Using Model-to-Text Transformation for
Dynamic Web-based Model Navigation

Dimitrios S. Kolovos, Louis M. Rose, and James R. Williams

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK.
{dkolovos, louis, jw}@cs.york.ac.uk

Abstract. One of the main objectives of modelling is to enable collabo-
rative decision making and communication among the stakeholders of the
system. It is essential that both technical and non-technical stakehold-
ers can access and comment on the models of the system at any time.
In this paper we propose a model-to-text transformation approach for
producing dynamic, web-based views of models — captured atop differ-
ent modelling technologies and conforming to arbitrary metamodels — so
that stakeholders can be provided with web-based, on-demand and up-
to-date access to the models of the system using only their web browser.
We demonstrate the practicality of this approach through case studies
and identify a number of open challenges in the field of web-based model
management.

1 Introduction

One of the main objectives of modelling is to enable collaborative decision mak-
ing and communication among the stakeholders of the system — particularly so
in the early stages of the software development lifecycle. To this end, stakehold-
ers must be able to access — possibly different parts of — the models constructed
by the designers of the system. In principle, the simplest way to achieve this is
to establish a centralised repository where designers share the models that they
construct with other stakeholders, so that the latter can navigate the models
using the same modelling tools that the designers used to create them. How-
ever, experience obtained from interacting with our industrial partners — some
of which was summarised in an earlier paper [1] — suggests that this is not always
feasible or desirable, for a number of reasons:

— Cost: Purchasing licenses of expensive modelling tools only to view and
provide feedback on the models of the system may be impractical or too
expensive.

— Time: In some industrial environments, installing new software requires a
formal approval process which can take significant time to complete.

— Complexity/Training: Modelling tools are typically complex because they
accommodate the needs of software designers. As such, training is typically
required for non-expert users, even to support them in relatively straightfor-
ward tasks.

— Access control: It may be desirable that some stakeholders are only granted
access to some parts of the models.

We have encountered the above issues in the context of ongoing work with
one of our major industrial collaborators. To address such issues in practice,
modellers typically construct word processor design documents which are then
disseminated to the stakeholders, who therefore are not required to purchase,
install and learn to use any new software. However, this approach has known
shortcomings. Assembling and synchronising such documents can be labour-
intensive and error-prone, particularly if they are not supported natively by the
modelling tool. Moreover, for large models, designers need to create correspond-
ingly large documents, which ultimately become difficult to navigate and read.
Finally, and as a consequence of the other shortcomings, such design documents
quickly become out-of-date and do not reflect the current version of the models.

To eliminate the overhead of creating and distributing snapshots of the cur-
rent versions of models in the form of design documents, we propose a model-to-
text transformation approach for producing dynamic web-based views of models
— captured atop a range of different modelling technologies — so that stakehold-
ers can be provided with web-based, on-demand and up-to-date access to the
models of the system from their web browser and without needing to purchase
or install any additional tooling.

The remainder of the paper is organised as follows. Section 2 introduces the
proposed transformation-based approach and discusses the details of the techni-
cal solution we have developed to realise it. Section 3 provides two case studies
that demonstrate using the proposed approach to implement web application for
navigating and animating state machine models, and for browsing Ecore meta-
models in a Javadoc-like fashion. Section 4 discusses related work and Section 5
concludes the paper and provides interesting directions for further work on the
subject.

2 Dynamic Web-Based Model Navigation

To overcome the shortcomings identified above, we propose an approach that al-
lows stakeholders to have direct, on-demand and up-to-date access to the (parts
of the) models in which they are interested. Additionally, the approach pro-
posed in this section — like the design document approach — does not require
stakeholders to purchase, install, or use any additional software other than their
web browser.

