
Towards Adaptive Systems through
Requirements@Runtime?

Liliana Pasquale1, Luciano Baresi2, Bashar Nuseibeh1,3

1 Lero - Irish Software Engineering Research Centre, Ireland
{liliana.pasquale|bashar.nuseibeh}@lero.ie

2 Politecnico di Milano, Italy
baresi@elet.polimi.it

3 The Open University, Milton Keynes, United Kingdom
b.nuseibeh@open.ac.uk

Abstract. Software systems must adapt their behavior in response to
changes in the environment or in the requirements they are supposed
to meet. Despite adaptation capabilities could be modeled with great
detail at design time, anticipating all possible adaptations is not always
feasible. To address this problem the requirements model of the system,
which also includes the adaptation capabilities, is conceived as a run-
time entity. This way, it is possible to trace requirements/adaptation
changes and propagate them onto the application instances. This paper
leverages the FLAGS [1] methodology, which provides a goal model to
represent adaptations and a runtime infrastructure to manage require-
ments@runtime. First, this paper explains how the FLAGS infrastructure
can support requirements@runtime, by managing the interplay between
the requirements and the executing applications. Finally, it describes how
this infrastructure can be used to adapt the system, and, consequently,
support the evolution of requirements.

1 Introduction

Software systems must be able to adapt to continue to achieve their require-
ments while they are executing. The need for adaptation may be triggered by
different events: the application reaches a particular execution state, the con-
text changes, established requirements are not satisfied, or the objectives of the
system change. Some of these events can be foreseen in advance, and thus the
corresponding adaptation capabilities, foreseen adaptations, can be planned and
designed carefully, while others cannot and adaptation capabilities, unforeseen
adaptations, must be devised completely at runtime. Note that, besides pre-
dictability, there is a tradeoff between the number of different events the system
is able to react to (completeness) and the cost of embedding these reactions from
the beginning. Furthermore, even if all possible adaptations could be anticipated

? This research has been funded by Science Foundation Ireland grant 03/CE2/I303 1
and the European Commission, Programmes: IDEAS-ERC, Project 227977 SMScom,
and FP7 Network of Excellence 215483 S-Cube.

from the beginning, some of them may become useless when requirements evolve,
due to new business objectives or users’ needs.

In the last years, different modeling notations [2,3,1] have been proposed
to engineering adaptations at the requirements level. RELAX [2] is a notation
to express uncertain requirements, whose assessment is affected by the impre-
cision of measurements. Adaptation can be designed by relaxing non-critical
requirements for guaranteeing that the critical ones are still satisfied. Aware-
ness requirements [3] are used to represent the requirements of the activities
in the feedback loop. They may trigger a set of changes in the requirements
model and must be aware of the satisfaction of the other requirements of the
system. However, these research contributions are mainly focused on modeling
foreseen adaptations, and neglect requirements evolution. In our previous work
we propose the FLAGS [1] methodology. Similarly to the other approaches, it
allows the designer to elicit adaptation together with the other conventional
(functional and non functional) requirements of the system. Adaptation capa-
bilities are represented as adaptation goals that are added to the KAOS [4] goal
model. However, FLAGS also conceives requirements as runtime entities [5], and
provides a suitable infrastructure to dynamically support their evolution.

This paper clarifies how FLAGS supports requirements@runtime. In particu-
lar, the goal model is conceived as a runtime entity and is fed by the data coming
from the running application instances. The goal model can dynamically change
to accommodate new/changing requirements. We assume that applications are
expressed as BPEL [6] processes. Adaptation actions modeled at requirements
level can affect the underlying architecture/execution environment (e.g., by re-
structuring the process activities or changing some partner services). They can
also modify the process definition and the goal model, thus changing the ac-
tual requirements of the system. Finally the paper exemplifies how the FLAGS
methodology supports the requirements evolution. In particular, every time the
requirements change, their modifications must be propagated onto the process
and adaptations must evolve accordingly. Note that we do not focus on the au-
tomatic identification of new requirements/adaptations capabilities, and assume
that they are manually added by the designer.

