
[Vote

restaurant]

AG1
[Signal new
restaurant]

SearchBy
Name

Perform
(op1, op2, G1.1.1)

op1: Get Restaurant
op2: Add Restaurant

Confirm

G1.1.1
[Search

restaurant]

G1.1.2
[Select

restaurant]

Select

AND

Send
feedback

AG3
[Increase
customer

satisfaction]

fix(AG1)

AG2
[Make AG1
permanent]

tense(G1.1.1)

del(Show)

del(G1.1.1)

Show

del(AG1)

Legend

goal
adaptation
goal

operation

event

(a)

x x
G1.1.1
[Search

restaurants]x
Search
by type

Search
by name

G1.1.1a
[Search open
restaurants]

Search open
by type

Search open
by name

(b)

Fig. 1. The FLAGS model (a) and its modifications (b) for Click&Eat web portal.

Adaptation goals define the adaptation capabilities embedded in the system
at requirements level. The operationalization of these goals defines the actions to
be carried out when adaptation is required. Each adaptation goal is associated
with a trigger and a set of conditions. The trigger states when the adaptation goal
must be activated. Conditions specify further necessary constraints that must be
satisfied to allow the corresponding goal to be executed. Conditions may refer
to properties of the system (e.g., satisfaction levels of goals, or adaptation goals
already performed) or domain assumptions.

Adaptation goals can embed process-level actions that simply change the
way goals are achieved (process activities, partner services), or goal-level actions
that modify the goal model. Process level adaptations have conditions that do
not depend on the satisfaction of goals, but are just expressed through untimed
formulas over runtime data. Furthermore, they can be performed any number
of times, while goal level adaptations must be performed at most once. Process-
level actions are: perform([o1,. . ., on], g/o), may optionally execute a sequence of
operations (o1, . . ., on) and resumes the execution before operation o or goal g is
executed; substitute(a1, a2 [, o]), substitutes agent a1 with a2 for all operations
performed by a1 (in case the third parameter is not specified) or only when a1
executes operation o (otherwise); fix(ag), includes the effects of an adaptation
goal (ag) in the process definition4. Goal level actions are: add/remove(g), adds
or removes (conventional/adaptation) goal g; add(o, g), adds operation o to goal
g; remove(o), removes operation o; add/remove(e/ev/a), adds or remove an en-
tity (e), or an event (ev), or an agent (a); relax(g, constr), modifies the definition

4 Action fix(ag) can be applied in case ag temporarily modifies the process execution
flow, without changing the process definition or the goal model.

6th Workshop on Models@run.time at MODELS 2011 16

of a leaf goal (g) making it less strict (e.g., by adding a new disjunct constraint or
relaxing the corresponding membership function); tense(g, constr), modifies the
definition of a leaf goal (g) by making it stricter (e.g., by adding a new conjunct
constraint or tensing the corresponding membership function). Adaptation goals
are associated with other elements of the goal model (dependencies). In case at
least one element in the dependencies is removed or modified, the adaptation
goal must be consequently removed. This way adaptations can be automatically
adjusted to comply with the modifications of the goal model.

To handle those cases in which a desired restaurant cannot be found, a tem-
porary adaptation goal (AG1) is defined. It aids goal G1.1.1, is triggered when
event Show takes place (i.e., after operation SearchByName), under the con-
dition that attribute list of event Show does not contain any restaurant. As
actions, AG1 performs operations Get Restaurant and Add Restaurant, which
respectively retrieve the information of a restaurant from a user and add it to
the list of available restaurants. This adaptation depends on event Show : in case
this event is removed from the the model, AG1 must be consequently removed.
In case AG1 is triggered too many times, a permanent adaptation goal (AG2)
is applied. It performs action fix(AG1), which removes AG1 and adds the ac-
tions performed by AG1 to the process definition. It is triggered when AG1 is
performed and under the condition that AG1 has been triggered more than 10
times. When some goals (G1.5) are not satisfied enough, due to wrong design
choices, the requirements of the system should change. For example, adaptation
goal AG3 may be applied to tense goal G1.1.1 by adding a conjuntive constraint.
This new constraint asserts that only those restaurants with a feedback greater
than 40% must be shown to the customer.

The customers may change their requirements while the system is execut-
ing. For example, they may want to visualize only those restaurants that are
open at the moment when the search is performed. To address these changes
it is necessary to modify the goal model manually, by substituting goal G1.1.1
with G1.1.1a, as shown in Figure 1(b). Consequently, new unforeseen adapta-
tions must be automatically applied at the applications level to propagate these
modifications to all instances.

3 The Runtime Infrastructure

As shown in Figure 2, FLAGS provides a conceptual infrastructure to enact
requirements at runtime. Its components operate respectively at the process
and the goal level, whereas the Process Reasoner handles the interplay between
them. To support requirements evolution the infrastructure manages two mod-
els at runtime: the FLAGS model and the implementation model. The former
includes the requirements and the adaptation capabilities performed at the goal
level, while the latter includes the definition of the process together with the
data collection, monitoring and adaptation capabilities necessary to support the
adaptations at the process level. These models are managed respectively by the
components at the goal and process level.

6th Workshop on Models@run.time at MODELS 2011 17

Process level

BPEL Engine

Goal level

Goal Reasoner

Process Reasoner

Graphical Designer

External Probes

Data
Collector

Adaptor

Internal Probes

Environment

FLAGS
model

Designer

mappings
(process - goals)

mappings
(process - goals)

mappings
(process - goals)

AnalyzerAnalyzerAnalyzer

live model
instances

process
definition

process
instances

Fig. 2. Runtime infrastructure.

At the process level a BPEL engine supports the execution of the process in-
stances. We use a modified version of ActiveBPEL [8] engine, which is augmented
with Aspect Oriented Programming [9]. It provides a customizable “aspect” that
can be used to intercept the process execution at specific points, for example to
collect the process internal state or apply some adaptation actions. The Data
Collector manages the collection of runtime data from the process or the environ-
ment. The process state is collected by the Internal Probes that are activated
when the process reaches specific execution points. Conversely, the data from
the surrounding environment are gathered by the External Probes that expose
a proper interface to be configured and enacted at runtime.

Runtime data are sent to the Goal Reasoner, through the Process Reasoner,
and are used to update the elements of the goal model (i.e., events, entities,
satisfaction of leaf goals and performed adaptations). The Process Reasoner also
evaluates the satisfaction of leaf goals, by invoking a specific Analyzer, depending
on the kind of constraint (i.e., temporal or untimed) that must be checked. When
the goal model changes, the Goal Reasoner notifies the Process Reasoner, which
propagates these modifications on the running and next process instances. To
manage the interplay between the goal model and the process, the Process Rea-
soner uses a bidirectional mapping between the elements of the FLAGS model,
and those of the implementation model. Note that the adaptations that are ap-
plied at runtime may generate different versions of the implementation model
and the FLAGS model. For this reason, the Process Reasoner must store different
mappings, depending on the versions of the models that are in use.

The Process Reasoner orchestrates the adaptation at the process level, ac-
cording to the directives of the implementation model. It monitors the runtime
data to check if the trigger and conditions of an adaptation are satisfied. In this
case, it activates proper adaptation actions through an Adaptor, which can tem-
porarily change the execution flow of a single process instance or may change

6th Workshop on Models@run.time at MODELS 2011 18

the implementation model, by modifying the definition of the process and the
adaptation capabilities. To adapt the running process instances, the Adaptor in-
tercepts the execution at a “safe” point, where the modifications can be correctly
applied, since they do not break any conversation or transaction. To adapt the
next process instances the Adaptor transparently deploys a new version of the
process in the BPEL engine.

At the goal level, the Graphical Designer [10] allows the designer to create
a new version fo the FLAGS model and modify it at runtime. It also stores
all versions of the FLAGS model that are actually in use. The Goal Reasoner
manages the live instances of the FLAGS model. It creates a new instance every
time the Process Reasoner signals that a process instance is started. This live
instance must conform to the last version of the FLAGS model. Every time a
live instance of the FLAGS model is updated, a set of rules recompute the satis-
faction of high level goals, evaluate the triggers and conditions of the adaptation
goals, and decide which adaptation goal must be applied, if necessary. In our
implementation the Goal Reasoner is based on JBoss rule engine [11].

Every time the last version of the FLAGS model is modified at runtime, a
new version is created. Consequently, all live instances of the FLAGS model
and their corresponding process instance must migrate to the new version of the
model, if possible. A new version of the implementation model is inferred. In
particular, the new version of the process is inferred and deployed on the BPEL
Engine, the new mappings between the goal model and the process are generated
and stored at the Process Reasoner, and the components at the process level
must be properly re-configured to update and apply process level adaptations
for the modified instances of the FLAGS model. A live instance of the FLAGS
model is canceled every time the Process Reasoner signals that the corresponding
process instance has terminated. In case there is no running instance of a process
associated with an old version of the FLAGS model, that version is removed
together with its corresponding mappings at the Process Reasoner.

4 Managing Adaptations @Runtime

This section describes how adaptations are applied at runtime and their impact
on the implementation and the FLAGS model. The implementation model may
change when process level adaptations are performed. The FLAGS model can
change when the designer manually modifies it or when goal level adaptations are
applied, and, in these cases, the implementation model must evolve accordingly.

4.1 Process Level Adaptations

Adaptations at the process level are applied on a single process instance and
may perform a small set of actions. They can change the process execution
flow (action perform) or substitute a partner service with another one (action
substitute). These adaptations require to keep the process blocked at specific
execution points, while their conditions are checked and their actions are applied,

6th Workshop on Models@run.time at MODELS 2011 19

if necessary. The trigger of these adaptations must clearly identify the execution
point where the adaptations are performed. Since conditions must be evaluated
“on-the-fly”, while the process is blocked, they must be expressed as untimed
formulas. The Process Reasoner can verify them by invoking one of the Analyzers
that have been plugged in the infrastructure.

To apply action perform([o1, . . . , on], g/o), the operations included in the
first argument (op1, . . . , opn) are translated into a sequence of activities that
must be temporarily performed. These activities can be executed, for exam-
ple, by invoking an external partner service. The second argument is associ-
ated with a concrete execution point where the process execution must be re-
stored. This action can be applied at runtime through a suitable Adaptor, such
as Dynamo [12], which provides recovery actions call(wsdl, operation, ins) and
restore(destLocation). The former calls an operation exposed by an external web
service, which is identified by its wsdl. The third parameter (ins) represents the
data that are to be sent to the service. Action restore takes the process back to
the point of execution immediately prior to the destLocation (indicated with an
XPath expression), and resumes the process execution from there.

To apply action substitute(a1, a2 [, o]), the BPEL partner links p1, p2 that are
associated with agents a1, a2 must be identified. This action substitutes p1 with
p2 for all process activities in which p1 is used, in case the third parameter is not
specified. Otherwise, it is necessary to identify the process activities associated
with operation o, and substitue p1 with p2 for all of them. Both adaptation
actions can be supported by Dynamo. In the first case, we can use recovery
action rebindPartnerLink(name, wsdl), which changes partner link p1, identified
by a name, with p2, identified by its wsdl. In the second case we can apply
action rebind(wsdl, operation), which substitutes partner link p1, which performs
activity operation, with p2, identified by its wsdl.

while [cond1]
pick

onMessage
(SearchByName)

invoke-receive
SearchByName

reply
RestList

onMessage
(Select)

cond1 <- false

...

AG1 ...

Restaurant <-
Select.idinvoke-receive

Get Restaurant

invoke
Add Restaurant

trigger

invoke-receive
FilterRestaurant

ES

add

call

restore
G1.1.1 AG3

Fig. 3. BPEL process for the Click&Eat application.

6th Workshop on Models@run.time at MODELS 2011 20

For example, AG1 is an adaptation goal that applies action perform(GetRe-
staurant, AddRestaurant, G1.1.1) on a single process instance. To support its
enactment at runtime, the Internal Probes must be instrumented to intercept
the process execution at the points when event Show (trigger) takes place. In
our example (see Figure 3) this corresponds to the execution point after activity
reply RestList. This way, every time the process terminates this activity, its exe-
cution is blocked, and, in case the condition is satisfied, an external service (ES)
is invoked. It performs a sequence of activities associated with the operations
GetRestaurant and Add Restaurant and restores the process execution before
activity pick, which is the execution point where G1.1.1 starts to be activated.

All adaptations that are applied on all process instances have a permanent
effect on the implementation model. The trigger of these adaptations only iden-
tifies the moment when the condition can be verified. A set of “safe points”
must be identify the process point at which an adaptation must be applied. In
case a running process instance has already passed all safe points, it cannot be
migrated. All the other adaptations at the process level are temporarily deac-
tivated, until all instances complete the migration to the next version of the
process, when possible. The new mappings between the new version of the pro-
cess and the last version of the FLAGS model must be also added to the Process
Reasoner. Finally the adaptation capabilities at the Data Collector and Process
Reasoner may also change.

AG2 falls in this category, since it applies action fix(AG1) to modify the
process definition. After the Process Reasoner performs AG1 (trigger) for one of
its process instances, the condition associated with AG2 must be verified. AG2
applies a set of modifications at the Process Reasoner, since it removes AG1 and
all the directives necessary to support its execution. AG2 also modifies the pro-
cess definition by inserting a set of activities after the execution point identified
by the trigger of AG1 (i.e., after activity reply RestList). These activities are:
an if activity, which verifies the condition of AG1, and the activities that were
temporarily performed by external service ES. A new version of the process that
includes all these modifications is deployed as well in the BPEL Engine.

4.2 Goal Level Adaptations

For goal level adaptations things work slightly differently. Their trigger and con-
ditions are checked by the Goal Reasoner every time a new element of the goal
model is updated. When an adaptation at the goal level is applied, the Goal
Reasoner suspends all further updates of the goal model and stores all runtime
data received from the Process Reasoner in a buffer, until the adaptation com-
pletes. It also sends a notification to the Process Reasoner to block all running
process instances at the end of the activity they are currently executing. An
adaptation at the goal level generates a new version of the FLAGS model, and
must apply the corresponding modifications onto its live instances. Note that
only those instances that comply with the last version of the FLAGS model can
potentially migrate to the new version. The migration can take place only if

6th Workshop on Models@run.time at MODELS 2011 21

the corresponding process instance has not already passed the safe points where
modifications must be applied.

A new version of the implementation model is created accordingly. In par-
ticular, the Process Reasoner creates a new version of the mappings between
the process and the goal model and indicates what are the process instances
that must actually follow this mapping. Consequently the probes and the Pro-
cess Reasoner change their configuration to respectively intercept the process
at different points, collect different data, evaluate different leaf goals (specified
with different constraints) and activate different adaptation actions. Finally the
definition of all running and next process instances must change to comply with
the modifications of the goal model. For example, if some goals or operations are
added/removed, the corresponding activities in the process definition must be
added/removed. In case agents are added/removed, the corresponding partner
links must be added/removed from/to the process definition and so on.

After all aforementioned actions are performed, the execution of all process
instances can be restored. All runtime data received by the Process Reasoner
that are not associated with any element at the goal level are automatically re-
moved. The Goal Reasoner will start to process the data stored in its buffer only
after all process instances correctly migrated to their new version (if possible).
The Goal Reasoner will discard all the data that are associated with leaf goals,
entities and events that do not exist anymore or have been modified. Goal level
adaptations can be triggered while a process level adaptation, which modifies the
process definition, is being performed on the process. In this case, it is necessary
to guarantee that only the previous adaptation is applied, or both of them are
applied. In other cases a goal level adaptation can be triggered while one or more
process instances are performing a process level adaptation that just temporar-
ily modifies the process execution flow. In this case the process instance must
terminate the execution of the temporary activities and must be blocked before
performing the activity associated with the restore point.