To enable web-based access to models that have been defined atop a range of
modelling technologies, in this work we have integrated the Epsilon Generation
Language [2], which is a template-based model-to-text transformation language,
with a Java-based servlet container and web-server (Tomcat). Like most model-
to-text transformation languages, EGL was originally designed to support batch
code generation; in this work, by integrating EGL with Tomcat, we can use
EGL templates as server-side scripts to generate HTML content from models on
demand, as displayed in Figure 1.

requests

E—
Web Browser Tomcat —
-
returns g
HTML ¢
returns
forwards
HTML request

Web Application
Model Repository

EGL Controller
Servlet

locates/ loads/
executes reads

produces
HTML
A

EGL Template

Fig. 1: EGL as an on-demand server-side scripting language in Tomcat

In the following sections we provide a brief overview of EGL and its under-
lying infrastructure and discuss the process and challenges involved in using it
as a server-side scripting language. Before detailing the technical aspects of our
work, we stress that, although in this work we use EGL and Tomcat as support-
ing technologies for our implementation, the proposed approach is not bound
to a specific model-to-text transformation language or web-server. In principle,
it can be implemented using any other model-to-text transformation language,
such as Xpand[3], MOFScript[4] and Acceleo'. We selected EGL and Tomcat
due to our technical expertise with them.

2.1 The Epsilon Generation Language

EGL is a template-based model-to-text transformation language implemented
atop the Epsilon model management platform [5]. Epsilon provides a layered
architecture that enables the construction of interoperable task-specific model
management languages for tasks such as model transformation, validation, com-
parison, merging and refactoring. To enable model management languages built
atop it to manage models captured using different modelling technologies, Ep-
silon provides an abstraction layer called EMC (Epsilon Model Connectivity)
which specifies an API against which drivers for different modelling technologies
are implemented. To date, EMC drivers for technologies such as EMF, MDR,
Z (through CZT [6]), and plain XML have been implemented — and as such, all

! www.eclipse.org/acceleo

model management languages in Epsilon can manage models captured with all
of these technologies. A more detailed discussion on EMC is available in [7].

As EGL is implemented atop Epsilon, it is interoperable with all of the mod-
elling technologies listed above. Therefore, although in this work we demonstrate
using EGL to build web applications around EMF-based models, any of the sup-
ported modelling technologies can also be used.

2.2 Integration with Apache Tomcat

Apache Tomcat is a widely used web server and Java servlet container. Tomcat
comes with built-in support for the Java Server Pages (JSP) server-side scripting
language for producing dynamic web pages, but also provides a flexible architec-
ture which allows developers to extend it with support for additional server-side
languages. To integrate EGL with Tomcat, we added a new servlet mapping
that instructs Tomcat to redirect all requests for URLs that end with .egl to a
dedicated controller servlet that is responsible for processing these requests.

As illustrated in Figure 1, when Tomcat receives a request for a URL that
ends with .egl, it forwards the request to the EGL controller servlet which in turn
locates and parses the respective EGL template, and if no errors occur during
parsing, it executes the template and returns the produced text to Tomcat —
which finally returns it to the browser. Similarly to the majority of server-side
programming languages, EGL templates have access to a number of predefined
variables for accessing request parameters and setting/getting session and appli-
cation properties. Moreover, since the expression language on which EGL builds
can reflectively access Java objects, EGL templates can interoperate seamlessly
with existing Java libraries, and can be used in the context of frameworks such
as Apache Struts?, which facilitates the creation of J2EE applications.

Accessing Models To minimise the overhead of loading and storing models
in individual EGL templates, each web application is provided with a dedicated
model repository which EGL templates can access — to load and store models —
via the built-in modelManager variable. The application model repository caches
models so that they can be readily accessed by all of the EGL templates in an
application. Templates have read/write access to the models in the repository;
however, the ability for multiple users to modify models in the repository concur-
rently depends on whether the underlying modelling technology is thread-safe
or not. In the current EGL-Tomcat integration, only support for EMF models
has been implemented, and as EMF is not thread-safe, all of the applications
that we have constructed so far have read-only access to the underlying models.

Template Factories EGL provides several types of built-in template [2]. For
example, EglTemplate is used for generating plaintext and EglFileGeneratingTe-
mplate for generating files on disk. Templates are accessed via the built-in Tem-
plateFactory variable. Extenders of EGL can also specify their own template

2 http:/ /struts.apache.org/

types and their own template factories for capturing and re-using other code
generation logic. For instance, the example described in Section 3.1 uses a cus-
tom template type and factory to produce an image file from the text generated
by a template.

