
Runtime Monitoring of Functional Component
Changes with Behavior Models ?

Carlo Ghezzi, Andrea Mocci, and Mario Sangiorgio

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32, 20133 Milano (MI), Italy

{ghezzi,mocci,sangiorgio}@elet.polimi.it

Abstract. We consider the problem of run-time discovery and contin-
uous monitoring of new components that live in an open environment.
We focus on extracting a formal model—which may not be available—
by observing the behavior of the running component. We show how the
model built at run time can be enriched through new observations (dy-
namic model update). We also use the inferred model to perform run-
time verification. That is, we try to identify if any changes are made to
the component that modify its original behavior, contradict the previous
observations, and invalidate the inferred model.

1 Introduction and Motivations

Modern software systems increasingly live in an open world [6]. In the context
of this paper, we assume this to mean that the components that can be used to
compose new application may be dynamically discovered and they may change
over time. New components may appear or disappear; existing components that
were already available may change without notice. Indeed, in an open world con-
text, software components can be developed by different stakeholders, for which
there might be no control from the point of view of their clients. New appli-
cations may be developed in a way that they rely on third party components,
often called services, that are composed to provide a specific new functionality1.
In this setting, models, play the role of formal specifications and have a cru-
cial importance. In fact, to be able to compose components in applications and
make sure they achieve ascertainable goals, one needs to have a model of the
components being used. Such model, in practice, mays not exist. For example,
in the case where components are Web services, suitable notations (e.g., WSDL)
exist to specify the syntax of service invocations, but no standard notation ex-
ists to specify the semantics (i.e., model the behavior) of the components. In
this context, it becomes relevant to be able to infer a model for the component
dynamically, at run time, by observing how the component behaves.

? This research has been partially funded by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom.

1 Although the terms “component” and “service” can be (and should be) disinguished,
in this paper the terms are used interchangeably

In addition to the previous problems, one must consider the fact that the
component may change at run time in an unannounced manner. In other words,
even if a model were initially provided together with the exposed service, it may
become unfaithful and inconsistent because the implementation may change at
run time. For this reason, in open-world context the role of models is twofold. It
may be necessary to infer it initially and it becomes then necessary to use the
(inferred) model at run time to verify if changes invalidate the assumptions we
could make based on the initial observations.

In conclusion, in the case where the model is initially absent, we need tech-
niques to infer a formal model (a formal specification) for the components we
wish to combine. We then need to keep the (inferred) model to analyze the
run-time behavior of the component and detect wether the new observed behav-
iors indicate that a change has occurred in the component which invalidates the
model.

In this paper, we propose a technique for run-time monitoring of component
changes that relies on the use of a particular class of formal models, behavior
models. The proposed approach requires a setup phase, in which the component
to be monitored must be in a sort of trial phase in which it can be safely tested
to extract an initial specification. This phase integrates techniques to infer for-
mal specifications [7] with a new kind of behavior model, the protocol behavior
model. This model enables the main phase of the approach — a run-time val-
idation activity —, which consists of monitoring the component behavior and
detecting a particular class of component changes, which will be precisely de-
scribed in the following sections. The approach is also able to distinguish likely
new observations against component changes.

The paper is structured as follows. Section 2 presents the formalisms used in
the approach, that is, the kind of behavior models that we can infer and synthe-
size. Section 3 describes how these models are constructed to enable the setup
step of our technique, while Section 4 describes their use at runtime to detect
component changes. A simplified running example is used to give a practical
hint on how the approach works. Finally, Section 5 discusses related approaches
and Section 6 illustrates final considerations and future work. Space limitations
only made it possible to explain the innovative approach and to provide basic
examples. Additional details and more complex examples are available online [2].