In our example, AG3 applies a goal level adaptation when the satisfaction of
G1.5 is low (trigger). It changes the definition of goal G1.1.1 and its operational-
ization. As an effect, the Goal Reasoner creates a new version of the FLAGS
model, manage the migration for the live instances of the model, and adds a
new version of the mappings to the Process Reasoner. At the process level the
next process instances can be migrated by deploying a new version of the BPEL
process, which complies with the new version of the FLAGS model. The running
process instances can be migrated by intercepting their execution before activ-
ity pick and adding activity invoke-receive FilterRestaurant after invoke-receive
SearchByName, as shown in Figure 3. A similar procedure is followed when a
new version of the FLAGS model is manually created by designer, who directly
modifies the last version of the FLAGS model. This can happen when, for ex-
ample, the requirements of the system change, as shown in Figure 1(b). In this
case, the Graphical Designer notifies the Goal Reasoner that propagates the
modifications on the live instances of the FLAGS model and on the process. A
goal model at runtime allows us to reshape the adaptations at the process level,

6th Workshop on Models@run.time at MODELS 2011 22

depending on the modifications applied on the process. In this example all the
adaptation goals that have been defined can persist, since goal G1.1.1 and event
Show are not removed. However the way adaptations are supported at runtime
changes. For example, at the process level AG3 will be added after another ac-
tivity (invoke-receive SearchOpenByName), and will modify the new definition
of G1.1.1 by adding its conjunct constraint to its modified consequent.

5 Discussion

Different solutions have been already proposed to support requirements evo-
lution. Courbis and Finkelstein [13] analyze the requirements in a number of
possible environments where the system can execute. This analysis is used to
identify alternative requirements definition and architectural choices to foster
“design for change”. Note that identifying all possible changes in advance is not
always possible. For this reason requirements@runtime [5] are fundamental to
trace the modifications of both the requirements and the operative environment
where the system is executing. Ali et al. [14] use requirements at runtime to
support their evolution when wrong assumptions are discovered. Requirements
evolution can be performed automatically, by changing the priority given to soft-
ware variants, or can be manually performed by the designer. However this work
neglects how requirements changes are applied onto the system.

To support requirements at runtime the link between the requirements and
the underlying implementation cannot be lost. The changes in the system re-
quirements at runtime may trigger the execution of a set of analysis (e.g., con-
sistency check, requirements verification) that have been traditionally performed
offline. Baresi and Ghezzi [15] foster this idea. In particular, they claim that the
rigid boundary between development time and runtime must be broken and
more support must be provided to analyze and re-design the software at run-
time. According with this idea, Epifani et al. [16] use a live model of the system
to reason about its reliability. They use runtime data to feed the model and
perform probabilistic analysis to improve its accuracy. The updated model can
be used to detect or predict if a reliability property will be violated in the
running implementation. Our work also maintains the link between the require-
ments model and the implementation model and apply unforeseen requirements
and application features through aspects, as already proposed by Courbis and
Finkelstein [17]. A similar idea has been also proposed in the DiVA project [18],
which models variability dimensions as aspects and performs dynamic aspect
weaving as model transformations when an adaptation need occurs.

Our approach needs further improvements. It lacks a mechanism to verify the
consistency and correctness of the models updated by the designer. It should bet-
ter handle conflicts between adaptations that are activated at the same time.
We are also planning to exploit requirements@runtime in the security domain.
Security is a critical property whose violation must be avoided. The countermea-
sure used to support this property depend on the context and, for this reason,
it may be fundamental to detect changes that can take place in the assets to be

6th Workshop on Models@run.time at MODELS 2011 23

protected or in the environment. These changes may trigger suitable analysis at
runtime and activate new countermeasures necessary to continue to guarantee
the satisfaction of security requirements.

References

1. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-Driven Adap-
tation. In: Proc. of the 18th Int. Requirements Eng. Conf. (2010) 125–134

2. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: Proc. of the 17th
Int. Requirements Eng. Conf. (2009) 79–88

3. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
Requirements for Adaptive Systems. In: Proc. of the 6th Int. Symposium on
Software Eng. for Adaptive and Self-Managing Systems. (2011) 60–69

4. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML
Models to Software Specifications. John Wiley (2009)

5. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In: Proc.
of the 18th Int. Requirements Eng. Conf. (2010) 95–103

6. OASIS WSBPEL TC: Web services business process execution language. http:

//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

7. B. Cheng et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Software Engineering for Self-Adaptive Systems. Volume 5525.
Springer Berlin / Heidelberg (2009) 1–26

8. Active Endpoints: The activebpel engine. http://www.activevos.com/

community-open-source.php

9. G. Kiczales et al.: Aspect-Oriented Programming. In: Proc. of the 11th European
Conference on Object-Oriented Programming. (1997) 220–242

10. Baresi, L., Pasquale, L.: An Eclipse Plug-in to Model System Requirements and
Adaptation Capabilities. In: Proc. of the 6th IT-Eclipse Workshop. (2011) (to
appear)

11. JBoss Drools Team: Drools expert. http://jboss.org/drools

12. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Trans. on Software
Eng. 37(2) (2011) 247–263

13. Bush, D., Finkelstein, A.: Requirements Stability Assessment Using Scenarios. In:
Proc. of the 11th Int. Conf. on Requirements Eng. (2003) 23–32

14. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements Evolution: From
Assumptions to Reality. In: Proc. of the 12th Int. Conf. BMMDS/EMMSAD.
(2011) 372–382

15. Baresi, L., Ghezzi, C.: The Disappearing Boundary Between Development-time
and Run-time. In: Proc. of the Workshop on Future of Software Eng. Research.
(2010) 17–22

16. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proc. of the 31st Int. Conf. on Software Eng. (2009)
111–121

17. Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proc. of
the 27th Int. Conf. on Software Eng. (2005) 69–77

18. DiVA-Dynamic Variability in complex, adaptive systems. http://www.ict-diva.
eu/

6th Workshop on Models@run.time at MODELS 2011 24

Model-based Situational Security Analysis

Jörn Eichler and Roland Rieke

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{joern.eichler,roland.rieke}@sit.fraunhofer.de

Abstract. Security analysis is growing in complexity with the increase
in functionality, connectivity, and dynamics of current electronic busi-
ness processes. To tackle this complexity, the application of models in
pre-operational phases is becoming standard practice. Runtime models
are also increasingly applied to analyze and validate the actual security
status of business process instances. In this paper we present an approach
to support not only model-based evaluation of the current security status
of business process instances, but also to allow for decision support by an-
alyzing close-future process states. Our approach is based on operational
formal models derived from development-time process and security mod-
els. This paper exemplifies our approach utilizing real world processes
from the logistics domain and demonstrates the systematic development
and application of runtime models for situational security analysis.

Keywords: security requirements elicitation, predictive security anal-
ysis, analysis of business process behavior, security modeling and simu-
lation, security monitoring

1 Introduction

Electronic business processes connect many systems and applications. This leads
to an increasing complexity when analyzing distinctive properties of those busi-
ness processes. Additionally, frequent changes to business process models are
applied to address changing business needs. Current approaches apply changes
to those models at runtime [4]. This situation challenges operators and partici-
pants in electronic business processes as the assessment of the status of business
process instances at runtime becomes difficult. An example for these difficulties
is the assessment whether instances of business processes violate security policies
or might violate them in the near future.

Traditionally, approaches to security analysis of electronic business processes
are executed at development-time. In this perspective, the analysis of possible
violations of security policies is part of the requirements engineering process
[13]. To cope with the growing complexity of the electronic business processes,
the application of security models in the course of the requirements engineer-
ing process is becoming a common strategy [5]. Nevertheless, the requirements
engineering process is generally limited to development-time.

Contributions. To support security analysis at runtime we utilize formal
models based on development-time process and security models. On the basis of

6th Workshop on Models@run.time at MODELS 2011 25

sound methods for the elicitation and modeling of security requirements provided
in [7] and an architectural blueprint described in [18], we document in this paper
our approach to analyze the security status of electronic business processes. The
security analysis consumes events from the runtime environment, maps those
events to security events and feeds them to our runtime model, an operational
finite state model. This allows to match and synchronize the state of the real
process with the state of the model. Annotations of security requirements to
the states of the model can now be used to check for security violations and
possibly generate alarms. These alarms are then in turn converted to events and
sent to the running business process. Furthermore, a computation of possible
close-future behavior, which is enabled by the model of the business process, is
used to evaluate possible security critical states in the near future at runtime.
This knowledge about possibly upcoming critical situations can be used to raise
respective predictive alarms.

security events

present

time

future

time

Feasible
security

violations

Fig. 1. Predict feasible security violations

In section 2 we provide an application scenario from the logistics domain
and elicit security requirements. The formalization of the scenario is given in
section 3. Section 4 analyzes the runtime operation and exemplifies generated
security alerts. Section 5 reviews shortly related work to our approach. Conclud-
ing remarks and further research directions are given in section 6.

2 Application Scenario

In order to demonstrate what kind of security requirements we are able to con-
sider and how our model-based runtime analysis is applied, we have chosen a
small part of a “Pickup” target process which is analysed in the project Alliance
Digital Product Flow (http://www.adiwa.net/).

6th Workshop on Models@run.time at MODELS 2011 26

http://www.adiwa.net/

2.1 Process and Event Model

The “Pickup” process is initiated when the truck driver is notified about new
pickup orders. He accepts the received list of orders and the system calculates a
route plan based on the addresses. When the driver arrives at a pickup address,
he checks visually the packages for deviations with regard to the description in
the order. In case of deviations he consults with the sender whether this package
is to be transported. If the truck driver accepts the new package, the package
description in the list of orders is updated accordingly. For each accepted package
the system receives a confirmation that it has been loaded. The system links
each loaded package and its transporting truck using the corresponding radio-
frequency identification (RFID) tag identifiers. An Event-driven Process Chain
(EPC) flowchart of the considered subprocess is depicted in Figure 2. Rectangles
with rounded corners denote actions and chamfered rectangles denote events.

Truck x

Trusted Agent

Freight Forwarder

Accept pickup order

Truck at customer’s location (GPS)

Sec. Warn.

Verify Authenticity of GPS

Confirm Authenticity of GPS

imminent truck delay

identify critical payload

critical payload

compute replan proposals

replan proposals

select plan

xor

replan ¬ replan

Sec. Req.

Fig. 2. Model of a part of the Pickup Process (EPC notation)

As an example of a security threatening misuse case, we consider a situation
where the system performs a rescheduling because of a delay of one or more
trucks on the basis of not confirmed Global Positioning System (GPS) locations.
In this case there is a possibility for an attacker to send false GPS data to the
system, which may result in ineffective rescheduling and possible time loss in
completing the orders.

2.2 Security Requirements Elicitation

In order to derive the security requirements in the given scenario, we follow the
scheme described in [7]. We assume that the functional dependencies between
the actions in our scenario are given by Fig. 3.

6th Workshop on Models@run.time at MODELS 2011 27

Truck x Freight Forwarder

Airport y

gpsx(pos)

recvx(route)

sendx(pos) broadcast(TMC) send(route)

recv(pos)

recv(schedule)

replan(routing)

prio(payload)

recv(flight) send(schedule)

Fig. 3. Functional dependencies

We apply a general security goal: Whenever a certain output action happens,
the input actions that presumably led to it must actually have happened. As an
example for a specific security goal, in the following we will use the authenticity
requirement: Whenever a rescheduling action is performed, the GPS coordinates
of each truck should be authentic for the dispatcher in terms of origin, content
and time. The formal syntax to describe these requirements in parameterized
form is defined as (see [8]):

Definition 1. auth(a, b, P): Whenever an action b happens, it must be authentic
for an Agent P that in any course of events that seem possible to him, a certain
action a has happened.

Therefore, our selected authenticity requirement can be written as:

auth(gpsx(pos), replan(routing), dispatcher). (Auth 1)

We will use the authenticity requirement (Auth 1) to describe the reasoning
process with the help of an appropriate operational model.

There are of course many other security requirements necessary in this sce-
nario. For example, while loading a package on the truck the RFID data and
the truck driver should be authentic in terms of content and identification num-
ber. Analysis and application in our situational security analysis follow the same
procedure as for (Auth 1). Therefore, we will exemplify only (Auth 1) in the
following.

3 Formal Model

In order to analyze the system behavior with tool support, an appropriate for-
mal representation has to be chosen. In our approach, we use an operational
finite state model of the behavior of the given process which is based on Asyn-
chronous Product Automata (APA), a flexible operational specification concept

6th Workshop on Models@run.time at MODELS 2011 28

for cooperating systems [16]. An APA consists of a family of so called elementary
automata communicating by common components of their state (shared mem-
ory). We now introduce the formal modeling techniques used, and illustrate the
usage by our application example.

Definition 2 (Asynchronous Product Automaton (APA)). An Asyn-
chronous Product Automaton A = ((Zs)s∈S, (Φt, ∆t)t∈T, N, q0) consists of a
family of state sets Zs, s ∈ S, a family of elementary automata (Φt, ∆t), with
t ∈ T, a neighborhood relation N : T → P(S) and an initial state q0 =
(q0s)s∈S ∈ ��s∈S(Zs). S and T are index sets with the names of state com-
ponents and of elementary automata and P(S) is the power set of S. For each
elementary automaton (Φt, ∆t) with Alphabet Φt, its state transition relation
is ∆t ⊆ ��s∈N(t)(Zs) × Φt × ��s∈N(t)(Zs). For each element of Φt the state
transition relation ∆t defines state transitions that change only the state com-
ponents in N(t). An APA’s (global) states are elements of ��s∈S(Zs). To avoid
pathological cases it is generally assumed that N(t) 6= ∅ for all t ∈ T. An ele-
mentary automaton (Φt, ∆t) is activated in a state p = (ps)s∈S ∈ ��s∈S(Zs)
as to an interpretation i ∈ Φt, if there are (qs)s∈N(t) ∈ ��s∈N(t)(Zs) with
((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. An activated elementary automaton (Φt, ∆t) can
execute a state transition and produce a successor state q = (qr)r∈S ∈ ��s∈S(Zs),
if qr = pr for r ∈ S\N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. The corresponding
state transition is (p, (t, i), q).

A simplified model of the part of the “Freight Forwarder” business process
shown in Fig 2 contains the APA state components pstate and event represent-
ing the current process state and event. Formally, S = {pstate, event}, with
Zevent = {imminent truck delay, . . . , replan,¬replan}, Zpstate =

The elementary automata T = {identify critical payload, . . . , select plan}
represent the possible actions that the systems can take. The neighborhood
relation between elementary automata and state components of the APA model
is depicted by the edges in Fig. 4.

pstate

compute replan proposalsidentify critical payload select plan

event

Fig. 4. Elementary automata and state components in the APA process model

Formally, the behavior of our operational APA model of the business process
is described by a reachability graph. In the literature this is sometimes also
referred to as labeled transition system (LTS).

6th Workshop on Models@run.time at MODELS 2011 29

Definition 3 (Reachability graph). The behavior of an APA is represented
by all possible coherent sequences of state transitions starting with initial state
q0. The sequence (q0, (t1, i1), q1)(q1, (t2, i2), q2) . . . (qn−1, (tn, in), qn) with ik ∈
Φtk

represents one possible sequence of actions of an APA. State transitions
(p, (t, i), q) may be interpreted as labeled edges of a directed graph whose nodes
are the states of an APA: (p, (t, i), q) is the edge leading from p to q and labeled
by (t, i). The subgraph reachable from q0 is called reachability graph of an APA.