The dedicated EGL servlet queries the metadata of each web application
to determine which type of template factory will be used to execute the tem-
plates of that application. Users can specify the fully-qualified Java class name
of the template factory for their application as a parameter to the EGL servlet
definition.

Caching To facilitate scalability of the applications developed atop the ap-
proach described in this section, the EGL servlet provides two types of caching,
which can be used in web-based EGL applications. Caching is achieved from
EGL templates via a built-in cache object.

Page Caching allows repeated requests for the same URL to be served without
invoking any EGL templates. The EGL controller servlet maintains a cache that
maps requests (URLs) to responses (the HTML generated by invoking an EGL
template). A response is cached the first time that it is requested, and subsequent
requests for to same URL are served from the cache. Applications can control
which requests should be cached via the built-in cache object. Similarly, a URL
can be marked as expired using the built-in cache object, and the next request
for that URL will be served by invoking an EGL template rather than from the
cache.

Fragment Caching allows unchanging page elements — such as headers and foot-
ers — to be shared between requests for different URLs, and requires that the
EGL application be decomposed into separate subtemplates. The EGL controller
servlet maintains a cache that maps subtemplates to partial responses (part of
the HTML generated for a request to a particular URL). As with page caching,
applications can control the fragment caching strategy via the built-in cache ob-
ject, which provides methods for caching and expiring fragments. The case study
in Section 3 uses fragment caching to cache headers, footers and sidebars.

Page caching results in less server-side processing than fragment caching, but
is more brittle. For example, consider the effects of changes to a model on page
and fragment caches. Pages and fragments that have been affected by changes to
a model must be expired (removed from the cache). In the worst case then, the
page and fragment caches must be completely emptied to ensure that stakehold-
ers can view and navigate the updated model. The page cache will become fully
populated only when every page of the web application is visited. By contrast,
fragments for say, shared headers and footers, are cached by a request to any
page, and future requests to any other page benefit from the cached fragment.

3 Case Studies

In this section, we present two case studies that demonstrate using the proposed
approach for browsing behavioural and structural models. The first case study
employs the proposed approach to visualise state machines and concentrates on
automated diagram generation. The second case study illustrates a web applica-
tion for navigating Ecore metamodels in a Javadoc-like style, through which we
demonstrate the caching mechanisms discussed in Section 2.2 and evaluate the
scalability of our implementation.

3.1 Visualisation and Animation of State Machine Models

Figure 2 shows the metamodel for a Mealy machine. A Mealy machine is finite-
state machine that produces an output string in response to an input string.
Each transition between states matches a character from the input string and
generates an output character when fired. A Mealy machine must have one initial
state and the execution ends when the input string has been completely parsed.

H Machine
-
- . 0.7 | states
0.%| transitions
= target

H Transition g H State
= input : Ent ':"_'1 = name : EString
= output : Elnt 5'3';' ':{: o= initialState : EBoolean

Fig. 2: The metamodel for a Mealy machine

In order to facilitate animation of the Mealy machine, asynchronous calls to
two different server-side EGL scripts are required — one to generate an image of
the model’s current state, and another to request the output of the machine upon
firing the selected transition. The user initially requests a standard HTML page,
which, upon loading, makes a request to MealyHandler.egl to generate an
image of the machine in its initial state. Clicking on a successor state will cause
another request to MealyHandler.egl to return the image representing the
machine in the new state, and will also make a request to MealyOutput.egl
to display the results of executing that transition.

Before discussing the two templates used to animate the Mealy machine, we
first briefly summarise the structure of a typical EGL template. EGL templates
comprises dynamic sections, which contain executable code, and static sections,
which contain text to be emitted. Consider Listing 1.2. Dynamic sections, such