2 Behavioral Equivalence and Protocol Models

We consider software components as black boxes, that is, their internals cannot
be inspected and they are accessible only through their API, which consists of
operations that might modify or not the internal state. Thus, each operation
can be a modifier or an observer, or it can play both roles. Operations may also
have an exceptional result, which is considered as a special observable value. As
a running example, we consider a simple component, called StorageService,
inspired by the ZipOutputStream class of the Java Development Kit [1], which
models a storage service where each stored entry is compressed. The component

mixes container behaviors with a specific protocol of interaction. We consider the
following operations: i) putNextEntry, which adds a new entry with a given name;
ii) write, which adds data to the current entry; and iii) close, which disables any
further interaction.

We now introduce the formal models used in our approach, which belong
to the class of so-called behavior models. To accomplish the main task of the
approach, that is, the runtime detection of component changes, we first need to
define behavior models that they can “summarize” all the possible interactions
with the software components, thus providing a description of the behaviors
observed by its clients.

We start with Behavioral equivalence models (Bem [7]); i.e., finite state au-
tomata that provide a precise and detailed description of the behavior of a
component in a limited scope. In a Bem, states represent behaviorally equivalent
classes of component instances; that is, a set of instances that cannot be distin-
guished by any possible sequence of operations ending with an observer. Each
state is labeled with observer return values and each transition models a spe-
cific modifier invocation with given actual parameters. The scope of the model
defines the set of possible actual parameters used in the model (called instance
pool), and the number of states we restrict to. Intuitively, these models define
the component behaviors within a limited scope. Figure 1 represents a possi-
ble Bem for the StorageService component. We built it limiting the scope to
two entries (e1 and e2) which are used as parameters for operation putNextEntry.
Each transition represents a specific operation invocation. The table in Figure 1
describes observer return values; in this specific case, they are only exceptional
results.

To describe every possible component interaction outside the Bem scope, we
introduce a second kind of behavior model that generalizes the Bem through an
abstraction: the protocol behavior models (Pbm). Pbms provide an abstracted,
less precise but generalized description of the interaction protocol with the com-
ponent as opposed to the precise description in a limited scope provided by
Bems. The new model is still based on a finite state automaton, but now states
encode whether the results of observers are normal or exceptional2. States also
abstract the behavior of modifiers as variant or invariant. A modifier behavior is
variant if there exists a possible invocation with specific actual parameters that
brings the component in a different behavioral equivalence state. Otherwise, the
modifier behavior is invariant. This abstraction is usually (but not always) asso-
ciated with an exceptional result of the operation: it is the typical behavior of a
removal operation on an empty container or a add operation on a full bounded
container. Pbm transitions instead keep track only of the operation they rep-
resent, ignoring the values of the parameters. Thus they model the behavior
of every possible modifier invocation; they synthesize the behavior of possibly
infinitely-many behavior changes induced by the possible operation invocation.

2 If observers have parameters, then the abstraction can be i) always (i.e., for every
parameter) normal; ii) always exceptional; iii) any intermediate situation, that is,
for some parameters the result is normal and for others is exceptional .

S0S

S1

S2

S3

S4

S5 S6 S7

pE1

pE2

pE1

pE2

pE2
pE2

pE1
pE1

pE1

pE2

c

c

c

c

c

c

w, c

w

w, pE1

w

w, pE2

w

w, pE1, pE2 pE1, pE2

w, c

Legend: S:StorageService(), w:write(0), c:close()
pE1:putNextEntry(e1), pE2: putNextEntry(e2)

State close() putNextEntry(e1) putNextEntry(e2) write(0)

S0 ZipException4 — — ZipException3

S1 — ZipException1 — —
S2 — — ZipException2 —
S3 — ZipException1 — ZipException3

S4 — — ZipException2 ZipException3

S5 — ZipException1 ZipException2 —
S6 — ZipException1 ZipException2 ZipException3

S7 — IOException1 IOException1 IOException1

ZipException1.getMessage() =“duplicate entry: e1”
ZipException2.getMessage() =“duplicate entry: e2”
ZipException3.getMessage() =“no current ZIP entry”
ZipException4.getMessage() =“ZIP file must have at least one entry”
IOException1.getMessage() =“Stream Closed”

Fig. 1. A Bem of the StorageService component

In practice, they model the possibility that by performing an operation the set
of operations enabled on the object may change. It is worth observing (but we
do not show it here) that this abstraction may introduce nondeterminism in the
automaton. Figure 2 represents the Pbm derived by performing the abstraction
described above to the Bem in Figure 1.