We use the SH verification tool [16] to analyse the process model. This tool
provides components for the complete cycle from formal specification to exhaus-
tive validation as well as visualisation and inspection of computed reachability
graphs and minimal automata. The applied specification method based on APA
is supported. The tool manages the components of the model, allows to select al-
ternative parts of the specification and automatically glues together the selected
components to generate a combined model of the APA specification.

q0

q1

q2

q3 q4

(identify critical payload, critical payload)

(compute replan proposals, replan proposals)

(select plan, ¬replan) (select plan, replan)

Fig. 5. Close-future (3 Steps) Reachability Analysis

Figure 5 shows the initial part of the reachability graph resulting from the
analysis of the model when reaching the part of the business process of the
freight forwarder shown in Fig. 2. An example for a state transition of the model
in this situation is: (q0,(identify critical payload, critical payload),q1). Please
note that there are two different transitions from the state q2 because the inter-
pretation of a variable can have the values replan or ¬ replan, respectively.

4 Runtime Operation and Generated Alerts

During runtime, the events from the business process are used to synchronize
the state of the model with the real process. In our exemplary setup, the events
are produced by a Complex Event Processing (CEP) engine which is provided
by one of the project partners. The events are described by an XML schema and
communicated by the Java Message Service (JMS). The events from the event
bus are used to provide the information about the state and input to the business
process. In our finite state model, this information is represented in the state

6th Workshop on Models@run.time at MODELS 2011 30

components pstate and event (cf. Fig. 4). This constitutes the initial state of
the model from which a simulation is then started. In addition to the predicted
system behavior, we also need the information on the security requirements in
order to identify critical situations. In [18] we proposed to use APA to specify
meta-events, which match security critical situations, to generate alerts. How-
ever, since this is slow and not easily usable by end-users, we decided to build
the matching algorithm directly into the SH verification tool. We use monitor
automata [22] to specify the security requirements graphically. These automata
monitor the behaviour of the abstract system during the run of the simulation
and provide interfaces to trigger alerts. This concept could be further extended
to make use of the built-in temporal logic based reasoning component if more
complex reasoning is necessary.

4.1 Security Reasoning – No Authenticity Approval of GPS Event

In order to demonstrate the use of process models at runtime, let us assume the
following situation. We are currently at logical time 0 as depicted on the timeline
in Figures, 7, 8, 9, 10. We further assume that the trusted agent inspects the
events generated by GPS units of the trucks and sends additional events which
attest to the authenticity of each GPS event within a timeframe of 2 logical time
units. Please note that it is also a possibility that the trusted agent would filter
the events and only let authentic events pass the filter. We furthermore assume
that we know from the analysis of dependencies of actions and specifically from
the requirement (Auth 1) that whenever a rescheduling action is performed, the
GPS coordinates of each truck should be authentic for the process planner in
terms of origin, content and time.

We now describe the reasoning process where the authenticity of the GPS
event is not approved by the trusted agent. In the diagrams we use pentagon
symbols to depict events on the event bus such as GPS information and we use
triangles to depict Security Warnings (SW), Predictive Security Alerts (PSA)
and Security Alerts (SA) generated by the reasoning process.

Step 1: A GPS event is received

0 1 2 3 4 5 6 7 8 9

Timeline

GPS Auth

Fig. 6. Security Reasoning - Authenticity Approval of GPS Event - step 1

Figure 6 shows the situation when a GPS event is received. This event is
matching a precondition in the requirement pattern: GPS needs confirmation

6th Workshop on Models@run.time at MODELS 2011 31

in 2 steps. This requirement (warn-level) is triggered by the GPS event. The
reachability analysis reveals no critical actions within the scope (3 steps) of the
analysis. We conclude from Fig. 6 that everything is OK at this point. A future
event might confirm authenticity of the GPS location received.

Step 2: Confirmation of GPS event not received

-2 -1 0 1 2 3 4 5 6 7

Timeline

GPS
¬

Auth

SW

Fig. 7. Security Reasoning - No Authenticity Approval of GPS Event - step 2

Figure 7 shows the situation when an expected event from the trusted agent,
namely the authenticity approval of this GPS event is recognized as missing.
The missing event indicates a broken security requirement: GPS needs confir-
mation in 2 steps. The reachability analysis in this situation shows that no
other security requirement will be triggered within the scope of the analysis.
However, some forthcoming security relevant action might require authenticity
of this GPS event. Therefore, an alert action associated with a broken warn-level
requirement, such as issuing a security warning (SW), is now triggered.

Step 3: Replan event in analysis scope

0 1 2 3

Timeline

GPS
¬

Auth
replan

SW PSA

Fig. 8. Security Reasoning - No Authenticity Approval of GPS Event - step 3

In Fig. 8, an arbitrary event is received from which, in one possible execu-
tion sequence of the business process, a replan event is reachable within the
scope of the analysis. In our scenario imminent truck delay is such an event.
The reachability graph is similar to the one depicted in Fig. 5. It shows that
the select plan action may happen in the future if replan is chosen. But there

6th Workshop on Models@run.time at MODELS 2011 32

is another possible path in the graph where replan is not chosen. The replan
event in the prediction scope is matching a precondition in a requirement pat-
tern: auth(GPS, replan, dispatcher), but the GPS event is not approved to be
authentic. Therefore, a replan event with broken security requirement is pos-
sible. An action associated with this (possibly) broken alert-level requirement,
such as issuing a predictive security alert (PSA), is now executed.

Step 4a: Expected replan event received

0

Timeline

GPS
¬

Auth
replan

SW PSA SA

Fig. 9. Security Reasoning - No Authenticity Approval of GPS Event - step 4a

Figure 9 shows the situation when a replan event is received as predicted (cf.
Fig. 5 transition q2 → q4). At this time we know that the security requirement
(Auth 1) is broken. Therefore, an action associated with a broken alert-level
requirement, such as issuing a security alert (SA), is now executed.

Step 4b: Predicted replan event not received after step 3

0

Timeline

GPS
¬

Auth
¬
replan

SW PSA

Fig. 10. Security Reasoning - No Authenticity Approval of GPS Event - step 4b

Figure 10 shows the situation when a replan event is not received as expected
(cf. Fig. 5 transition q2 → q5). In this case, we know that the issued predictive
security alert (PSA) was a “False Positive”, so a corrective action may be nec-
essary. Corrective actions might be the reduction of a general security warning
level or lifting of restrictions on the business process depending on the operating
environment. However, the security warning issued in step 2 is still valid because
some future event might require authenticity of the GPS event.

6th Workshop on Models@run.time at MODELS 2011 33

5 Related Work

The work presented here combines specific aspects of security analysis with
generic aspects of process monitoring, simulation, and analysis. The background
of those aspects is given by the utilization of models at runtime [6]. A blueprint
for our architecture of predictive security analysis is given in [18].

Security analysis at development-time to identify violations of security poli-
cies is usually integrated in the security requirements engineering process. An
overview of current security requirements engineering processes is given in [5,13].
The security requirements elicitation methods developed in [7] are used in sec-
tion 2 to derive the requirements which are needed to assess possible security
policy violations at runtime. A formalized approach for security risk modeling
in the context of electronic business processes is given in [21]. It touches also
the aspect of simulation, but does not incorporate the utilization of runtime
models. Approaches that focus security models at runtime are given in [14] or in
[12]. Morin et. al [14] propose a novel methodology to synchronize an architec-
tural model reflecting access control policies with the running system. Therefore,
the methodology emphasizes policy enforcement rather than security analysis.
The integration of runtime and development-time information on the basis of an
ontology to engineer industrial automation systems is discussed in [12].

Process monitoring has gained some popularity recently in the industrial
context prominently accompanied with the term Business Activity Monitoring
(BAM). The goal of BAM applications, as defined by Gartner Inc., is to process
events, which are generated from multiple application systems, enterprise service
buses or other inter-enterprise sources in real-time in order to identify critical
business key performance indicators and get a better insight into the business
activities and thereby improve the effectiveness of business operations [11]. Re-
cently, runtime monitoring of concurrent distributed systems based on linear
temporal logic (LTL), state-charts, and related formalisms has also received a
lot of attention [9,10]. However, these works are mainly focused on error detec-
tion, e.g., concurrency related bugs. A classification for runtime monitoring of
software faults is given in [1]. Patterns to allow for monitoring security prop-
erties are developed in [20]. In the context of BAM applications, in addition
to these features we propose a close-future security analysis as it is detailed
in section 4. Our analysis provides information about possible security policy
violations reinforcing the security-related decision support system components.

Different categories of tools applicable for simulation of business processes
including process modeling tools are based on different semi-formal or formal
methods such as Petri Nets [3] or Event-driven Process Chains (EPC) [2]. Some
process management tools such as FileNet [15] offer a simulation tool to support
the design phase. Also, some general-purpose simulation tools such as CPNTools
[19] were proven to be suitable for simulating business processes. However, inde-
pendently from the tools and methods used, such simulation tools concentrate
on statistical aspects, redesign and commercial optimization of the business pro-
cess. On the contrary, we propose an approach for on-the-fly dynamic simulation
and analysis on the basis of operational APA models detailed in section 3. This

6th Workshop on Models@run.time at MODELS 2011 34

includes consideration of the current process state and the event information
combined with the corresponding steps in the process model.

6 Conclusions and Further Work

In this paper we demonstrated the application of runtime models to analyze the
security status of business processes and to identify possible violations of the
security policy in the near future. Therefore, we started with a business process
model from the logistics domain and analyzed corresponding security require-
ments. Utilizing both development-time models we derived a runtime model.
The runtime model consumes events from the runtime environment, evaluates
current violations of the security policy, and identifies close-future violations of
the security policy. Within the logistics domain we applied our approach to iden-
tify situations in which an attacker might try to disrupt or degrade the process
performance. By issuing predictive security alerts, users or operators (in this
case: the dispatcher in the logistic process) are able to act securely without the
need to understand the security policy or infrastructure in detail.

Other novel uses of such models at runtime can enable anticipatory impact
analysis, decision support and impact mitigation by adaptive configuration of
countermeasures. The project MASSIF (http://www.massif-project.eu/), a
large-scale integrating project co-funded by the European Commission, addresses
these challenges within the management of security information and events in
service infrastructures. In MASSIF [17] we will apply the presented modeling
concept in four industrial domains: (i) the management of the Olympic Games IT
infrastructure; (ii) a mobile phone based money transfer service, facing high-level
threats such as money laundering; (iii) managed IT outsource services for large
distributed enterprises; and (iv) an IT system supporting a critical infrastructure
(dam).

Acknowledgments. The work presented here was developed in the context of
the project MASSIF (ID 257475) being co-funded by the European Commis-
sion within the Seventh Framework Programme and the project Alliance Digital
Product Flow (ADiWa) (ID 01IA08006F) which is funded by the German Federal
Ministry of Education and Research.

References

1. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Transactions on Software Engineering 30(12), 859–872
(2004)

2. Dijkman, R.M.: Diagnosing differences between business process models. In: Busi-
ness Process Management (BPM 2008). LNCS, vol. 5240, pp. 261–277. Springer
(2008)

3. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281–1294 (2008)

6th Workshop on Models@run.time at MODELS 2011 35

http://www.massif-project.eu/

4. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime
using BPMN2 adaptation patterns. In: Business Information Systems (BIS 2011),
LNBIP, vol. 87, pp. 25–36. Springer (2011)

5. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements engineering 15(1), 7–40 (2010)

6. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering. pp. 37–54. IEEE (2007)

7. Fuchs, A., Rieke, R.: Identification of Security Requirements in Systems of Systems
by Functional Security Analysis. In: Architecting Dependable Systems VII, LNCS,
vol. 6420, pp. 74–96. Springer (2010)

8. Gürgens, S., Ochsenschläger, P., Rudolph, C.: On a formal framework for security
properties. Computer Standards & Interfaces 27, 457–466 (2005)

9. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in
web service compositions. In: World Wide Web (WWW 2006). pp. 267–276. ACM
(2006)

10. Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asyn-
chronous distributed systems. Tech. rep., Université Libre de Bruxelles (2006)

11. McCoy, D.W.: Business Activity Monitoring: Calm Before the Storm. Gartner
Research (2002)

12. Melik-Merkumians, M., Moser, T., Schatten, A., Zoitl, A., Biffl, S.: Knowledge-
based runtime failure detection for industrial automation systems. In: Workshop
Models@run.time. pp. 108–119. CEUR (2010)

13. Mellado, D., Blanco, C., Snchez, L.E., Fernndez-Medina, E.: A systematic review
of security requirements engineering. Computer Standards & Interfaces 32(4), 153–
165 (2010)

14. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.M.:
Security-driven model-based dynamic adaptation. In: Automated Software Engi-
neering (ASE 2010). pp. 205–214. ACM (2010)

15. Netjes, M., Reijers, H., Aalst, W.P.v.d.: Supporting the BPM life-cycle with
FileNet. In: Exploring Modeling Methods for Systems Analysis and Design (EMM-
SAD 2006). pp. 497–508. Namur University Press (2006)

16. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting 10(4), 381–404 (1998)

17. Prieto, E., Diaz, R., Romano, L., Rieke, R., Achemlal, M.: MASSIF: A promising
solution to enhance olympic games IT security. In: International Conference on
Global Security, Safety and Sustainability (ICGS3 2011) (2011)

18. Rieke, R., Stoynova, Z.: Predictive security analysis for event-driven processes. In:
Computer Network Security, LNCS, vol. 6258, pp. 321–328. Springer (2010)

19. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge,
C.J.: Workflow simulation for operational decision support. Data & Knowledge
Engineering 68(9), 834–850 (2009)

20. Spanoudakis, G., Kloukinas, C., Androutsopoulos, K.: Towards security monitoring
patterns. In: Symposium on Applied computing (SAC 2007). pp. 1518–1525. ACM
(2007)

21. Tjoa, S., Jakoubi, S., Goluch, G., Kitzler, G., Goluch, S., Quirchmayr, G.: A for-
mal approach enabling risk-aware business process modeling and simulation. IEEE
Transactions on Services Computing 4(2), 153–166 (2011)

22. Winkelvos, T., Rudolph, C., Repp, J.: A Property Based Security Risk Analysis
Through Weighted Simulation. In: Information Security South Africa (ISSA 2011).
IEEE (2011)

6th Workshop on Models@run.time at MODELS 2011 36

Runtime Monitoring of Functional Component
Changes with Behavior Models ?

Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32, 20133 Milano (MI), Italy

{ghezzi,mocci,sangiorgio}@elet.polimi.it

Abstract. We consider the problem of run-time discovery and contin-
uous monitoring of new components that live in an open environment.
We focus on extracting a formal model—which may not be available—
by observing the behavior of the running component. We show how the
model built at run time can be enriched through new observations (dy-
namic model update). We also use the inferred model to perform run-
time verification. That is, we try to identify if any changes are made to
the component that modify its original behavior, contradict the previous
observations, and invalidate the inferred model.