The paper is structured as follows. Section 2 describes how the FLAGS model
can be used to represent adaptations. Section 3 illustrates the runtime infras-
tructure to support requirements@runtime. Section 4 describes how the infras-
tructure activates adaptations at runtime and supports the interplay between
the requirements and the running application. Section 5 discusses some related
approaches and concludes the paper.

2 Modeling Adaptations with FLAGS

This section classifies different kinds of adaptation, and demonstrates how they
can be elicited through FLAGS. We use an example of a web portal, Click&Eat,
which collects information regarding different restaurants that deliver food at
home and allows customers to order food from one of them.

2.1 Adaptation Classification

Adaptations can be classified along several dimensions [7]. For the objectives of
this paper we just consider their effect and anticipation.

– Effect. Adaptations may just change the underlying implementation or may
also modify the actual requirements of the system. In the first case, they can
be performed automatically and may affect one or all application instances.
• Single Instance. These adaptations are suitable to cope with transient

events and can modify the execution flow of a process instance or one of
its partner links. Hence, the effects of these adaptations are temporary
and do not have an impact on the process definition.

• All Instances. They restructure the process by changing the definition
of all (executing and future) process instances. Hence, the effects of these
adaptations are permanent.

Despite it can be feasible to apply temporary actions to all process instances
or permanent actions on a single instance, we did not find useful to introduce
this further distinction for our purposes.
In case some requirements cannot be satisfied, due to, for example, lack of
resources or premature design choices, or to accommodate context changes,
adaptation actions modify the requirements model —including the adapta-
tion capabilities— and propagate their effect on all application instances.

– Anticipation. Adaptations can be planned ahead of time or not. Foreseen
adaptations are modeled by the designer along with the other conventional
requirements of the system. This way the underlying process can adapt au-
tonomously when a specific scenario takes place (e.g., a goal is violated, a
specific event happens). Unforeseen adaptations are determined by changes
in the requirements that may take place after an application is already on
the market, due to new users needs, or mutations in the organization, laws
and business opportunities. Requirements changes may also be due to the
execution of an adaptation that modifies the requirements model. In all these
cases, new adaptations must be identified, or some of the existing adaptations
may no longer be useful or may need to be modified. Despite requirements
changes cannot be identified automatically, the way new requirements impact
on the underlying application can be detected semi-automatically through
requirements traceability.

2.2 Adaptation Elicitation

Adaptation goals must be specified over the conventional requirements of the
system. Figure 1(a) shows a FLAGS model of Click&Eat. The general objective
of the system is to manage the customers’ requests (goal G1). Customers want
to browse available restaurants to view offered food items and their cost (goal
G1.1). To this aim they must search a set of potential restaurants (goal G1.1.1)
and select one among them (goal G1.1.2). The search can be performed by name
(operation SearchByName) or by kind of provided food (operation SearchBy-
Type). All customers must register (goal G1.2) to be able to make an order (goal

G1.3). This application also aims to collect the customers’ feedbacks regarding a
selected restaurants (goal G1.4). Finally the average satisfaction of all customers
must be high (goal G1.5).

G1
[Manage

Requests]

AND

Select
Food

CalcTotal

LoginOp

Insert
Address

SearchBy
Type

G1.3
[Make
order]

G1.1
[Choose

restaurant]

G1.5
[High cust.

satisfaction]

G1.2
[Register]

RegisterOp

Notify

G1.4
[Vote

restaurant]

AG1
[Signal new
restaurant]

SearchBy
Name

Perform
(op1, op2, G1.1.1)

op1: Get Restaurant
op2: Add Restaurant

Confirm

G1.1.1
[Search

restaurant]

G1.1.2
[Select

restaurant]

Select

AND

Send
feedback

AG3
[Increase
customer

satisfaction]

fix(AG1)

AG2
[Make AG1
permanent]

tense(G1.1.1)

del(Show)

del(G1.1.1)

Show

del(AG1)

Legend

goal
adaptation
goal

operation

event

(a)

x x
G1.1.1
[Search

restaurants]x
Search
by type

Search
by name

G1.1.1a
[Search open
restaurants]

Search open
by type

Search open
by name

(b)

Fig. 1. The FLAGS model (a) and its modifications (b) for Click&Eat web portal.