The main contribution of the proposed approach is the integration of Pbms
and Bems. Because the Pbm is derived from the Bem through an abstraction
process, its completeness and accuracy actually depends on the significance of the
observations that produced the Bem during the setup phase. The setup phase
is deeply rooted in the small scope hypothesis. In its original formulation [9],
this hypothesis states that most bugs have small counterexamples, and that an
exhaustive analysis of the component behavior within a limited scope is able
to show most bugs. In our case, we cast it as follows: most of the significant
behaviors of a component are present within a small scope. In our case, the
term “significant behavior” refers to the abstracted version provided by a Pbm.
Thus, we expect that at setup time we can synthesize a likely complete Pbm,

S0S S1

S2

S3

S4 S5
pE

pE

pE

pE

pE

c

c

c

c

c, w

w

w, pE

w

w, pE

c,w, pE

Legend: S:StorageService, w:write, c:close, pE:putNextEntry

State close putNextEntry write

Observer Abstraction

S0 ZipException — ZipException
S1 — [−, ZipException] —
S2 — [−, ZipException] ZipException
S3 — ZipException —
S4 — ZipException ZipException
S5 — IOException IOException

Modifier Behavior Abstraction

S0 Invariant Variant Invariant
S1 Variant Variant Invariant
S2 Variant Invariant Invariant
S3 Variant Variant Invariant
S4 Variant Invariant Invariant
S5 Invariant Invariant Invariant

The notation: [−, ZipException] means that for some parameter the method returns correctly
(—), and for some other parameter throws ZipException

Fig. 2. A Pbm of the StorageService component

which describes the protocol of all the possible interactions of clients with the
component, while at runtime we can use the Pbm to find component changes.

The two different models can be used together at run time. The behavior of a
component is monitored and checked with respect to the Pbm. When violations
are detected, a deeper analysis exploiting the more precise information contained
in the Bem can be performed in order to discover whether the observation that is
not described by the Pbm is a new kind of behavior that was not observed before,
and thus requires a change of both the Bem and the Pbm to accommodate it, or
instead it detects a component change that is inconsistent with the models. The
Bem synthesizes the observations used to generate the Pbm, and thus it can be
used to distinguish between likely changes of the analyzed component from new
observations that instead just enrich the Pbm. In the following sections, we will
discuss these aspects: the setup time construction of Bems and Pbms, and the
runtime use of both models to detect likely component changes.

It should be noted that the Pbm is not a full specification of the component,
thus it cannot be used to express complex functional behaviors, in particular the
ones that are not expressible with a finite state machine, like complex container
behaviors. Instead, the Pbm models the protocol that clients can use to interact
with the component, that is, the legal sequences of operations. This limitation
is also the enabling factor for runtime detection of changes: violations can be

checked and detected relatively easily and the model can be promptly updated
when needed. Instead, a full fledged specification that supports infinite state
behaviors, like the ones of containers, is definitely harder to synthesize, check
and update at runtime.

3 Setup Phase: Model Inference

As we illustrated previously, the approach we propose prescribes two phases.
The setup phase is performed on the component in a trial stage. The other
phase corresponds to runtime. In the former, the component is analyzed through
dynamic analysis (a set of test cases) to infer a Bem for the component. A Pbm
abstraction is generated next to generalize the observed behaviors. In the latter
phase, the two models are used at run time to detect component changes. In
this section, we describe the first phase, with particular focus on the generation
of models, so that designers can get a formal description of a component whose
behavior must be validated.