1 Introduction and Motivations

Modern software systems increasingly live in an open world [6]. In the context
of this paper, we assume this to mean that the components that can be used to
compose new application may be dynamically discovered and they may change
over time. New components may appear or disappear; existing components that
were already available may change without notice. Indeed, in an open world con-
text, software components can be developed by different stakeholders, for which
there might be no control from the point of view of their clients. New appli-
cations may be developed in a way that they rely on third party components,
often called services, that are composed to provide a specific new functionality1.
In this setting, models, play the role of formal specifications and have a cru-
cial importance. In fact, to be able to compose components in applications and
make sure they achieve ascertainable goals, one needs to have a model of the
components being used. Such model, in practice, mays not exist. For example,
in the case where components are Web services, suitable notations (e.g., WSDL)
exist to specify the syntax of service invocations, but no standard notation ex-
ists to specify the semantics (i.e., model the behavior) of the components. In
this context, it becomes relevant to be able to infer a model for the component
dynamically, at run time, by observing how the component behaves.

? This research has been partially funded by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom.

1 Although the terms “component” and “service” can be (and should be) disinguished,
in this paper the terms are used interchangeably

6th Workshop on Models@run.time at MODELS 2011 37

In addition to the previous problems, one must consider the fact that the
component may change at run time in an unannounced manner. In other words,
even if a model were initially provided together with the exposed service, it may
become unfaithful and inconsistent because the implementation may change at
run time. For this reason, in open-world context the role of models is twofold. It
may be necessary to infer it initially and it becomes then necessary to use the
(inferred) model at run time to verify if changes invalidate the assumptions we
could make based on the initial observations.

In conclusion, in the case where the model is initially absent, we need tech-
niques to infer a formal model (a formal specification) for the components we
wish to combine. We then need to keep the (inferred) model to analyze the
run-time behavior of the component and detect wether the new observed behav-
iors indicate that a change has occurred in the component which invalidates the
model.

In this paper, we propose a technique for run-time monitoring of component
changes that relies on the use of a particular class of formal models, behavior
models. The proposed approach requires a setup phase, in which the component
to be monitored must be in a sort of trial phase in which it can be safely tested
to extract an initial specification. This phase integrates techniques to infer for-
mal specifications [7] with a new kind of behavior model, the protocol behavior
model. This model enables the main phase of the approach — a run-time val-
idation activity —, which consists of monitoring the component behavior and
detecting a particular class of component changes, which will be precisely de-
scribed in the following sections. The approach is also able to distinguish likely
new observations against component changes.

The paper is structured as follows. Section 2 presents the formalisms used in
the approach, that is, the kind of behavior models that we can infer and synthe-
size. Section 3 describes how these models are constructed to enable the setup
step of our technique, while Section 4 describes their use at runtime to detect
component changes. A simplified running example is used to give a practical
hint on how the approach works. Finally, Section 5 discusses related approaches
and Section 6 illustrates final considerations and future work. Space limitations
only made it possible to explain the innovative approach and to provide basic
examples. Additional details and more complex examples are available online [2].

2 Behavioral Equivalence and Protocol Models

We consider software components as black boxes, that is, their internals cannot
be inspected and they are accessible only through their API, which consists of
operations that might modify or not the internal state. Thus, each operation
can be a modifier or an observer, or it can play both roles. Operations may also
have an exceptional result, which is considered as a special observable value. As
a running example, we consider a simple component, called StorageService,
inspired by the ZipOutputStream class of the Java Development Kit [1], which
models a storage service where each stored entry is compressed. The component

6th Workshop on Models@run.time at MODELS 2011 38

mixes container behaviors with a specific protocol of interaction. We consider the
following operations: i) putNextEntry, which adds a new entry with a given name;
ii) write, which adds data to the current entry; and iii) close, which disables any
further interaction.

We now introduce the formal models used in our approach, which belong
to the class of so-called behavior models. To accomplish the main task of the
approach, that is, the runtime detection of component changes, we first need to
define behavior models that they can “summarize” all the possible interactions
with the software components, thus providing a description of the behaviors
observed by its clients.

We start with Behavioral equivalence models (Bem [7]); i.e., finite state au-
tomata that provide a precise and detailed description of the behavior of a
component in a limited scope. In a Bem, states represent behaviorally equivalent
classes of component instances; that is, a set of instances that cannot be distin-
guished by any possible sequence of operations ending with an observer. Each
state is labeled with observer return values and each transition models a spe-
cific modifier invocation with given actual parameters. The scope of the model
defines the set of possible actual parameters used in the model (called instance
pool), and the number of states we restrict to. Intuitively, these models define
the component behaviors within a limited scope. Figure 1 represents a possi-
ble Bem for the StorageService component. We built it limiting the scope to
two entries (e1 and e2) which are used as parameters for operation putNextEntry.
Each transition represents a specific operation invocation. The table in Figure 1
describes observer return values; in this specific case, they are only exceptional
results.

To describe every possible component interaction outside the Bem scope, we
introduce a second kind of behavior model that generalizes the Bem through an
abstraction: the protocol behavior models (Pbm). Pbms provide an abstracted,
less precise but generalized description of the interaction protocol with the com-
ponent as opposed to the precise description in a limited scope provided by
Bems. The new model is still based on a finite state automaton, but now states
encode whether the results of observers are normal or exceptional2. States also
abstract the behavior of modifiers as variant or invariant. A modifier behavior is
variant if there exists a possible invocation with specific actual parameters that
brings the component in a different behavioral equivalence state. Otherwise, the
modifier behavior is invariant. This abstraction is usually (but not always) asso-
ciated with an exceptional result of the operation: it is the typical behavior of a
removal operation on an empty container or a add operation on a full bounded
container. Pbm transitions instead keep track only of the operation they rep-
resent, ignoring the values of the parameters. Thus they model the behavior
of every possible modifier invocation; they synthesize the behavior of possibly
infinitely-many behavior changes induced by the possible operation invocation.

2 If observers have parameters, then the abstraction can be i) always (i.e., for every
parameter) normal; ii) always exceptional; iii) any intermediate situation, that is,
for some parameters the result is normal and for others is exceptional .

6th Workshop on Models@run.time at MODELS 2011 39

S0S

S1

S2

S3

S4

S5 S6 S7

pE1

pE2

pE1

pE2

pE2
pE2

pE1
pE1

pE1

pE2

c

c

c

c

c

c

w, c

w

w, pE1

w

w, pE2

w

w, pE1, pE2 pE1, pE2

w, c

Legend: S:StorageService(), w:write(0), c:close()
pE1:putNextEntry(e1), pE2: putNextEntry(e2)

State close() putNextEntry(e1) putNextEntry(e2) write(0)

S0 ZipException4 — — ZipException3

S1 — ZipException1 — —
S2 — — ZipException2 —
S3 — ZipException1 — ZipException3

S4 — — ZipException2 ZipException3

S5 — ZipException1 ZipException2 —
S6 — ZipException1 ZipException2 ZipException3

S7 — IOException1 IOException1 IOException1

ZipException1.getMessage() =“duplicate entry: e1”
ZipException2.getMessage() =“duplicate entry: e2”
ZipException3.getMessage() =“no current ZIP entry”
ZipException4.getMessage() =“ZIP file must have at least one entry”
IOException1.getMessage() =“Stream Closed”

Fig. 1. A Bem of the StorageService component

In practice, they model the possibility that by performing an operation the set
of operations enabled on the object may change. It is worth observing (but we
do not show it here) that this abstraction may introduce nondeterminism in the
automaton. Figure 2 represents the Pbm derived by performing the abstraction
described above to the Bem in Figure 1.

The main contribution of the proposed approach is the integration of Pbms
and Bems. Because the Pbm is derived from the Bem through an abstraction
process, its completeness and accuracy actually depends on the significance of the
observations that produced the Bem during the setup phase. The setup phase
is deeply rooted in the small scope hypothesis. In its original formulation [9],
this hypothesis states that most bugs have small counterexamples, and that an
exhaustive analysis of the component behavior within a limited scope is able
to show most bugs. In our case, we cast it as follows: most of the significant
behaviors of a component are present within a small scope. In our case, the
term “significant behavior” refers to the abstracted version provided by a Pbm.
Thus, we expect that at setup time we can synthesize a likely complete Pbm,

6th Workshop on Models@run.time at MODELS 2011 40

S0S S1

S2

S3

S4 S5
pE

pE

pE

pE

pE

c

c

c

c

c, w

w

w, pE

w

w, pE

c,w, pE

Legend: S:StorageService, w:write, c:close, pE:putNextEntry

State close putNextEntry write

Observer Abstraction

S0 ZipException — ZipException
S1 — [−, ZipException] —
S2 — [−, ZipException] ZipException
S3 — ZipException —
S4 — ZipException ZipException
S5 — IOException IOException

Modifier Behavior Abstraction

S0 Invariant Variant Invariant
S1 Variant Variant Invariant
S2 Variant Invariant Invariant
S3 Variant Variant Invariant
S4 Variant Invariant Invariant
S5 Invariant Invariant Invariant

The notation: [−, ZipException] means that for some parameter the method returns correctly
(—), and for some other parameter throws ZipException

Fig. 2. A Pbm of the StorageService component

which describes the protocol of all the possible interactions of clients with the
component, while at runtime we can use the Pbm to find component changes.

The two different models can be used together at run time. The behavior of a
component is monitored and checked with respect to the Pbm. When violations
are detected, a deeper analysis exploiting the more precise information contained
in the Bem can be performed in order to discover whether the observation that is
not described by the Pbm is a new kind of behavior that was not observed before,
and thus requires a change of both the Bem and the Pbm to accommodate it, or
instead it detects a component change that is inconsistent with the models. The
Bem synthesizes the observations used to generate the Pbm, and thus it can be
used to distinguish between likely changes of the analyzed component from new
observations that instead just enrich the Pbm. In the following sections, we will
discuss these aspects: the setup time construction of Bems and Pbms, and the
runtime use of both models to detect likely component changes.

It should be noted that the Pbm is not a full specification of the component,
thus it cannot be used to express complex functional behaviors, in particular the
ones that are not expressible with a finite state machine, like complex container
behaviors. Instead, the Pbm models the protocol that clients can use to interact
with the component, that is, the legal sequences of operations. This limitation
is also the enabling factor for runtime detection of changes: violations can be

6th Workshop on Models@run.time at MODELS 2011 41

checked and detected relatively easily and the model can be promptly updated
when needed. Instead, a full fledged specification that supports infinite state
behaviors, like the ones of containers, is definitely harder to synthesize, check
and update at runtime.

3 Setup Phase: Model Inference

As we illustrated previously, the approach we propose prescribes two phases.
The setup phase is performed on the component in a trial stage. The other
phase corresponds to runtime. In the former, the component is analyzed through
dynamic analysis (a set of test cases) to infer a Bem for the component. A Pbm
abstraction is generated next to generalize the observed behaviors. In the latter
phase, the two models are used at run time to detect component changes. In
this section, we describe the first phase, with particular focus on the generation
of models, so that designers can get a formal description of a component whose
behavior must be validated.

3.1 Generation of the Initial Behavioral Equivalence Model

To generate a Bem during the setup phase, we adapt the algorithm and the
tool described in [7], which extracts Bems through dynamic analysis. The model
is generated by incrementally and exhaustively exploring a finite subset of the
component behavior, that is, by exploring a small scope. As illustrated previ-
ously, the scope is determined by a set of actual parameters for each component
operation and a maximum number of states for the model. The exploration is
performed by building a set of traces using the values in the instance pool and
abstracting them to behavioral equivalence states. The exploration is incremen-
tal; that is, if a trace t is analyzed, then all its subtraces have been analyzed in
the past. To build the Bem, the approach first uses observer return values: for a
trace t and every possible observer o, with fixed actual parameters, we execute
t.o() and we build a state of the Bem labeled with observed return values. Un-
fortunately, such an abstraction does not always induce behavioral equivalence:
for example, it could be that for some operation m, then two traces t1 and t2
such that for every observer the return values are equal, then there could be
that t1.m() and t2.m() are not behaviorally equivalent. Thus, state abstraction
is enriched with the information given by m as a discriminating operation. For
space reasons, we cannot include the specific details of the algorithm, but the
interest reader can refer to [7, 11]. This approach guarantees the discovery of all
the behaviors presented in the class with the given scope. The way Bems are
generated implies a strong correlation between the quality of the model and the
completeness of the instance pools used to build it. The more the instances are
significant, the higher the coverage of the actual behavior of the class is.

Given the importance of the objects used to perform the Bem generation
phase, we want to exploit as much as possible all the knowledge available to
analyze the class behavior with the most significant set of instances. The original

6th Workshop on Models@run.time at MODELS 2011 42

Spy tool relied entirely on instances provided by the user interested in obtaining
the Bem of a component. While the assumption that the user is able to provide
some significant instances is fair, it may be hard to achieve since it requires a lot
of effort and a deep knowledge of the behaviors of the component. Fortunately,
in practice the vast majority of the classes comes with a test suite containing
exactly the operation calls with some significant instances as parameters.

The extraction of the significant instances is performed by collecting from the
test suite all the objects passed as arguments in an operation call. Each value is
then stored in an instance pool that collects all the values for each parameter.
The values of the instances are stored directly in the instance pools, ready to
be used in the exhaustive search. Instances collected from the test suite are very
useful, but it happens that they may be redundant. To avoid the generation of
models with a lot of states that do not unveil new behaviors, we should filter out
the instances collected in order to keep a minimal subset able to exercise all the
possible behaviors of the component without having to deal with a huge model.
At this stage of the development, the tool is able to extract instances from a
test suite but does not select the minimal subset of instances. This task is left
to the user who has to find the best trade-off between the number of instances
used for the analysis and the completeness of the Bem generated.

3.2 Synthesis of the Protocol Behavior Model

Once the Bem is generated we can go further with the analysis and generate
the corresponding Pbm. Generation is quite straightforward since the Bem al-
ready includes all the needed information about the outcome of each operation
in each state of the model. Pbm inference algorithm consists of the following
steps: i) generalization of the Bem states through the Pbm abstraction function;
ii) introduction of each Bem transition in the Pbm. The generalization of the
information contained in a Bem state is performed by applying to each state
of the Bem the Pbm abstraction function we discussed earlier. Then for each
transition of the Bem we add a transition to the Pbm starting from the repre-
sentative of the equivalence class of the starting node in the Bem and ending
in the representative of the destination node. Because parameters are ignored
in the abstraction, the transformation is likely to produce a non-deterministic
automaton: it may happen that, given a Pbm state, the invocation of the same
operation with different values of the parameters produces different outcomes
that turns into different destination states.

4 Runtime Phase: Monitoring and Change Detection

Bems and Pbms are used to perform runtime verification that the component,
which may evolve independently, behaves accordingly to its models. To do so, we
monitor the execution of an application and detect changes in the behavior of
its components. Being able to detect changes is crucial when the application in

6th Workshop on Models@run.time at MODELS 2011 43

which the component is embedded has to be self-adaptive and react to compo-
nent misbehaviors in an appropriate way. More precisely, in this section we show
that the data collected at runtime can be used on the one hand to enrich the
model with previously unobserved behaviors and on the other hand to highlight
behavioral differences unveiling changes in the component under analysis.

4.1 Monitoring

A monitor is introduced into the running system to allow the comparison of the
actual behavior of the component under analysis and the ones encoded by the
models. Each time an instance of the scrutinized class is created, it is associated
to it a monitoring process in charge of recording the observed execution trace and
analyzing it to discover violations with respect to the protocol described by the
model. Violation detection is performed by comparing the actual behavior with
the one encoded in the model. Therefore it has to gather enough information to
determine the state in which the component is. The system reports a violation
when it finds an exceptional outcome for an operation that, according to the
model, should always terminate normally or, on the opposite, when an operation
that the model describes as exceptional does not throw anything.