1 % modelManager.registerMetamodel (' MealyMachine.ecore’);
2 modelManager.loadModel (' Example’, 'My.mealymachine’, ’MealyMachine’);
3
4 var currentState = null;
5
6 if (request.getParameter (’st’).isDefined()) {
7 currentState = request.getParameter(’'st’);
8 } else {
9 currentState = State.all.select(s|s.initialState==true).first () .name;
10 }
11
12 var dotTemplate : Template := TemplateFactory.load(’Mealy2Dot.egl’);
13
14 dotTemplate.populate (' currentState’, currentState);
15 dotTemplate.generate ("mealy_" + currentState + ".svg"); %]
Listing 1.1: Generating an SVG image of the Mealy machine
1 digraph G{
2 center=true;
3 nodesep=1.5;
4
5 node [shape=circle, fontname=Tahoma, fontsize=10];
6 [$for (s in State.all) { %$]"[%=s.name%]"; [% }%]
7 "[$=currentState%]" [color=deepskyblue, style=filled, fillcolor=lightgrey
1i
8
9 [$ for (t in Transition.all.select (t|t.source.name=currentState)) {%]
10 "[%=t.target.name%]" [color=deepskyblue, href="javascript:top.
doTransition (’ [$=currentState%]’, ' [%=t.target.name%]’)"]
11 [$1%]
12
13 [$ for (t in Transition.all) {%]
14 "[%=t.source.name%]" -> "[%=t.target.name%]" [label="[%=t.input%]/[%=t.
output%]"]
15 [%}%]
16 }

Listing 1.2: Generating the Graphviz representation of the Mealy machine

as the one on line 9, are enclosed in [%$ %] tags; static sections, such as the
one on lines 1-5, are not enclosed in [$ %] tags. Dynamic sections can take
an alternate form, using a [%= %] tag (such as the one on line 7) to emit a
dynamically computed value (the currentState variable in this case).
MealyHandler.egl (listing 1.1) generates the image of the machine us-
ing Mealy2dot.egl. The call to generate (line 15) delegates to an im-
age generating template factory, which invokes DOT to convert the output of
Mealy2dot.egl to an SVG (Scalable Vector Graphics) image.
Mealy2dot.egl (listing 1.2) outputs a Graphviz® DOT language descrip-
tion of the machine and the template factory executes the DOT description,
creating an SVG file. Animation is achieved by passing the current state name
as a parameter in the URL query string to MealyHandler.egl (e.g. Mea-
lyHandler.egl?st=s0) which populates the currentState variable in the

3 www.graphviz.org

8eno Mealy Machine

=)
G)Dv @ ([#(hup://localhost:8080/mealy/Mealy.htmi 77 v) (3 Google Q)
]

Mealy Machine

Mealy Machine Example

The current state is coloured grey, and all possible successive states are outlined in blue. Click on the name of
one of the successive states to force that transition.

INPUT STRING:, 1,0, 1,1

QUTPUT STRING:, 0,0, 1,1

Fig. 3: Example Mealy machine animation

Mealy2dot .egl template (listing 1.1, line 14). Mealy2dot . egl highlights the
current state by changing its background colour, and assigns URLSs to any nodes
reachable by outgoing transitions from the current state, making them clickable
in the generated image. The URLs execute a JavaScript function, doTransi-
tion(src,tgt), which handles the asynchronous request to generate the new
image and replace the existing image with the newly generated one.

After the asynchronous request to generate the image has been made, doTr—
ansition () also makes an asynchronous request to MealyOutput .egl which
returns a string containing the input and output strings from the transition.
These are then printed underneath the image, showing the input and output
history of the animation. Figure 3 shows the output of animating a Mealy ma-
chine over four transitions.

3.2 Navigation of Ecore metamodels

This section presents a web-application for on-demand navigation of Ecore meta-
models in a Javadoc-like style and explores the way in which the scalability of
the proposed approach is affected by the server-side processing load and the
type of caching employed. The results presented in this section suggest that the

806 uml.NamedElement - UML Metamodel

[+ [Ehp:// /EgID ¢ (@~ Google)
I Metamodel T
UML Metamodel m
Packages Package: uml

” Abstract Class NamedElement

Inherits from:
Element

Datatypes
AggregationKind
Boolean
CallConcurrencyKind Direct subclasses:

Connectorkind DeploymentTarget DeployedArtifact
Expansionkind Vertex Trigger ParameterSet borationUse Include Extend ActivityPartition Message MessageEnd
Tnbager Tnter g Lifeline
InteractionOperatorKind
M Ki
Sesmge Attributes