3.1 Generation of the Initial Behavioral Equivalence Model

To generate a Bem during the setup phase, we adapt the algorithm and the
tool described in [7], which extracts Bems through dynamic analysis. The model
is generated by incrementally and exhaustively exploring a finite subset of the
component behavior, that is, by exploring a small scope. As illustrated previ-
ously, the scope is determined by a set of actual parameters for each component
operation and a maximum number of states for the model. The exploration is
performed by building a set of traces using the values in the instance pool and
abstracting them to behavioral equivalence states. The exploration is incremen-
tal; that is, if a trace t is analyzed, then all its subtraces have been analyzed in
the past. To build the Bem, the approach first uses observer return values: for a
trace t and every possible observer o, with fixed actual parameters, we execute
t.o() and we build a state of the Bem labeled with observed return values. Un-
fortunately, such an abstraction does not always induce behavioral equivalence:
for example, it could be that for some operation m, then two traces t1 and t2
such that for every observer the return values are equal, then there could be
that t1.m() and t2.m() are not behaviorally equivalent. Thus, state abstraction
is enriched with the information given by m as a discriminating operation. For
space reasons, we cannot include the specific details of the algorithm, but the
interest reader can refer to [7, 11]. This approach guarantees the discovery of all
the behaviors presented in the class with the given scope. The way Bems are
generated implies a strong correlation between the quality of the model and the
completeness of the instance pools used to build it. The more the instances are
significant, the higher the coverage of the actual behavior of the class is.

Given the importance of the objects used to perform the Bem generation
phase, we want to exploit as much as possible all the knowledge available to
analyze the class behavior with the most significant set of instances. The original

Spy tool relied entirely on instances provided by the user interested in obtaining
the Bem of a component. While the assumption that the user is able to provide
some significant instances is fair, it may be hard to achieve since it requires a lot
of effort and a deep knowledge of the behaviors of the component. Fortunately,
in practice the vast majority of the classes comes with a test suite containing
exactly the operation calls with some significant instances as parameters.

The extraction of the significant instances is performed by collecting from the
test suite all the objects passed as arguments in an operation call. Each value is
then stored in an instance pool that collects all the values for each parameter.
The values of the instances are stored directly in the instance pools, ready to
be used in the exhaustive search. Instances collected from the test suite are very
useful, but it happens that they may be redundant. To avoid the generation of
models with a lot of states that do not unveil new behaviors, we should filter out
the instances collected in order to keep a minimal subset able to exercise all the
possible behaviors of the component without having to deal with a huge model.
At this stage of the development, the tool is able to extract instances from a
test suite but does not select the minimal subset of instances. This task is left
to the user who has to find the best trade-off between the number of instances
used for the analysis and the completeness of the Bem generated.

3.2 Synthesis of the Protocol Behavior Model

Once the Bem is generated we can go further with the analysis and generate
the corresponding Pbm. Generation is quite straightforward since the Bem al-
ready includes all the needed information about the outcome of each operation
in each state of the model. Pbm inference algorithm consists of the following
steps: i) generalization of the Bem states through the Pbm abstraction function;
ii) introduction of each Bem transition in the Pbm. The generalization of the
information contained in a Bem state is performed by applying to each state
of the Bem the Pbm abstraction function we discussed earlier. Then for each
transition of the Bem we add a transition to the Pbm starting from the repre-
sentative of the equivalence class of the starting node in the Bem and ending
in the representative of the destination node. Because parameters are ignored
in the abstraction, the transformation is likely to produce a non-deterministic
automaton: it may happen that, given a Pbm state, the invocation of the same
operation with different values of the parameters produces different outcomes
that turns into different destination states.

4 Runtime Phase: Monitoring and Change Detection

Bems and Pbms are used to perform runtime verification that the component,
which may evolve independently, behaves accordingly to its models. To do so, we
monitor the execution of an application and detect changes in the behavior of
its components. Being able to detect changes is crucial when the application in

which the component is embedded has to be self-adaptive and react to compo-
nent misbehaviors in an appropriate way. More precisely, in this section we show
that the data collected at runtime can be used on the one hand to enrich the
model with previously unobserved behaviors and on the other hand to highlight
behavioral differences unveiling changes in the component under analysis.