In order to maintain the lowest overhead possible on the system under analy-
sis, the violation detector relies, when possible, exclusively on the observed trace.
When the Pbm has only deterministic transitions this process is straightforward
and violations can be detected directly from the execution trace. Unfortunately,
almost all components with a complex behavior are non-deterministic so there is
the need of a deeper inspection by executing operations that could provide more
information and thus reveal the state in which the component is. The solution
proposed in this paper is an enhanced monitoring phase, not relying exclusively
on what it is observable from the current execution but also able to perform some
more queries to the object under analysis. For any state having non-deterministic
outgoing transitions, we can determine which are the operations that make it
possible to know which one has been taken. These discriminators are the op-
erations on the destination states having different behaviors. Nondeterminism
can therefore be solved by invoking the discriminating operations on the object
under analysis. With these additional operations it is easy to find the compatible
state among the different nondeterministic possibilities. Discriminating opera-
tions have to be invoked on an instance of the object exactly in the same state
of the actual component and should be tested with both the original instance
pool and the instances observed in the trace for the operation. The original in-
stance pool alone would not be so effective as it would make it impossible to
find behaviors related to the parameter re-use.

Clearly it is not possible to call additional operations on the actual compo-
nent under analysis. It would lead to interferences with the service provided by
the system. Modifiers have undesirable side effects but also the invocation of a
pure operation could introduce delays and reduce the quality of service. In order
be able to carry on the analysis without disrupting the offered service, we need
to assume that we can create a clone of the component behaving exactly in the

6th Workshop on Models@run.time at MODELS 2011 44

same way the actual instance does. Moreover, the operations performed on such
clone do not have to change the actual component environment. These assump-
tions reduce the number of components our methodology can deal with, but we
are still able to monitor and analyze a vast class of commonly used elements.

Therefore the monitoring architecture requires: i) to instrument the appli-
cation using the external services; ii) to have the possibility to call operations
on a sandboxed instance of the service; iii) to be able to replay execution traces
in order to put the sandboxed instance in a defined state. With such an infras-
tructure, the verification module can detect changes in the behavior of external
services without interfering with the actual execution of the system.

4.2 Response to Violations

During the monitoring phase it may happen that an observation on the actual
execution conflicts with what it is described by the model. There are two possible
causes for the violation observed: the model could be incomplete, and therefore
needs to be updated, or the behavior of component has changed. The analysis
phase has to be able to deal and react properly to both these situations.

It is possible to discover whether the violations is due to the incompleteness of
the Pbm or to a change in the behavior by replaying on the clone some significant
executions encoded in the Bem. If all of them produce again the previously
observed results, then the model needs to be completed and that violations
simply indicate behaviors never explored before. Otherwise the violation signals
a misbehavior of the component that should trigger a reaction aimed at bringing
back the system in a safe state.

In order to keep the approach feasible, we cannot just test that everything
described by the Bem is still valid. We should rather focus on the part of the
model more closely related to the observed violation. The first step in the se-
lection of the relevant execution traces is the identification of the Bem states
corresponding to the state of the Pbm in which the violation occurred. The initial
part of the test cases can then be generated by looking for the shortest execution
traces able to reach the selected Bem states. The traces obtained in that way
have then to be completed with the operation that unveiled the violation. For
any Bem state the operation has to be called with all the parameters present in
the instance pool used to generate the model.

Model updates have to be performed when the monitoring tool discovers a
violation but there is no evidence of behavioral change. Models are updated
because the behavior of the observed execution does not contrast with what has
been observed in the past. Model updates are first applied to the Bem and then
to the corresponding Pbm.

Updating the Bem means enriching the scope it covers with the trace unveil-
ing the new behavior. Keeping all the information in a single Bem would make
its dimension increase, so we decided to rely on a set of Bems, each one describ-
ing a behavior of the component on the particular scope showing it. Doing that,

6th Workshop on Models@run.time at MODELS 2011 45

we can easily keep track of all the relevant execution exposing the different be-
haviors. Although doing that we may miss some behavior due to the interaction
of the behaviors described by different Bems, this is not an issue: the model
will describe them as soon as they appear at run time. From the set of Bems it
is easy to get the corresponding Pbm. It is quite straightforward to adapt the
inference algorithm described in section 3 to deal with the information contained
on more than a behavioral model: the algorithm has to be applied to each Bem
and the data gathered have to be added to the same Pbm so that it contains
information about all the observed behaviors regardless of the Bem it comes
form. To produce correct abstractions for the new Pbm, all the Bems must have
a coherent set of observers. To ensure that, we must update the scope for the
observer roles in the already existing Bems to have them take into account all
the significant values of the parameters discovered at run time.

A violation requiring to update the models of StorageService reported in
figures 1 and 2 happens when we try to write an empty string of data when no
entry is available. In such situation, the expected ZipException is not thrown
because the write operation does not have to write anything and the component
does not check for the availability of an entry. Therefore, we need to add a Bem
containing the observed trace. Since the violating trace contained a previously
unseen instance, we also have to update the existing Bem to have it consider
the empty string as a parameter for the write operation. For space limitations
the updated models and other examples are only available online at [2].

Change detection takes place when there is at least one test case behaving
differently than what the Pbm prescribes. Since the model encodes the behav-
iors observed in the past, any violation can be considered as an evidence of a
change: at least in the case highlighted by the failing test, the same execution
trace presented a different behavior than the one assumed by the model. The
system has then to react to the behavioral changes detected. We identified two
possible scenarios in order to be able to guarantee the maximal safety though
trying to limit the number of service interruptions. The safer scenario presents a
change that just turns one or more operation call with an exceptional outcome
into invocations that terminates normally. Another possible and more critical
situation affects more deeply the enabledness of the different operations and so
requires a stricter reaction to ensure the safety of the system.

In the first case, the change has to be notified but it does not require to
stop the execution of the application. The detected change is probably just an
addition of new functionalities or interaction patterns that previously were not
present or were disabled. However, for safety reason it is better to leave to the
user the final decision about how to react to this kind of behavioral changes. More
serious problems may arise form behavioral changes that turns the outcome of
an operation from normal to exceptional. Such a change makes it impossible
to substitute the new component to the one the system is expecting to deal
with. At some point there may be an invocation to the operation that changes
its behavior and it is going to always produce a failure due to the exception

6th Workshop on Models@run.time at MODELS 2011 46

thrown. For this reason, when changes like this occur, the only safe solution is
to stop the execution of the system requiring the intervention of a supervisor
able to decide how to fix the problem.

Change detection can be demonstrated using again the models reported in
Figure 1 and 2 to monitor the behavior of a StorageService. For a very simple
example we can assume that the component stops working and changes its behav-
ior to always throw an exception every time putNextEntry is invoked. In this sce-
nario, any execution of putNextEntry now violates the Pbm. We are interested to
check if the violation is specific to the trace observed or it is a component change;
to check this, we derive the simple test case StorageService().putNextEntry(e1)
from the Bem. Since this test case violates the Bem, it highlights the change of
the behavior of the component.
A more comprehensive evaluation of the effectiveness of the change detection
methodology has been performed injecting faults into the component under anal-
ysis and is available online at [2].

It is important to remark that this methodology is able to identify changes
only when there is at least one failing test case in the ones that can be derived
from the Bem. Since the model does not contain information about every possible
execution it is possible that an actual change is detected as a case in which there
is the need to update the Bem and the Pbm because they does not contain
anything about that particular case. However, since the updates to the model
have to be reviewed by the designer of the system the procedure prescribed by
our methodology can be considered effective.

5 Related Work

The protocol models discussed in this paper describe the behavior of a software
component accordingly to whether its operations are enabled or not. The un-
derlying idea has been introduced with the concept of Typestate in [13]. A
similar abstraction has also been used in [5], which presents a technique to build
an enabledness model from contracts and static analysis.
Tautoko [4] generates similar models starting from an existing test suite. Our
tool does not infer the model directly from the test execution traces. It rather
exploits the test suite to gather some domain knowledge to use with the Spy
methodology.
Monitoring of both functional and non-functional properties of service-based sys-
tems are described in [3]. Our technique is based on Pbms and Bems, therefore
we are able to model and monitor very precisely functional properties of a soft-
ware component.
Invite [12] developed the idea of runtime testing, pointing out the requirements
the running system has to satisfy in order to make it possible. In this work we
also introduced a technique to encode test cases in Bems and to select the ones
can highlight a behavioral change.
Tracer [10] builds runtime models from execution traces enabling richer and
more detailed analysis at an higher abstraction level. In [8] models are used to

6th Workshop on Models@run.time at MODELS 2011 47

monitor system executions and to detect deviation from the desired behavior of
consumer electronic products. Our approach combines these two aspects provid-
ing a methodology able to both detect violations and build models according to
the information gathered at run time.

6 Conclusions and Future Work

Behavior models can be useful throughout all the lifecycle of a software com-
ponent. Traditionally, such models are used at design time to support system
designers in they choices. However, they can also play a significant role after the
application is deployed by monitoring its execution and checking system prop-
erties. That is particularly useful in the context of systems in which verification
must extend to run time, because of unexpected changes that may occur during
operation.

This work focuses on the runtime aspects, extending the original scope of be-
havior models to running systems. The models and methodology proposed can
maintain an updated representation of the behavior of the component consid-
ering observations made during the actual execution of a running system. Our
approach is also able to detect and notify the system designer behavioral changes
in the monitored components. Preliminary experiments show that our approach
is effective and can deal with non-trivial components. Further research is going
to enhance the models removing current limitations and thus making it possible
to monitor an even broader class of software components.

References

1. Oracle, java se 6.0 doc., 2011. http://download.oracle.com/javase/6/docs/

index.html.
2. Spy at runtime. http://home.dei.polimi.it/mocci/spy/runtime/, 2011.
3. L. Baresi and S. Guinea. Self-supervising bpel processes. IEEE TSE, 2011.
4. V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test cases

for specification mining. In ISSTA ’10, Trento, Italy, 2010.
5. G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Automated abstrac-

tions for contract validation. IEEE TSE, 2010.
6. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to

highly dynamic, self-adaptive service-based applications. ASE, 2008.
7. C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by

graph transformation. In ICSE ’09, Vancouver, Canada, 2009.
8. J. Hooman and T. Hendriks. Model-based run-time error detection. In Mod-

els@run.time ’07, Nashville, USA, 2007.
9. D. Jackson. Software Abstractions:Logic,Language,and Analysis. MIT Press, ’06.

10. S. Maoz. Using model-based traces as runtime models. Computer, 2009.
11. A. Mocci. Behavioral Modeling, Inference and Validation for Stateful Component

Specifications. Ph.D. thesis, Politecnico di Milano, Milano, Italy, 2010.
12. C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of software applica-

tions using the in vivo testing approach. In ICST ’09, Denver, Colorado, 2009.
13. R. E. Strom and S. Yemini. Typestate: A programming language concept for

enhancing software reliability. IEEE TSE, 1986.

6th Workshop on Models@run.time at MODELS 2011 48

Using Model-to-Text Transformation for
Dynamic Web-based Model Navigation

Dimitrios S. Kolovos, Louis M. Rose, and James R. Williams

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK.

{dkolovos,louis,jw}@cs.york.ac.uk

Abstract. One of the main objectives of modelling is to enable collabo-
rative decision making and communication among the stakeholders of the
system. It is essential that both technical and non-technical stakehold-
ers can access and comment on the models of the system at any time.
In this paper we propose a model-to-text transformation approach for
producing dynamic, web-based views of models – captured atop differ-
ent modelling technologies and conforming to arbitrary metamodels – so
that stakeholders can be provided with web-based, on-demand and up-
to-date access to the models of the system using only their web browser.
We demonstrate the practicality of this approach through case studies
and identify a number of open challenges in the field of web-based model
management.

1 Introduction

One of the main objectives of modelling is to enable collaborative decision mak-
ing and communication among the stakeholders of the system – particularly so
in the early stages of the software development lifecycle. To this end, stakehold-
ers must be able to access – possibly different parts of – the models constructed
by the designers of the system. In principle, the simplest way to achieve this is
to establish a centralised repository where designers share the models that they
construct with other stakeholders, so that the latter can navigate the models
using the same modelling tools that the designers used to create them. How-
ever, experience obtained from interacting with our industrial partners – some
of which was summarised in an earlier paper [1] – suggests that this is not always
feasible or desirable, for a number of reasons:

– Cost: Purchasing licenses of expensive modelling tools only to view and
provide feedback on the models of the system may be impractical or too
expensive.

– Time: In some industrial environments, installing new software requires a
formal approval process which can take significant time to complete.

– Complexity/Training: Modelling tools are typically complex because they
accommodate the needs of software designers. As such, training is typically
required for non-expert users, even to support them in relatively straightfor-
ward tasks.

6th Workshop on Models@run.time at MODELS 2011 49

– Access control: It may be desirable that some stakeholders are only granted
access to some parts of the models.

We have encountered the above issues in the context of ongoing work with
one of our major industrial collaborators. To address such issues in practice,
modellers typically construct word processor design documents which are then
disseminated to the stakeholders, who therefore are not required to purchase,
install and learn to use any new software. However, this approach has known
shortcomings. Assembling and synchronising such documents can be labour-
intensive and error-prone, particularly if they are not supported natively by the
modelling tool. Moreover, for large models, designers need to create correspond-
ingly large documents, which ultimately become difficult to navigate and read.
Finally, and as a consequence of the other shortcomings, such design documents
quickly become out-of-date and do not reflect the current version of the models.

To eliminate the overhead of creating and distributing snapshots of the cur-
rent versions of models in the form of design documents, we propose a model-to-
text transformation approach for producing dynamic web-based views of models
– captured atop a range of different modelling technologies – so that stakehold-
ers can be provided with web-based, on-demand and up-to-date access to the
models of the system from their web browser and without needing to purchase
or install any additional tooling.

The remainder of the paper is organised as follows. Section 2 introduces the
proposed transformation-based approach and discusses the details of the techni-
cal solution we have developed to realise it. Section 3 provides two case studies
that demonstrate using the proposed approach to implement web application for
navigating and animating state machine models, and for browsing Ecore meta-
models in a Javadoc-like fashion. Section 4 discusses related work and Section 5
concludes the paper and provides interesting directions for further work on the
subject.

2 Dynamic Web-Based Model Navigation

To overcome the shortcomings identified above, we propose an approach that al-
lows stakeholders to have direct, on-demand and up-to-date access to the (parts
of the) models in which they are interested. Additionally, the approach pro-
posed in this section – like the design document approach – does not require
stakeholders to purchase, install, or use any additional software other than their
web browser.

To enable web-based access to models that have been defined atop a range of
modelling technologies, in this work we have integrated the Epsilon Generation
Language [2], which is a template-based model-to-text transformation language,
with a Java-based servlet container and web-server (Tomcat). Like most model-
to-text transformation languages, EGL was originally designed to support batch
code generation; in this work, by integrating EGL with Tomcat, we can use
EGL templates as server-side scripts to generate HTML content from models on
demand, as displayed in Figure 1.

6th Workshop on Models@run.time at MODELS 2011 50

Tomcat

EGL Template

loads/
reads

locates/
executes

produces
HTML

Web Browser

requests

returns
HTML

EGL Controller
Servlet

Web Application
 Model Repository

forwards
request

returns
HTML

Fig. 1: EGL as an on-demand server-side scripting language in Tomcat

In the following sections we provide a brief overview of EGL and its under-
lying infrastructure and discuss the process and challenges involved in using it
as a server-side scripting language. Before detailing the technical aspects of our
work, we stress that, although in this work we use EGL and Tomcat as support-
ing technologies for our implementation, the proposed approach is not bound
to a specific model-to-text transformation language or web-server. In principle,
it can be implemented using any other model-to-text transformation language,
such as Xpand[3], MOFScript[4] and Acceleo1. We selected EGL and Tomcat
due to our technical expertise with them.