Adaptation goals define the adaptation capabilities embedded in the system
at requirements level. The operationalization of these goals defines the actions to
be carried out when adaptation is required. Each adaptation goal is associated
with a trigger and a set of conditions. The trigger states when the adaptation goal
must be activated. Conditions specify further necessary constraints that must be
satisfied to allow the corresponding goal to be executed. Conditions may refer
to properties of the system (e.g., satisfaction levels of goals, or adaptation goals
already performed) or domain assumptions.

Adaptation goals can embed process-level actions that simply change the
way goals are achieved (process activities, partner services), or goal-level actions
that modify the goal model. Process level adaptations have conditions that do
not depend on the satisfaction of goals, but are just expressed through untimed
formulas over runtime data. Furthermore, they can be performed any number
of times, while goal level adaptations must be performed at most once. Process-
level actions are: perform([o1,. . ., on], g/o), may optionally execute a sequence of
operations (o1, . . ., on) and resumes the execution before operation o or goal g is
executed; substitute(a1, a2 [, o]), substitutes agent a1 with a2 for all operations
performed by a1 (in case the third parameter is not specified) or only when a1
executes operation o (otherwise); fix(ag), includes the effects of an adaptation
goal (ag) in the process definition4. Goal level actions are: add/remove(g), adds
or removes (conventional/adaptation) goal g; add(o, g), adds operation o to goal
g; remove(o), removes operation o; add/remove(e/ev/a), adds or remove an en-
tity (e), or an event (ev), or an agent (a); relax(g, constr), modifies the definition

4 Action fix(ag) can be applied in case ag temporarily modifies the process execution
flow, without changing the process definition or the goal model.

of a leaf goal (g) making it less strict (e.g., by adding a new disjunct constraint or
relaxing the corresponding membership function); tense(g, constr), modifies the
definition of a leaf goal (g) by making it stricter (e.g., by adding a new conjunct
constraint or tensing the corresponding membership function). Adaptation goals
are associated with other elements of the goal model (dependencies). In case at
least one element in the dependencies is removed or modified, the adaptation
goal must be consequently removed. This way adaptations can be automatically
adjusted to comply with the modifications of the goal model.

To handle those cases in which a desired restaurant cannot be found, a tem-
porary adaptation goal (AG1) is defined. It aids goal G1.1.1, is triggered when
event Show takes place (i.e., after operation SearchByName), under the con-
dition that attribute list of event Show does not contain any restaurant. As
actions, AG1 performs operations Get Restaurant and Add Restaurant, which
respectively retrieve the information of a restaurant from a user and add it to
the list of available restaurants. This adaptation depends on event Show : in case
this event is removed from the the model, AG1 must be consequently removed.
In case AG1 is triggered too many times, a permanent adaptation goal (AG2)
is applied. It performs action fix(AG1), which removes AG1 and adds the ac-
tions performed by AG1 to the process definition. It is triggered when AG1 is
performed and under the condition that AG1 has been triggered more than 10
times. When some goals (G1.5) are not satisfied enough, due to wrong design
choices, the requirements of the system should change. For example, adaptation
goal AG3 may be applied to tense goal G1.1.1 by adding a conjuntive constraint.
This new constraint asserts that only those restaurants with a feedback greater
than 40% must be shown to the customer.

The customers may change their requirements while the system is execut-
ing. For example, they may want to visualize only those restaurants that are
open at the moment when the search is performed. To address these changes
it is necessary to modify the goal model manually, by substituting goal G1.1.1
with G1.1.1a, as shown in Figure 1(b). Consequently, new unforeseen adapta-
tions must be automatically applied at the applications level to propagate these
modifications to all instances.

3 The Runtime Infrastructure

As shown in Figure 2, FLAGS provides a conceptual infrastructure to enact
requirements at runtime. Its components operate respectively at the process
and the goal level, whereas the Process Reasoner handles the interplay between
them. To support requirements evolution the infrastructure manages two mod-
els at runtime: the FLAGS model and the implementation model. The former
includes the requirements and the adaptation capabilities performed at the goal
level, while the latter includes the definition of the process together with the
data collection, monitoring and adaptation capabilities necessary to support the
adaptations at the process level. These models are managed respectively by the
components at the goal and process level.