4.1 Monitoring

A monitor is introduced into the running system to allow the comparison of the
actual behavior of the component under analysis and the ones encoded by the
models. Each time an instance of the scrutinized class is created, it is associated
to it a monitoring process in charge of recording the observed execution trace and
analyzing it to discover violations with respect to the protocol described by the
model. Violation detection is performed by comparing the actual behavior with
the one encoded in the model. Therefore it has to gather enough information to
determine the state in which the component is. The system reports a violation
when it finds an exceptional outcome for an operation that, according to the
model, should always terminate normally or, on the opposite, when an operation
that the model describes as exceptional does not throw anything.

In order to maintain the lowest overhead possible on the system under analy-
sis, the violation detector relies, when possible, exclusively on the observed trace.
When the Pbm has only deterministic transitions this process is straightforward
and violations can be detected directly from the execution trace. Unfortunately,
almost all components with a complex behavior are non-deterministic so there is
the need of a deeper inspection by executing operations that could provide more
information and thus reveal the state in which the component is. The solution
proposed in this paper is an enhanced monitoring phase, not relying exclusively
on what it is observable from the current execution but also able to perform some
more queries to the object under analysis. For any state having non-deterministic
outgoing transitions, we can determine which are the operations that make it
possible to know which one has been taken. These discriminators are the op-
erations on the destination states having different behaviors. Nondeterminism
can therefore be solved by invoking the discriminating operations on the object
under analysis. With these additional operations it is easy to find the compatible
state among the different nondeterministic possibilities. Discriminating opera-
tions have to be invoked on an instance of the object exactly in the same state
of the actual component and should be tested with both the original instance
pool and the instances observed in the trace for the operation. The original in-
stance pool alone would not be so effective as it would make it impossible to
find behaviors related to the parameter re-use.

Clearly it is not possible to call additional operations on the actual compo-
nent under analysis. It would lead to interferences with the service provided by
the system. Modifiers have undesirable side effects but also the invocation of a
pure operation could introduce delays and reduce the quality of service. In order
be able to carry on the analysis without disrupting the offered service, we need
to assume that we can create a clone of the component behaving exactly in the

same way the actual instance does. Moreover, the operations performed on such
clone do not have to change the actual component environment. These assump-
tions reduce the number of components our methodology can deal with, but we
are still able to monitor and analyze a vast class of commonly used elements.

Therefore the monitoring architecture requires: i) to instrument the appli-
cation using the external services; ii) to have the possibility to call operations
on a sandboxed instance of the service; iii) to be able to replay execution traces
in order to put the sandboxed instance in a defined state. With such an infras-
tructure, the verification module can detect changes in the behavior of external
services without interfering with the actual execution of the system.

4.2 Response to Violations

During the monitoring phase it may happen that an observation on the actual
execution conflicts with what it is described by the model. There are two possible
causes for the violation observed: the model could be incomplete, and therefore
needs to be updated, or the behavior of component has changed. The analysis
phase has to be able to deal and react properly to both these situations.

It is possible to discover whether the violations is due to the incompleteness of
the Pbm or to a change in the behavior by replaying on the clone some significant
executions encoded in the Bem. If all of them produce again the previously
observed results, then the model needs to be completed and that violations
simply indicate behaviors never explored before. Otherwise the violation signals
a misbehavior of the component that should trigger a reaction aimed at bringing
back the system in a safe state.

In order to keep the approach feasible, we cannot just test that everything
described by the Bem is still valid. We should rather focus on the part of the
model more closely related to the observed violation. The first step in the se-
lection of the relevant execution traces is the identification of the Bem states
corresponding to the state of the Pbm in which the violation occurred. The initial
part of the test cases can then be generated by looking for the shortest execution
traces able to reach the selected Bem states. The traces obtained in that way
have then to be completed with the operation that unveiled the violation. For
any Bem state the operation has to be called with all the parameters present in
the instance pool used to generate the model.