2.1 The Epsilon Generation Language

EGL is a template-based model-to-text transformation language implemented
atop the Epsilon model management platform [5]. Epsilon provides a layered
architecture that enables the construction of interoperable task-specific model
management languages for tasks such as model transformation, validation, com-
parison, merging and refactoring. To enable model management languages built
atop it to manage models captured using different modelling technologies, Ep-
silon provides an abstraction layer called EMC (Epsilon Model Connectivity)
which specifies an API against which drivers for different modelling technologies
are implemented. To date, EMC drivers for technologies such as EMF, MDR,
Z (through CZT [6]), and plain XML have been implemented – and as such, all

1 www.eclipse.org/acceleo

6th Workshop on Models@run.time at MODELS 2011 51

model management languages in Epsilon can manage models captured with all
of these technologies. A more detailed discussion on EMC is available in [7].

As EGL is implemented atop Epsilon, it is interoperable with all of the mod-
elling technologies listed above. Therefore, although in this work we demonstrate
using EGL to build web applications around EMF-based models, any of the sup-
ported modelling technologies can also be used.

2.2 Integration with Apache Tomcat

Apache Tomcat is a widely used web server and Java servlet container. Tomcat
comes with built-in support for the Java Server Pages (JSP) server-side scripting
language for producing dynamic web pages, but also provides a flexible architec-
ture which allows developers to extend it with support for additional server-side
languages. To integrate EGL with Tomcat, we added a new servlet mapping
that instructs Tomcat to redirect all requests for URLs that end with .egl to a
dedicated controller servlet that is responsible for processing these requests.

As illustrated in Figure 1, when Tomcat receives a request for a URL that
ends with .egl, it forwards the request to the EGL controller servlet which in turn
locates and parses the respective EGL template, and if no errors occur during
parsing, it executes the template and returns the produced text to Tomcat –
which finally returns it to the browser. Similarly to the majority of server-side
programming languages, EGL templates have access to a number of predefined
variables for accessing request parameters and setting/getting session and appli-
cation properties. Moreover, since the expression language on which EGL builds
can reflectively access Java objects, EGL templates can interoperate seamlessly
with existing Java libraries, and can be used in the context of frameworks such
as Apache Struts2, which facilitates the creation of J2EE applications.

Accessing Models To minimise the overhead of loading and storing models
in individual EGL templates, each web application is provided with a dedicated
model repository which EGL templates can access – to load and store models –
via the built-in modelManager variable. The application model repository caches
models so that they can be readily accessed by all of the EGL templates in an
application. Templates have read/write access to the models in the repository;
however, the ability for multiple users to modify models in the repository concur-
rently depends on whether the underlying modelling technology is thread-safe
or not. In the current EGL–Tomcat integration, only support for EMF models
has been implemented, and as EMF is not thread-safe, all of the applications
that we have constructed so far have read-only access to the underlying models.

Template Factories EGL provides several types of built-in template [2]. For
example, EglTemplate is used for generating plaintext and EglFileGeneratingTe-
mplate for generating files on disk. Templates are accessed via the built-in Tem-
plateFactory variable. Extenders of EGL can also specify their own template

2 http://struts.apache.org/

6th Workshop on Models@run.time at MODELS 2011 52

types and their own template factories for capturing and re-using other code
generation logic. For instance, the example described in Section 3.1 uses a cus-
tom template type and factory to produce an image file from the text generated
by a template.

The dedicated EGL servlet queries the metadata of each web application
to determine which type of template factory will be used to execute the tem-
plates of that application. Users can specify the fully-qualified Java class name
of the template factory for their application as a parameter to the EGL servlet
definition.

Caching To facilitate scalability of the applications developed atop the ap-
proach described in this section, the EGL servlet provides two types of caching,
which can be used in web-based EGL applications. Caching is achieved from
EGL templates via a built-in cache object.

Page Caching allows repeated requests for the same URL to be served without
invoking any EGL templates. The EGL controller servlet maintains a cache that
maps requests (URLs) to responses (the HTML generated by invoking an EGL
template). A response is cached the first time that it is requested, and subsequent
requests for to same URL are served from the cache. Applications can control
which requests should be cached via the built-in cache object. Similarly, a URL
can be marked as expired using the built-in cache object, and the next request
for that URL will be served by invoking an EGL template rather than from the
cache.

Fragment Caching allows unchanging page elements – such as headers and foot-
ers – to be shared between requests for different URLs, and requires that the
EGL application be decomposed into separate subtemplates. The EGL controller
servlet maintains a cache that maps subtemplates to partial responses (part of
the HTML generated for a request to a particular URL). As with page caching,
applications can control the fragment caching strategy via the built-in cache ob-
ject, which provides methods for caching and expiring fragments. The case study
in Section 3 uses fragment caching to cache headers, footers and sidebars.

Page caching results in less server-side processing than fragment caching, but
is more brittle. For example, consider the effects of changes to a model on page
and fragment caches. Pages and fragments that have been affected by changes to
a model must be expired (removed from the cache). In the worst case then, the
page and fragment caches must be completely emptied to ensure that stakehold-
ers can view and navigate the updated model. The page cache will become fully
populated only when every page of the web application is visited. By contrast,
fragments for say, shared headers and footers, are cached by a request to any
page, and future requests to any other page benefit from the cached fragment.

6th Workshop on Models@run.time at MODELS 2011 53

3 Case Studies

In this section, we present two case studies that demonstrate using the proposed
approach for browsing behavioural and structural models. The first case study
employs the proposed approach to visualise state machines and concentrates on
automated diagram generation. The second case study illustrates a web applica-
tion for navigating Ecore metamodels in a Javadoc-like style, through which we
demonstrate the caching mechanisms discussed in Section 2.2 and evaluate the
scalability of our implementation.

3.1 Visualisation and Animation of State Machine Models

Figure 2 shows the metamodel for a Mealy machine. A Mealy machine is finite-
state machine that produces an output string in response to an input string.
Each transition between states matches a character from the input string and
generates an output character when fired. A Mealy machine must have one initial
state and the execution ends when the input string has been completely parsed.

Fig. 2: The metamodel for a Mealy machine

In order to facilitate animation of the Mealy machine, asynchronous calls to
two different server-side EGL scripts are required – one to generate an image of
the model’s current state, and another to request the output of the machine upon
firing the selected transition. The user initially requests a standard HTML page,
which, upon loading, makes a request to MealyHandler.egl to generate an
image of the machine in its initial state. Clicking on a successor state will cause
another request to MealyHandler.egl to return the image representing the
machine in the new state, and will also make a request to MealyOutput.egl
to display the results of executing that transition.

Before discussing the two templates used to animate the Mealy machine, we
first briefly summarise the structure of a typical EGL template. EGL templates
comprises dynamic sections, which contain executable code, and static sections,
which contain text to be emitted. Consider Listing 1.2. Dynamic sections, such

6th Workshop on Models@run.time at MODELS 2011 54

1 [% modelManager.registerMetamodel(’MealyMachine.ecore’);
2 modelManager.loadModel(’Example’, ’My.mealymachine’, ’MealyMachine’);
3

4 var currentState = null;
5

6 if (request.getParameter(’st’).isDefined()) {
7 currentState = request.getParameter(’st’);
8 } else {
9 currentState = State.all.select(s|s.initialState==true).first().name;

10 }
11

12 var dotTemplate : Template := TemplateFactory.load(’Mealy2Dot.egl’);
13

14 dotTemplate.populate(’currentState’, currentState);
15 dotTemplate.generate("mealy_" + currentState + ".svg"); %]

Listing 1.1: Generating an SVG image of the Mealy machine

1 digraph G{
2 center=true;
3 nodesep=1.5;
4

5 node [shape=circle, fontname=Tahoma, fontsize=10];
6 [%for (s in State.all) { %]"[%=s.name%]";[% }%]
7 "[%=currentState%]" [color=deepskyblue, style=filled, fillcolor=lightgrey

];
8

9 [% for (t in Transition.all.select(t|t.source.name=currentState)) {%]
10 "[%=t.target.name%]" [color=deepskyblue, href="javascript:top.

doTransition(’[%=currentState%]’, ’[%=t.target.name%]’)"]
11 [%}%]
12

13 [% for (t in Transition.all) {%]
14 "[%=t.source.name%]" -> "[%=t.target.name%]" [label="[%=t.input%]/[%=t.

output%]"]
15 [%}%]
16 }

Listing 1.2: Generating the Graphviz representation of the Mealy machine

as the one on line 9, are enclosed in [% %] tags; static sections, such as the
one on lines 1-5, are not enclosed in [% %] tags. Dynamic sections can take
an alternate form, using a [%= %] tag (such as the one on line 7) to emit a
dynamically computed value (the currentState variable in this case).

MealyHandler.egl (listing 1.1) generates the image of the machine us-
ing Mealy2dot.egl. The call to generate (line 15) delegates to an im-
age generating template factory, which invokes DOT to convert the output of
Mealy2dot.egl to an SVG (Scalable Vector Graphics) image.

Mealy2dot.egl (listing 1.2) outputs a Graphviz3 DOT language descrip-
tion of the machine and the template factory executes the DOT description,
creating an SVG file. Animation is achieved by passing the current state name
as a parameter in the URL query string to MealyHandler.egl (e.g. Mea-
lyHandler.egl?st=s0) which populates the currentState variable in the

3 www.graphviz.org

6th Workshop on Models@run.time at MODELS 2011 55

Fig. 3: Example Mealy machine animation

Mealy2dot.egl template (listing 1.1, line 14). Mealy2dot.egl highlights the
current state by changing its background colour, and assigns URLs to any nodes
reachable by outgoing transitions from the current state, making them clickable
in the generated image. The URLs execute a JavaScript function, doTransi-
tion(src,tgt), which handles the asynchronous request to generate the new
image and replace the existing image with the newly generated one.

After the asynchronous request to generate the image has been made, doTr-
ansition() also makes an asynchronous request to MealyOutput.egl which
returns a string containing the input and output strings from the transition.
These are then printed underneath the image, showing the input and output
history of the animation. Figure 3 shows the output of animating a Mealy ma-
chine over four transitions.

3.2 Navigation of Ecore metamodels

This section presents a web-application for on-demand navigation of Ecore meta-
models in a Javadoc-like style and explores the way in which the scalability of
the proposed approach is affected by the server-side processing load and the
type of caching employed. The results presented in this section suggest that the

6th Workshop on Models@run.time at MODELS 2011 56

Fig. 4: EglDoc for the NamedElement class of UML 2.2 [9].

approach proposed in Section 2 is well-suited to viewing and navigating models
via the web for a significant number of concurrent users.

EglDoc: Metamodel Documentation This section demonstrates the ap-
proach proposed in Section 2 by describing the way in which an existing EGL
application, EglDoc [8, Ch.5], has been ported to provide web-based model nav-
igation and view extraction. EglDoc generates HTML documentation for Ecore
metamodels (and is similar to Javadoc for Java in this respect). Figure 4 shows
the output produced by EglDoc for the NamedElement class of the UML 2.2
[9] metamodel. EglDoc can be applied to produce documentation for any Ecore
metamodel.

EglDoc comprises several templates, which are used to generate the header,
footer, navigation bar and content of each page. An extract of the EGL template
that generates documentation for attributes is shown in Listing 1.3. EGL is a
template-based model-to-text language. Listing 1.3 generates an HTML table of
attributes, listing the name and type of each attribute. Lines 10-12 generate a
link to other pages, using the toUrl() operation on lines 19-21.

The existing version of EglDoc generates one HTML file for each element of
the Ecore metamodel. Porting EglDoc to interoperate with the web-based model
navigation and view extraction approach proposed in Section 2 involved parame-
terising the existing EGL templates to facilitate the identification of metamodel
elements via the URL of a request to the web server. For example, a request for

6th Workshop on Models@run.time at MODELS 2011 57

1 [% if (class.eAllAttributes.size() > 0) { %]
2 <h4>Attributes</h4>
3 <table cellspacing="0">
4 <tr> <th>Name</th> <th>Type</th> </tr>
5 [% for (attribute in class.eAllAttributes.sortBy(a|a.name)) { %]
6 <td>[%=attribute.name%]</td>
7

8 [% if (attribute.eType.isDefined()) { %]
9 <td>

10
11 [%=attribute.eType.name%]
12
13 </td>
14 [% } else { %]
15 <td> </td>
16 [% } %]
17 [% } %]
18 [% } %]
19 [% operation EClassifier toUrl() : String {
20 return self.ePackage.name + ’-’ + self.name + ’.html’;
21 } %]

Listing 1.3: View extraction for attributes in EGLDoc

1 [%
2 modelManager.registerMetamodel(’Ecore.ecore’);
3 modelManager.loadModel(’Sample’, ’UML.ecore’, ’http://www.eclipse.org/emf

/2002/Ecore’);
4

5 if (request.getParameter(’p’).isDefined()) {
6 package = EPackage.all.selectOne(p|p.name = request.getParameter(’p’));
7 }
8 %]

Listing 1.4: Model loading in EGLDoc

the URL EglDoc.egl?p=uml&c=NamedElement to the web-based EglDoc
returns HTML for the NamedClass class of the uml package (in the UML 2.2
metamodel). Listing 1.4 shows the way in which the UML metamodel is loaded
(lines 2-3) and the p parameter of the request is interpreted (lines 6-8). Note
the use of the modelManager built-in variable for loading a model, which was
discussed in 2.2. In Listing 1.4, the model to be loaded (’UML.ecore’) is hard-
coded for clarity. In practice, the location of the model is specified as a URI,
which can be configured by the user.

4 Related Work

Several mature Java-based template languages such as JSP, Velocity4 and Fr-
eeMarker5 are available as server-side scripting languages for Java-based web
servers such as Tomcat. In principle we could have used any of these languages

4 http://velocity.apache.org
5 http://freemarker.sourceforge.net

6th Workshop on Models@run.time at MODELS 2011 58

in combination with the reflective API of EMF – or using code generated from
the respective Ecore metamodels in order to achieve a more concise syntax. For
dynamic languages such as Velocity and FreeMarker, developers could even im-
plement EMF-specific extensions to enable a concise navigation style without
needing to generate code from the Ecore metamodels. However, compared to
these languages, we strongly believe that EGL is more suitable for the task as
it provides first-order logic OCL-based collection navigation operations, built-in
support for accessing mutliple models concurrently, and a number of existing
drivers for interacting with a number of modelling technologies. Even more
importantly, since the model connectivity framework discussed in Section 2.1
provides a uniform interface for different modelling technologies, the underly-
ing modelling technology can be substituted later on if necessary (e.g. switch to
a database-backed model serialisation format for performance reasons) without
requiring changes to the EGL templates.

The Web 2.0 MetaModelbrowser6 is a web application that can visualise
Ecore metamodels and their instances using a fixed tree-based interface that
closely mimics the Eclipse-based EMF reflective tree editor. In contrast to Meta-
Modelbrowser, the approach proposed in this paper allows developers to im-
plement custom interfaces for displaying models to end users. Also, using the
Graphviz extension our approach enables developers to also embed automatically-
generated diagrams to their model browsing web applications.

5 Conclusions and Further Work

In this paper we have presented an approach for re-using a model-to-text trans-
formation language in order to provide support for web-based model navigation
and view extraction. Using this approach, non-technical stakeholders can have
access to the latest versions of the models of the system from their browser,
without needing to purchase and install additional software. Moreover, using
such an approach, access control can be enforced if necessary.