MessageSort
ObjectNodeOrderingKind Name Type < Required
ParameterDirectionkind rame String e Talse
ParameterEffectkind
e estteki qualifiedName | String faise false
string visibility VisibilityKind | true false
TransitionKind
UnlimitedNatural
VisibilityKind Operations

Signature Type Description
CEeess I | addx d(String ki d Bool
P addKeyword(String keyword) oolean
AcceptcallAction) Namespace
AcceptEventAction I |allownedElements(} Element
Action
i allowningPackages() Package
ActionInputPin I | applystereotype(stereotype stereotype)
Activity

createDependency(NamedElement supplier) Dependeng
iy P 244 pplier) P Y

FNTT I source’

K

Fig. 4: EglDoc for the NamedElement class of UML 2.2 [9].

approach proposed in Section 2 is well-suited to viewing and navigating models
via the web for a significant number of concurrent users.

EglDoc: Metamodel Documentation This section demonstrates the ap-
proach proposed in Section 2 by describing the way in which an existing EGL
application, EglDoc [8, Ch.5], has been ported to provide web-based model nav-
igation and view extraction. EglDoc generates HTML documentation for Ecore
metamodels (and is similar to Javadoc for Java in this respect). Figure 4 shows
the output produced by EglDoc for the NamedElement class of the UML 2.2
[9] metamodel. EglDoc can be applied to produce documentation for any Ecore
metamodel.

EglDoc comprises several templates, which are used to generate the header,
footer, navigation bar and content of each page. An extract of the EGL template
that generates documentation for attributes is shown in Listing 1.3. EGL is a
template-based model-to-text language. Listing 1.3 generates an HTML table of
attributes, listing the name and type of each attribute. Lines 10-12 generate a
link to other pages, using the toUrl () operation on lines 19-21.

The existing version of EglDoc generates one HTML file for each element of
the Ecore metamodel. Porting EglDoc to interoperate with the web-based model
navigation and view extraction approach proposed in Section 2 involved parame-
terising the existing EGL templates to facilitate the identification of metamodel
elements via the URL of a request to the web server. For example, a request for

% if (class.eAllAttributes.size() > 0) { %]
<h4>Attributes</h4>
<table cellspacing="0">
<tr> <th>Name</th> <th>Type</th> </tr>
[$ for (attribute in class.eAllAttributes.sortBy(ala.name)) {
<td>[%=attribute.name%]</td>

o

[$ if (attribute.eType.isDefined()) { %]
<td>

$=attribute.eType.name%]

</td>
} else { %]
<td> </td>
[5 1} %]
}o%]
[5 } %]
[$ operation EClassifier toUrl() : String {
return self.ePackage.name + ’'—-’ + self.name + ’'.html’;

}os]

=
H O ©®NOo U R W N

= e
w N

o

-
'S

l

NN e e e e
= O ©® o a o »
o

o0

Listing 1.3: View extraction for attributes in EGLDoc

-
o

2 modelManager.registerMetamodel (' Ecore.ecore’);
modelManager.loadModel (/ Sample’, ’'UML.ecore’, 'http://www.eclipse.org/emf
/2002/Ecore’);

w

IS

if (request.getParameter (’'p’).isDefined()) {
package = EPackage.all.selectOne(p|p.name = request.getParameter('p’));

}

®w N o o

o°

Listing 1.4: Model loading in EGLDoc

the URL EglDoc.egl?p=uml&c=NamedElement to the web-based EglDoc
returns HTML for the NamedClass class of the uml package (in the UML 2.2
metamodel). Listing 1.4 shows the way in which the UML metamodel is loaded
(lines 2-3) and the p parameter of the request is interpreted (lines 6-8). Note
the use of the modelManager built-in variable for loading a model, which was
discussed in 2.2. In Listing 1.4, the model to be loaded (" UML.ecore’) is hard-
coded for clarity. In practice, the location of the model is specified as a URI,
which can be configured by the user.