Model updates have to be performed when the monitoring tool discovers a
violation but there is no evidence of behavioral change. Models are updated
because the behavior of the observed execution does not contrast with what has
been observed in the past. Model updates are first applied to the Bem and then
to the corresponding Pbm.

Updating the Bem means enriching the scope it covers with the trace unveil-
ing the new behavior. Keeping all the information in a single Bem would make
its dimension increase, so we decided to rely on a set of Bems, each one describ-
ing a behavior of the component on the particular scope showing it. Doing that,

we can easily keep track of all the relevant execution exposing the different be-
haviors. Although doing that we may miss some behavior due to the interaction
of the behaviors described by different Bems, this is not an issue: the model
will describe them as soon as they appear at run time. From the set of Bems it
is easy to get the corresponding Pbm. It is quite straightforward to adapt the
inference algorithm described in section 3 to deal with the information contained
on more than a behavioral model: the algorithm has to be applied to each Bem
and the data gathered have to be added to the same Pbm so that it contains
information about all the observed behaviors regardless of the Bem it comes
form. To produce correct abstractions for the new Pbm, all the Bems must have
a coherent set of observers. To ensure that, we must update the scope for the
observer roles in the already existing Bems to have them take into account all
the significant values of the parameters discovered at run time.

A violation requiring to update the models of StorageService reported in
figures 1 and 2 happens when we try to write an empty string of data when no
entry is available. In such situation, the expected ZipException is not thrown
because the write operation does not have to write anything and the component
does not check for the availability of an entry. Therefore, we need to add a Bem
containing the observed trace. Since the violating trace contained a previously
unseen instance, we also have to update the existing Bem to have it consider
the empty string as a parameter for the write operation. For space limitations
the updated models and other examples are only available online at [2].

Change detection takes place when there is at least one test case behaving
differently than what the Pbm prescribes. Since the model encodes the behav-
iors observed in the past, any violation can be considered as an evidence of a
change: at least in the case highlighted by the failing test, the same execution
trace presented a different behavior than the one assumed by the model. The
system has then to react to the behavioral changes detected. We identified two
possible scenarios in order to be able to guarantee the maximal safety though
trying to limit the number of service interruptions. The safer scenario presents a
change that just turns one or more operation call with an exceptional outcome
into invocations that terminates normally. Another possible and more critical
situation affects more deeply the enabledness of the different operations and so
requires a stricter reaction to ensure the safety of the system.

In the first case, the change has to be notified but it does not require to
stop the execution of the application. The detected change is probably just an
addition of new functionalities or interaction patterns that previously were not
present or were disabled. However, for safety reason it is better to leave to the
user the final decision about how to react to this kind of behavioral changes. More
serious problems may arise form behavioral changes that turns the outcome of
an operation from normal to exceptional. Such a change makes it impossible
to substitute the new component to the one the system is expecting to deal
with. At some point there may be an invocation to the operation that changes
its behavior and it is going to always produce a failure due to the exception

thrown. For this reason, when changes like this occur, the only safe solution is
to stop the execution of the system requiring the intervention of a supervisor
able to decide how to fix the problem.

Change detection can be demonstrated using again the models reported in
Figure 1 and 2 to monitor the behavior of a StorageService. For a very simple
example we can assume that the component stops working and changes its behav-
ior to always throw an exception every time putNextEntry is invoked. In this sce-
nario, any execution of putNextEntry now violates the Pbm. We are interested to
check if the violation is specific to the trace observed or it is a component change;
to check this, we derive the simple test case StorageService().putNextEntry(e1)
from the Bem. Since this test case violates the Bem, it highlights the change of
the behavior of the component.
A more comprehensive evaluation of the effectiveness of the change detection
methodology has been performed injecting faults into the component under anal-
ysis and is available online at [2].