With the advent of cloud computing, we believe that web-based model man-
agement is a promising field of study with significant potential for practical
real-world impact. A few of the open issues that we have identified through this
work include management of very large models, concurrent modification of mod-
els, caching, and access control. In the future, we will investigate related work in
areas such as the management of very large databases and web-based technolo-
gies, and adapt best-of-breed approaches to solve the respective problems in the
field of web-based model management.

Acknowledgements. The work in this paper was supported by the Euro-
pean Commission via the MADES and INESS projects, co-funded under the
7th Framework programme (grants #218575 (INESS), #248864 (MADES)). We
would also like to thank Darren Clowes, Chris Holmes, Julian Johnson, Ray

6 http://www.metamodelbrowser.org/

6th Workshop on Models@run.time at MODELS 2011 59

Dawson, and Steve Probets from BAE Systems and Loughborough University
for their contributions to earlier work that led to the approach presented in this
paper.

References

1. Darren Clowes, Dimitrios S. Kolovos, Chris Holmes, Louis Rose, Richard Paige, Ju-
lian Johnson, Ray Dawson, and Steve Probets. A Reflective Approach to Model
Driven Web Engineering. In Proc. 6th European Conference on Modelling Founda-
tions and Applications (ECMFA), Paris, France, 2010 2010.

2. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, Fiona A.C. Polack. The Ep-
silon Generation Language (EGL). In Proc. European Conference in Model Driven
Architecture (ECMDA), 2008.

3. Sven Efftinge. XPand Language Reference.
http://www.eclipse.org/gmt/oaw/doc/4.1/r20 xPandReference.pdf.

4. Jon Oldevik. MOFScript User Guide. http://www.eclipse.org/gmt/mofscript/doc/
MOFScript-User-Guide.pdf.

5. Eclipse Foundation. Epsilon Modeling GMT component.
http://www.eclipse.org/gmt/epsilon.

6. Community Z Tools. http://czt.sourceforge.net.
7. Dimitrios S. Kolovos, Louis M. Rose, Richard F. Paige. The Epsilon Book. 2008.

http://www.eclipse.org/gmt/epsilon/doc/book/.
8. Louis M. Rose. A text-generation language for Epsilon. Master’s thesis, University

of York, 2007.
9. OMG. Unified Modelling Language 2.2 Specification [online]. [Accessed 10 February

2011] Available at: http://www.omg.org/spec/UML/2.2/, 2007.

6th Workshop on Models@run.time at MODELS 2011 60

Runtime Variability Management for
Energy-Efficient Software by

Contract Negotiation

Sebastian Götz, Claas Wilke, Sebastian Cech, and Uwe Aßmann

Technische Universität Dresden
Institut für Software- und Multimediatechnik

D-01062, Dresden, Germany
sebastian.goetz@acm.org,

{claas.wilke, sebastian.cech, uwe.assmann}@tu-dresden.de

Abstract. Improving the energy efficiency of software systems requires
runtime adjustments and explicit knowledge about the system’s vari-
ability. Component-based software has inherent variability in terms of
multiple implementations for components. These implementations uti-
lize hardware resources, which are direct energy consumers, leading to
a further dimension of variability: the mapping of implementations to
resources. The performance modes of hardware resources span a third
dimension of variability. Hence, to realize energy-efficient software sys-
tems the central question is: which implementations should run on and
utilize which resources in which performance mode to serve the user’s
demands? This question can only be answered at runtime, as it relies on
the runtime state of the system. In this paper, we show how combined
hard- and software models can be utilized at runtime to determine valid
system configurations and to identify the optimal one.

1 Introduction

Component-Based Software Development (CBSD) [15] has become a major de-
velopment approach for software systems. Although both functional and non-
functional properties of component-based software systems have been consid-
ered, only few approaches focus on energy consumption as a non-functional re-
quirement. Within the research projects CoolSoftware1 and QualiTune2 we are
developing a model-driven CBSD approach for software systems that can be op-
timized w.r.t. their provided quality and energy consumption at runtime. We
call this approach Energy Auto Tuning (EAT) [8]. Since the energy consump-
tion of software components depends on the utilized hardware, our component
model requires a modeling of both: software components having multiple imple-
mentations and hardware components (for simplicity called resources). Notably,

1 http://www.cool-software.org/
2 http://www.qualitune.org/

6th Workshop on Models@run.time at MODELS 2011 61

components do not only impose energy consumption by being executed on hard-
ware. For example, energy consumption due to sending data using a network
device strongly depends on the kind of network device utilized. While resources
can vary in their energy consumption and provided qualities (e.g., CPU speed
or memory size), software components can vary in their required hardware re-
sources (e.g., different sort algorithms require different amounts of memory) and
their required and provided qualities (e.g., a software component can require
another component’s service of a certain quality and/or can provide services in
different qualities to other components).

As models comprising only few components, can already describe different
component implementations and deployment locations (e.g., servers), they span
a solution space that describes all possible configurations of modeled software
systems on modeled hardware landscapes. The problem we address in this pa-
per is, how to select the most appropriate configuration from this solution space
specified by models w.r.t. minimum energy consumption at runtime. Thus, we
first have to compute all configurations that are valid (i.e., which fulfill require-
ments of involved components such as dependencies, required resources and pro-
vided qualities). Second, we have to select the variant requiring the minimum
energy consumption whilst still serving the user’s non-functional requirements.
We use contracts to model quality dependencies between components and call
the determination of the optimal configuration contract negotiation, following
the definition of Quality-of-Service-level contracts by Beugnard et al. [2] along
with Meyer’s design by contract principle [10].

The process of contract negotiation has to take place at runtime, which im-
poses the need to utilize our aforementioned models at runtime, too. E.g., the
available hardware infrastructure is represented by a model describing each ex-
isting resource along with its properties. This model changes over time, e.g., due
to failing or added resources. The same holds for our software models, which
need to be kept up to date, e.g., due to added components. The runtime data
represented by these models is collected by resource or energy managers. Both
processes, hence, work on runtime models.

The remainder of this paper is structured as follows: We introduce the Cool
Component Model (CCM) which is the basis for our CBSD architecture in Sect. 2
using a simple video server example. Furthermore, we present the Energy Con-
tract Language (ECL), that describes provided and required qualities of soft-
ware and hardware components. We describe our contract negotiation approach
in Sect. 3. Afterwards, in Sect. 4 we present and demarcate from related work.
Finally, in Sect. 5 we discuss future work and conclude this paper.

2 Background / Context

To capture EAT systems, we developed the energy-aware component model CCM
and the contract language ECL. The CCM provides concepts to model hierar-
chical system architectures and covers both software components and hardware
resources, because software consumes energy only in an indirect manner (i.e.,

6th Workshop on Models@run.time at MODELS 2011 62

VideoPlayer Decoder DataProvider
playVideo getStream loadData

VLC QT Free Com. File URL

framerate : fps dataRate : MB/s dataRate : MB/s

ComponentType

non-functional propertiesImpl.

provided port

required port

Legend:

Fig. 1. VideoPlayer SW-Component Types and Implementations.

the energy is consumed by physical resources which are utilized by the soft-
ware). ECL provides concepts to express dependencies between CCM compo-
nents based on non-functional properties. This implies dependencies between
software components as well as software and hardware components. In this sec-
tion we introduce CCM and ECL, by means of a video application scenario. In
Sect. 3 we use the scenario to explain our contract negotiation approach.

2.1 Capturing Software Components and Resources

The CCM distinguishes between modeling of the system structure of hardware
resources, software components and variants of both. In our project’s scope,
variants are concrete hardware resources as well as software component imple-
mentations. The system structure defines how a system may look like and, thus,
represents type declarations for specific variants. For instance, consider the up-
per part of Figure 1 that shows the types of a video application. It consists
of several software component types, namely a VideoPlayer, a Decoder and a
DataProvider3. Each type may have one or more port types representing an
interface of the component. Port types can be used to connect different compo-
nents. A set of connected components describes the software part of a system.

Concrete implementations (i.e., variants) of a software component (shown in
the lower part of Figure 1) have to correspond to the component’s type. In our
example there are two variants of the type Player, the VLC and Quicktime
(QT) implementation. For the Decoder type a free (Free) and a commercial
(Com.) implementation are available. Finally, the DataProvider is implemented
as a local file reader (File) and a remote URL reader (URL).

To capture types available in the hardware landscape, resource types have
to be specified. Figure 2(a) defines resource types of a hardware landscape on
which our video application shall be executed. The Infrastructure consists of
one or more Servers, whereas each server contains one or more CPUs, network
interfaces (Net), RAM chips and hard disks (HDD). For reasons of simplicity, we
omit port types of resource types in the given example.

For each component type (software and hardware) non-functional properties
can be defined. For instance, the software component type Player defines a

3 We denote component types using typewriter and variants of them using italic font.

6th Workshop on Models@run.time at MODELS 2011 63

Server

NetCPU RAM HDD

frequency : GHz
performance : GFLOPS
cpuLoad : percent

free : MB = total – used
used : MB
total : MB
throughput : GB/s

bandwidth : Mb/s free : GB = total – used
used : GB
total : GB
throughput : MB/s

1..*

1..* 1..* 1..* 1..*

(a) CCM Structure Model for Hardware Landscapes.

Server 1 : Server

Net_S1 : NetCPU_S1 : CPU

RAM_S1 : RAM HDD_S1 : HDD

frequency = 3 GHz
performance = 45 GFLOPS

free = 402 MB
used = 110 MB
total = 512 MB
throughput = 3 GB/s

bandwidth = 100 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

Server 2 : Server

Net_S2 : Net CPU_S2 : CPU

RAM_S2 : RAM HDD_S2 : HDD

frequency = 1,5 GHz
performance = 24 GFLOPS

free = 1500 MB
used = 512 MB
total = 2048 MB
throughput = 4 GB/s

bandwidth = 54 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

(b) CCM Variant Model of a Hardware Landscape Comprised of 2 Servers.

Fig. 2. CCM Hardware Structure and Variant Model.

property framerate in frames per second (fps) whereas the resource type HDD
defines a property used (disk space) in GB. Such properties play an important
role for specifying ECL contracts and are the basis for contract negotiation.

Figure 2(b) shows a concrete hardware landscape of the resource type system
mentioned above. It consists of two servers with specific resources according to
the definitions at the type level. The servers are connected by their network
devices as depicted by the solid line between Net S1 and Net S2. Consider that
properties defined at type level are available at variant level with concrete values.
Furthermore, each hardware resource variant has to provide a behavior model
that defines its energy consumption w.r.t. its utilization. These behavior models
have to be provided as templates for each resource type and are instantiated for
each concrete resource using the values determined by our resource managers
at installation time (i.e., the first time the resource is registered at the runtime
environment). We derive the implied energy consumption for a given system
configuration (i.e., the distribution of SW components in the infrastructure)
and user request by simulating these models. Since the energy consumption
computation is not part of contract negotiation, these details are omitted here.
The general idea is described in [7].

Notably, variant models are not defined by the developer, but generated at
runtime by our Three Layer Energy Auto Tuning Runtime Environment (THE-
ATRE) in accordance to the structural models for HW and SW. THEATRE
consists of three layers: the user-, software- and resource layer. Each layer is
controlled by a global manager; the Global User Manager (GUM), Global En-
ergy Manager (GEM) and Global Resource Manager (GRM). The GEM has the
central role of retrieving information from the GUM and GRM to initiate the

6th Workshop on Models@run.time at MODELS 2011 64

process of contract negotiation and, based on the result, to perform a system re-
configuration. The GUM knows about the details of user requests and associated
non-functional requirements of the respective users. Finally, the GRM knows the
details about the currently available hardware by monitoring it. These managers
generate the respective variant models and keep them up-to-date. Distributed
servers are handled by local managers for each layer. E.g., in a 2-server scenario,
the first server takes the lead by hosting the global managers, whereas the second
server hosts local managers only. Each server, which is part of the system, runs
a Local Resource Manager, which registers the server and all its resources at
the GRM and sends notifications whenever a property (i.e., the frequency of a
CPU) changes. It is important to note that we include subsymbolic information
into our variant models (i.e., concrete numbers) and postpone symbolization un-
til contract negotiation. The information required to derive symbols from the
values of non-functional properties is encapsulated in our contracts, which are
described in the following subsection.

2.2 Specification of ECL Contracts

ECL is used to define dependencies between CCM components using contracts,
which are specified for each variant. Therefore, an ECL contract represents a spe-
cific view of a variant regarding its dependencies to other types. A contract may
define one or more modes, whereas each mode defines dependencies to other com-
ponents. Software components can depend on other software components as well
as hardware resources, whereas hardware resources can depend on other hard-
ware resources only. Each dependency relates to a component type and defines
bounds for required values of properties at runtime. In addition to constraints
expressing required properties, provided properties are specified as well.

Listing 1 shows a contract for the VLC video player as a concrete implemen-
tation of the VideoPlayer component. It defines that the player can be used
in two modes: high- and lowQuality. For highQuality the contract specifies
that a CPU and a Net device are required. The CPU needs to be utilized at most
to 50% and needs to have a frequency of 2 GHz at least.4 The Net device has
to offer at least a 10 MBit/s bandwidth. Furthermore, a Decoder component is
required. Any implementation of that software component type, which is able
to provide a data rate of at least 50 KB/s can be used. Finally, the contract
defines that in the highQuality mode a minimum framerate of 25 fps and a res-
olution of 1024x768 pixels is provided. To determine the hardware requirements,
micro-benchmarks written by the component developer, which address the non-
functional properties of interest, are used. As each software component variant
is defined by one contract, there exist six contracts specifying SW/HW depen-
dencies in total. The remaining contracts not shown in Listing 1 are similarly
structured.

4 To ease comprehensibility, we use frequency instead of a performance property mea-
sured in instructions per second.

6th Workshop on Models@run.time at MODELS 2011 65

1 contract VLC implements VideoPlayer {
2 mode highQuality {
3 //required resources
4 requires resource CPU {
5 max cpuLoad = 50 percent
6 min frequency = 2 GHz
7 }
8 requires resource Net {
9 min bandwidth = 10 MBit/s

10 }
11 //dependencies on other SW components
12 requires component Decoder {
13 min dataRate = 50 KB/s
14 }
15 //what is provided in turn
16 provides min frameRate 25 Frame/s
17 provides min imageWidth 1024 Pixel
18 provides min imageHeight 768 Pixel
19 }
20 mode lowQuality { ... }
21 }

Listing 1. Example Contract for VLC Video Player.

1 contract StandardRAM implements resource RAM {
2 mode low {
3 provides max free: 0.1*total MB
4 }
5 ...
6 }

Listing 2. Example Contract for Memory Resource.

In addition to contracts for software components, we allow to define contracts
for resources, too. Such contracts suitably illustrate, that the modes of contracts
are symbols, which are derived from the resources’ properties. E.g., a contract
for the resource RAM could define the modes HIGH, MEDIUM and LOW as
indicated in Listing 2.

In summary, a system modeled with CCM and ECL is highly variable in
terms of multiple implementations of component types, multiple quality modes
of each implementation and, according to resource requirements of each quality
mode, multiple possible mappings of implementations to hardware resources.

3 Contract Negotiation

There are three different kinds of variability captured by CCM/ECL. First, mul-
tiple implementations may exist for each software component type. Second, in

6th Workshop on Models@run.time at MODELS 2011 66

an IT infrastructure with more than one server, variability exists in the decision
on how to distribute the software components on this IT infrastructure. Finally,
the different quality modes specified in ECL denote the third kind of variability.
To utilize this variability at runtime for increasing energy efficiency, an approach
to determine the optimal system configuration in this regard is required.