4 Related Work

Several mature Java-based template languages such as JSP, Velocity* and Fr-
eeMarker® are available as server-side scripting languages for Java-based web
servers such as Tomcat. In principle we could have used any of these languages

4 http://velocity.apache.org
® http://freemarker.sourceforge.net

in combination with the reflective API of EMF — or using code generated from
the respective Ecore metamodels in order to achieve a more concise syntax. For
dynamic languages such as Velocity and FreeMarker, developers could even im-
plement EMF-specific extensions to enable a concise navigation style without
needing to generate code from the Ecore metamodels. However, compared to
these languages, we strongly believe that EGL is more suitable for the task as
it provides first-order logic OCL-based collection navigation operations, built-in
support for accessing mutliple models concurrently, and a number of existing
drivers for interacting with a number of modelling technologies. Even more
importantly, since the model connectivity framework discussed in Section 2.1
provides a uniform interface for different modelling technologies, the underly-
ing modelling technology can be substituted later on if necessary (e.g. switch to
a database-backed model serialisation format for performance reasons) without
requiring changes to the EGL templates.

The Web 2.0 MetaModelbrowserS is a web application that can visualise
Ecore metamodels and their instances using a fixed tree-based interface that
closely mimics the Eclipse-based EMF reflective tree editor. In contrast to Meta-
Modelbrowser, the approach proposed in this paper allows developers to im-
plement custom interfaces for displaying models to end users. Also, using the
Graphviz extension our approach enables developers to also embed automatically-
generated diagrams to their model browsing web applications.

5 Conclusions and Further Work

In this paper we have presented an approach for re-using a model-to-text trans-
formation language in order to provide support for web-based model navigation
and view extraction. Using this approach, non-technical stakeholders can have
access to the latest versions of the models of the system from their browser,
without needing to purchase and install additional software. Moreover, using
such an approach, access control can be enforced if necessary.

With the advent of cloud computing, we believe that web-based model man-
agement is a promising field of study with significant potential for practical
real-world impact. A few of the open issues that we have identified through this
work include management of very large models, concurrent modification of mod-
els, caching, and access control. In the future, we will investigate related work in
areas such as the management of very large databases and web-based technolo-
gies, and adapt best-of-breed approaches to solve the respective problems in the
field of web-based model management.

Acknowledgements. The work in this paper was supported by the Euro-
pean Commission via the MADES and INESS projects, co-funded under the
7th Framework programme (grants #218575 (INESS), #248864 (MADES)). We
would also like to thank Darren Clowes, Chris Holmes, Julian Johnson, Ray

5 http://www.metamodelbrowser.org/

Dawson, and Steve Probets from BAE Systems and Loughborough University
for their contributions to earlier work that led to the approach presented in this

paper.

References

1. Darren Clowes, Dimitrios S. Kolovos, Chris Holmes, Louis Rose, Richard Paige, Ju-
lian Johnson, Ray Dawson, and Steve Probets. A Reflective Approach to Model
Driven Web Engineering. In Proc. 6th Furopean Conference on Modelling Founda-
tions and Applications (ECMFA), Paris, France, 2010 2010.

2. Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, Fiona A.C. Polack. The Ep-
silon Generation Language (EGL). In Proc. European Conference in Model Driven
Architecture (ECMDA), 2008.

3. Sven Efftinge. XPand Language Reference.
http://www.eclipse.org/gmt/oaw/doc/4.1/r20_ xPandReference.pdf.

4. Jon Oldevik. MOFScript User Guide. http://www.eclipse.org/gmt/mofscript/doc/
MOFScript-User-Guide.pdf.

5. Eclipse Foundation. Epsilon Modeling GMT component.
http://www.eclipse.org/gmt /epsilon.

6. Community Z Tools. http://czt.sourceforge.net.

7. Dimitrios S. Kolovos, Louis M. Rose, Richard F. Paige. The Epsilon Book. 2008.
http://www.eclipse.org/gmt /epsilon/doc/book/.

8. Louis M. Rose. A text-generation language for Epsilon. Master’s thesis, University
of York, 2007.

9. OMG. Unified Modelling Language 2.2 Specification [online]. [Accessed 10 February
2011] Available at: http://www.omg.org/spec/UML/2.2/, 2007.