It is important to remark that this methodology is able to identify changes
only when there is at least one failing test case in the ones that can be derived
from the Bem. Since the model does not contain information about every possible
execution it is possible that an actual change is detected as a case in which there
is the need to update the Bem and the Pbm because they does not contain
anything about that particular case. However, since the updates to the model
have to be reviewed by the designer of the system the procedure prescribed by
our methodology can be considered effective.

5 Related Work

The protocol models discussed in this paper describe the behavior of a software
component accordingly to whether its operations are enabled or not. The un-
derlying idea has been introduced with the concept of Typestate in [13]. A
similar abstraction has also been used in [5], which presents a technique to build
an enabledness model from contracts and static analysis.
Tautoko [4] generates similar models starting from an existing test suite. Our
tool does not infer the model directly from the test execution traces. It rather
exploits the test suite to gather some domain knowledge to use with the Spy
methodology.
Monitoring of both functional and non-functional properties of service-based sys-
tems are described in [3]. Our technique is based on Pbms and Bems, therefore
we are able to model and monitor very precisely functional properties of a soft-
ware component.
Invite [12] developed the idea of runtime testing, pointing out the requirements
the running system has to satisfy in order to make it possible. In this work we
also introduced a technique to encode test cases in Bems and to select the ones
can highlight a behavioral change.
Tracer [10] builds runtime models from execution traces enabling richer and
more detailed analysis at an higher abstraction level. In [8] models are used to

monitor system executions and to detect deviation from the desired behavior of
consumer electronic products. Our approach combines these two aspects provid-
ing a methodology able to both detect violations and build models according to
the information gathered at run time.

6 Conclusions and Future Work

Behavior models can be useful throughout all the lifecycle of a software com-
ponent. Traditionally, such models are used at design time to support system
designers in they choices. However, they can also play a significant role after the
application is deployed by monitoring its execution and checking system prop-
erties. That is particularly useful in the context of systems in which verification
must extend to run time, because of unexpected changes that may occur during
operation.

This work focuses on the runtime aspects, extending the original scope of be-
havior models to running systems. The models and methodology proposed can
maintain an updated representation of the behavior of the component consid-
ering observations made during the actual execution of a running system. Our
approach is also able to detect and notify the system designer behavioral changes
in the monitored components. Preliminary experiments show that our approach
is effective and can deal with non-trivial components. Further research is going
to enhance the models removing current limitations and thus making it possible
to monitor an even broader class of software components.

References

1. Oracle, java se 6.0 doc., 2011. http://download.oracle.com/javase/6/docs/

index.html.
2. Spy at runtime. http://home.dei.polimi.it/mocci/spy/runtime/, 2011.
3. L. Baresi and S. Guinea. Self-supervising bpel processes. IEEE TSE, 2011.
4. V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test cases

for specification mining. In ISSTA ’10, Trento, Italy, 2010.
5. G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Automated abstrac-

tions for contract validation. IEEE TSE, 2010.
6. E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to

highly dynamic, self-adaptive service-based applications. ASE, 2008.
7. C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by

graph transformation. In ICSE ’09, Vancouver, Canada, 2009.
8. J. Hooman and T. Hendriks. Model-based run-time error detection. In Mod-

els@run.time ’07, Nashville, USA, 2007.
9. D. Jackson. Software Abstractions:Logic,Language,and Analysis. MIT Press, ’06.

10. S. Maoz. Using model-based traces as runtime models. Computer, 2009.
11. A. Mocci. Behavioral Modeling, Inference and Validation for Stateful Component

Specifications. Ph.D. thesis, Politecnico di Milano, Milano, Italy, 2010.
12. C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assurance of software applica-

tions using the in vivo testing approach. In ICST ’09, Denver, Colorado, 2009.
13. R. E. Strom and S. Yemini. Typestate: A programming language concept for

enhancing software reliability. IEEE TSE, 1986.