This determination can be seen as a special kind of constraint solving op-
timization problem (CSOP). The goal is to identify the configuration, which
implies the lowest energy consumption whilst still serving the user’s request and
demands. Thus, resource employment (cost) has to be negotiated against the
gained utility, where the connection between cost and utility can be expressed as
constraints. Hence, constraint programming in general can be applied to solve
the CSOP. Because our particular problem is a tradeoff negotiation, express-
ible using linear constraints, we can use linear programming, which allows the
employment of more efficient solving algorithms. To express mappings of com-
ponents to resources, we need to constrain the domain of this kind of variables
to be of Boolean type, i.e., only the integer values 0 and 1 are permitted. Thus,
our problem can be classified as a mixed integer linear program (MILP).

An ILP consists of an objective function, a set of constraints and variables be-
ing used in both [12]. The objective function is either maximizing or minimizing.
In our special case, the objective is to minimize the energy-rated resource usage.
Energy-rated means, that there is a factor, which translates between resource
usage and energy consumption. This normalizes the different resource usage do-
mains, which else would not be comparable (e.g., size of RAM versus frequency
of CPU). A naive approach to determine these factors is to use the standard
energy consumption rate, which usually can be found in the resource specifica-
tion. A more sophisticated approach takes energy-saving and performance modes
of resources into account. In this case, factors can be computed using profiling
approaches, like Süttner presented in [14].

Our ILP comprises four kinds of variables. Variables expressing resource us-
age are the first kind, e.g., usage#Server1#RAMS1#size. This variable de-
notes the size used of the main memory on Server 1. The second kind of variable
expresses the mapping selection. E.g., b#FreeDecoder#fast#Server2 denotes
whether or not the FreeDecoder implementation in fast mode has to be mapped
to Server 2 (the initial b is meant to indicate that this variable is of Boolean
type). Software-related properties, like framerate, form the third kind of vari-
able. Finally, the server baseload consumption forms the forth kind of variable.

The objective function of our ILP is shown in Equation 1. The goal is to
minimize the sum of all resource usage variables and the server baseload con-
sumption. The resource usage variables are normalized by a respective factor,
which translates resource usage into power consumption and is determined by
our resource managers the first time a resource registers at the system.

min
∑

(factorxyz × usage#serverx#resourcey#propertyz) + (1)∑
baseload#serveri

6th Workshop on Models@run.time at MODELS 2011 67

The constraints of the ILP can be divided into four classes: (i) selection
criterias, (ii) resource usage and server baseload, (iii) implied values for non-
functional properties and (iv) user demands. The first class corresponds to the
information present in the structural model, that is, which (and how many)
components are required. In our example, one implementation of each software
component is required. The requirement, that exactly one implementation of
a component type t has to be chosen, can be expressed by constraints of the
following form. ∑

x,y,z

(b#implx,t#modey#serverz) = 1.0; (2)

The second class of constraints describes the boundaries of resource usage
variables and how they correlate to the mapping of implementations to resources.
For each resource usage variable a constraint for the upper bound (3) and the
lower bound (4) is introduced. The values for these boundaries are extracted
from the hardware variant model.

usage#Server1#RAMs1#size <= 512.0; (3)

usage#Server1#RAMs1#size >= 0.0; (4)

The baseload of servers (determined by the local resource managers) is re-
flected by constraints for each mapping variable as depicted in Equation 5.

baseload#serveri = b#implx#modey#serveri (5)

The impact of mapping an implementation to a resource can be extracted
from ECL contracts and can be represented in constraints like exemplary de-
picted in Equation 6. Here, e.g., the first addend of the sum, states that the
FreeDecoder implementation requires 512 MB of RAM to operate in fast mode.
The same statement holds for any other server, but the example equation refers
to RAM usage of Server 1 only.

usage#Server1#RAMs1#size =

512.0 ∗ b#FreeDecoder#fast#Server1 +

256.0 ∗ b#FreeDecoder#slow#Server1 +

128.0 ∗ b#CommercialDecoder#slow#Server1 + (6)

512.0 ∗ b#CommercialDecoder#fast#Server1 +

1536.0 ∗ b#CommercialDecoder#ultrafast#Server1

The same principle is applied for software-related non-functional properties,
which are the third class of constraints as shown exemplary in Equation 7. It
states, among others, that the throughput will be five bit per second, if the
URLReader is mapped to Server 1 and configured to run in URL mode.

6th Workshop on Models@run.time at MODELS 2011 68

throughput = 5.0 ∗ b#URLReader#url#Server1 +

20.0 ∗ b#FileReader#file#Server2 + (7)

5.0 ∗ b#URLReader#url#Server2 +

20.0 ∗ b#FileReader#file#Server1

Finally, the user demands have to be integrated as a constraint, too. Such
a user request, like playing a video with a framerate of at least 20 frames per
second, can be integrated as a constraint in a straightforward way:

framerate >= 20.0; (8)

The ILP as a whole is generated at runtime, whereby the required informa-
tion is extracted from the runtime model of the current hardware infrastructure
and software configuration (software variant model), as well as from the ECL
contracts. To solve the ILP a variety of free-to-use solvers exists. For our proto-
type we have chosen LP Solve 5.55—one of the mature, stable solvers. LP Solve
allows to solve linear programs (LP), too.

The key difference between LP and ILP is that an ILP restricts its variables
to be integers instead of floating reals. In our scenario we need floating reals for
the resource usage and property variables, but integers for our mapping selection
variables. In consequence, the ILP presented above is a mixed integer linear pro-
gram (MILP). The need for the integer restriction can be easily illustrated: if the
variables b#V LC#highQuality#Server1 and b#V LC#highQuality#Server2
are allowed to be floating reals the LP’s solution could be, to map 33% of the VLC
to Server 1 and the remaining 67% to Server 2, which is obviously not possible.

The most commonly used algorithm to solve a MILP is the simplex algo-
rithm [12]. The major drawback of simplex is its exponential runtime. But, im-
portantly for our scenario, it is an iterative approach. That is, once an MILP
has been solved, slight changes to it do not require to perform the whole compu-
tation again, but only parts of it. Thus, unless the system significantly changes,
our optimization approach will benefit from this property of the algorithm. We
plan to measure the energy consumption of solving our ILPs to derive a model
for the prediction of the energy required to compute the optimal configuration.

The solution of the example introduced throughout the paper is that the
VLC implementation should run in highQuality mode on Server 1, the Com-
mercialDecoder should run in slow mode on Server 2 and the URLReader in
URL mode on Server 1. The Decoder implementation is mapped to Server 2
instead of Server 1, due to the CPU performance requirements. If all implemen-
tations run on Server 1, the resulting energy consumption will be lower, but the
framerate of at least 20 fps cannot be ensured. Furthermore, the solution of the
ILP tells us amongst other details, that we need the CPU of Server 1 to operate
at 1.5GHz and the CPU of Server 2 at 800 MHz. Thus, we could force the CPUs

5 http://lpsolve.sourceforge.net/5.5/

6th Workshop on Models@run.time at MODELS 2011 69

to operate slower than usual by exploiting the application knowledge in terms
of the ILP to save energy whilst ensuring the requested user utility.

Notably, if a new server, with a more powerful CPU, is added to the infra-
structure, the ILPs solution is to map all three implementations to that new
server, which requires a system reconfiguration: all implementations have to be
migrated from Server 1 or 2 to Server 3. In general, changes in the infrastructure
as well as to (the available) component implementations are propagated to our
variant models at runtime, which are then used to generate an ILP to derive the
optimal system configuration. Finally, the system has to perform a reconfigura-
tion, which is a sequence of migration steps.

4 Related Work

Within the research project COMQUAD, a component model was developed that
separated components into their specifications and implementations [6], similar
to the component types and component implementations of the CCM. Addition-
ally, the contract language CQML+ [13] was developed to describe required and
provided non-functional properties of software components. The enhancement of
our approach is the more detailed modeling and monitoring of resources.

During the research project SPEEDS and its successor CESAR, the HRC
metamodel [16] was developed. It allows for component-based development of
embedded systems, which includes capabilities to describe hard- and software
components and their behavior. CESAR focuses on a multi-viewpoint, multi-level
development process for embedded systems. Contracts are a central concept in
HRC models which are organized in behavior, safety and real-time viewpoints.
Contracts capture functional and non-functional assumptions and promises of
HRC components. They are used to reason about the consistency of a given
HRC model. In contrast to our approach, SPEEDS and CESAR focus on contract
negotiation at development time and not at runtime. Thus, the HRC metamodel
and its successor CSM support variability at development time, whereas the
CCM focuses on runtime. In addition, neither SPEEDS nor CESAR explicitly
consider energy consumption or EAT.

In the MADAM research project and its successor MUSIC, a component
model for self-adaptive applications on mobile devices has been developed [5].
It supports modeling of non-functional properties and implementation variants.
Although, energy optimization is possible in general, in contrast to our approach,
MADAM/MUSIC do not focus on complete hardware landscapes.

The DIVA research project focused on the management of dynamic adap-
tive systems with special focus on the problem of exponential growth of poten-
tial system configurations by combining methods from aspect-oriented program-
ming/modeling [9] and Model-Driven Software Development (MDSD) [11]. The
DIVA approach allows to automatically adapt a system at runtime supporting
goal-based optimization of non-functional properties as well as rule-based recon-
figuration of the system [4]. The major difference to our approach is the level
of abstraction regarding the values of non-functional properties. DIVA symbol-

6th Workshop on Models@run.time at MODELS 2011 70

izes the impact of implementations on non-functional properties (i.e., the free
size of memory is represented by symbols like LOW, MEDIUM and HIGH and
the impact of an implementation can only be expressed as being low, medium
and so on, too). Our approach allows to consider subsymbolic information in
addition (i.e., the actual value of free size of memory in MB). We encapsulate
symbolization in our contracts, as was shown in Sect. 2.2. Though, reasoning on
subsymbolic information is less efficient, due to the raised complexity, it allows
to derive finer-grained configurations. E.g., a configuration could include not
just the information which CPU to use, but the (optimal) frequency this CPU
should have. Such fine-grained information allows to reduce energy consumption
in addition to the coarse-grain decision of which resources to use. Current hard-
ware is usually far from being energy-proportional [1], which is reflected by a
very high baseload electricity and a narrow working area. Imagine, for example, a
server consuming 100W being idle and 120W at full load. In consequence, energy
savings can mostly be achieved by selecting or turning off the right resources.
In such a scenario symbolic reasoning, as in DIVA, is feasible. But especially
for the next generation of hardware, which is supposed to be more and more
energy-proportional [3] there is a need for finer-grained energy optimizations.

5 Conclusion

In this paper we introduced our contract negotiation approach, which allows to
identify the most energy-efficient mapping of software component implementa-
tions to resources serving a user’s request and demands.

We showed how to formulate this optimization problem as an integer linear
program (ILP) and presented a mechanism using models at runtime to generate
the ILPs in accordance to the current hard- and software as well as the current
users requests and demands. This allows to optimize even dynamic systems,
whose hard- and software entities can supervene, disappear or change over time.

Our approach allows for runtime subsymbolic reasoning, which demarcates
us from existing approaches. Notably, energy efficiency is just one quality which
benefits from subsymbolic reasoning. E.g., optimizations in systems integrating
the physical and virtual world (like robot swarms) require the support for floating
point numbers, too.

In the future we plan to improve the approach to consider more complex
relations between resource usage and energy consumption and will evaluate our
approach in a real world scenario. Furthermore, we plan to investigate how our
approach can be applied to systems integrating the physical and virtual world.

Acknowledgement

This research has been funded by the European Social Fund and Federal State of

Saxony within the project ZESSY #080951806, by the Federal Ministry of Education

and Research within the project CoolSoftware #FKZ13N10782, part of the Leading-

Edge Cluster ”Cool Silicon” within the scope of its Leading-Edge Cluster Competition

and by the collaborative research center 912 (HAEC), funded by the DFG.

6th Workshop on Models@run.time at MODELS 2011 71

References

1. L. A. Barroso and U. Hölzle. The case for energy-proportional computing. IEEE
Computer, 40(12):33–37, 2007.

2. A. Beugnard, J.-M. Jézéquel, and N. Plouzeau. Contract aware components, 10
years after. In Electronic proceedings in theoretical computer science, number 37,
pages 1–11, 2010.

3. S. Borkar and A. A. Chien. The future of microprocessors. Communications of the
ACM, 54:67–77, May 2011.

4. F. Fleurey and A. Solberg. A domain specific modeling language supporting spec-
ification, simulation and execution of dynamic adaptive systems. In Proceedings
of the 12th International Conference on Model Driven Engineering Languages and
Systems, MODELS ’09, pages 606–621, Berlin, Heidelberg, 2009. Springer-Verlag.

5. K. Geihs, M. U. Khan, R. Reichle, A. Solberg, S. Hallsteinsen, and S. Merral.
Modeling of component-based adaptive distributed applications. In SAC ’06: Pro-
ceedings of the 2006 ACM Symposium on Applied Computing, pages 718–722, New
York, NY, USA, 2006. ACM.

6. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD component model -
enabling dynamic selection of implementations by weaving non-functional aspects.
In Proceedings of the 3rd international conference on aspect-oriented software de-
velopment, Lancaster, UK, March 22 - 24, 2004, volume 3, pages 74–82, New York,
NY, USA, March 2004. ACM Press.

7. S. Götz, C. Wilke, M. Schmidt, and S. Cech. THEATRE resource manager inter-
face specification. Technical Report TUD-FI10-0X, Technische Universität Dreden,
Dresden, Germany, 2010.

8. S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann. Towards energy auto tun-
ing. In Proceedings of First Annual International Conference on Green Information
Technology (GREEN IT), pages 122–129. GSTF, 2010.

9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
ECOOP’97 - Object-Oriented Programming, volume 1241 of LNCS, pages 220–
242. Springer Berlin / Heidelberg, 1997.

10. B. Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.
11. B. Morin, O. Barais, G. Nain, and J.-M. Jézéquel. Taming dynamically adaptive

systems using models and aspects. In Proceedings of the 31st International Con-
ference on Software Engineering, ICSE ’09, pages 122–132, Washington, DC, USA,
2009. IEEE Computer Society.

12. G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience, New York, NY, USA, 1988.

13. S. Röttger and S. Zschaler. CQML+: Enhancements to CQML. In Proceedings of
the 1st International Workshop on Quality of Service in Component-Based Software
Engineering, pages 43–56, Toulouse, France, 2003. Cépaduès-Éditions.

14. P. Süttner. Abstract behavior description of CCM software components (Abstrakte
Verhaltensbeschreibung von CCM Softwarekomponenten). Master’s thesis, Tech-
nische Universität Dresden, Mar. 2011.

15. C. Szyperski, D. Gruntz, and S. Murer. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley and ACM Press, 1999.

16. The SPEEDS Consortium. D.2.1.5 SPEEDS L-1 Meta-Model.
http://speeds.eu.com/downloads/SPEEDS Meta-Model.pdf, May 2009.

6th Workshop on Models@run.time at MODELS 2011 72

	Title
	People
	Preface
	TOC
	paper_08
	paper_07
	paper_01
	Model-based Situational Security Analysis
	1 Introduction
	2 Application Scenario
	3 Formal Model
	4 Runtime Operation and Generated Alerts
	5 Related Work
	6 Conclusions and Further Work

	paper_04
	paper_03
	paper_02