Process level

BPEL Engine

Goal level

Goal Reasoner

Process Reasoner

Graphical Designer

External Probes

Data
Collector

Adaptor

Internal Probes

Environment

FLAGS
model

Designer

mappings
(process - goals)

mappings
(process - goals)

mappings
(process - goals)

AnalyzerAnalyzerAnalyzer

live model
instances

process
definition

process
instances

Fig. 2. Runtime infrastructure.

At the process level a BPEL engine supports the execution of the process in-
stances. We use a modified version of ActiveBPEL [8] engine, which is augmented
with Aspect Oriented Programming [9]. It provides a customizable “aspect” that
can be used to intercept the process execution at specific points, for example to
collect the process internal state or apply some adaptation actions. The Data
Collector manages the collection of runtime data from the process or the environ-
ment. The process state is collected by the Internal Probes that are activated
when the process reaches specific execution points. Conversely, the data from
the surrounding environment are gathered by the External Probes that expose
a proper interface to be configured and enacted at runtime.

Runtime data are sent to the Goal Reasoner, through the Process Reasoner,
and are used to update the elements of the goal model (i.e., events, entities,
satisfaction of leaf goals and performed adaptations). The Process Reasoner also
evaluates the satisfaction of leaf goals, by invoking a specific Analyzer, depending
on the kind of constraint (i.e., temporal or untimed) that must be checked. When
the goal model changes, the Goal Reasoner notifies the Process Reasoner, which
propagates these modifications on the running and next process instances. To
manage the interplay between the goal model and the process, the Process Rea-
soner uses a bidirectional mapping between the elements of the FLAGS model,
and those of the implementation model. Note that the adaptations that are ap-
plied at runtime may generate different versions of the implementation model
and the FLAGS model. For this reason, the Process Reasoner must store different
mappings, depending on the versions of the models that are in use.

The Process Reasoner orchestrates the adaptation at the process level, ac-
cording to the directives of the implementation model. It monitors the runtime
data to check if the trigger and conditions of an adaptation are satisfied. In this
case, it activates proper adaptation actions through an Adaptor, which can tem-
porarily change the execution flow of a single process instance or may change

the implementation model, by modifying the definition of the process and the
adaptation capabilities. To adapt the running process instances, the Adaptor in-
tercepts the execution at a “safe” point, where the modifications can be correctly
applied, since they do not break any conversation or transaction. To adapt the
next process instances the Adaptor transparently deploys a new version of the
process in the BPEL engine.

At the goal level, the Graphical Designer [10] allows the designer to create
a new version fo the FLAGS model and modify it at runtime. It also stores
all versions of the FLAGS model that are actually in use. The Goal Reasoner
manages the live instances of the FLAGS model. It creates a new instance every
time the Process Reasoner signals that a process instance is started. This live
instance must conform to the last version of the FLAGS model. Every time a
live instance of the FLAGS model is updated, a set of rules recompute the satis-
faction of high level goals, evaluate the triggers and conditions of the adaptation
goals, and decide which adaptation goal must be applied, if necessary. In our
implementation the Goal Reasoner is based on JBoss rule engine [11].

Every time the last version of the FLAGS model is modified at runtime, a
new version is created. Consequently, all live instances of the FLAGS model
and their corresponding process instance must migrate to the new version of the
model, if possible. A new version of the implementation model is inferred. In
particular, the new version of the process is inferred and deployed on the BPEL
Engine, the new mappings between the goal model and the process are generated
and stored at the Process Reasoner, and the components at the process level
must be properly re-configured to update and apply process level adaptations
for the modified instances of the FLAGS model. A live instance of the FLAGS
model is canceled every time the Process Reasoner signals that the corresponding
process instance has terminated. In case there is no running instance of a process
associated with an old version of the FLAGS model, that version is removed
together with its corresponding mappings at the Process Reasoner.

4 Managing Adaptations @Runtime

This section describes how adaptations are applied at runtime and their impact
on the implementation and the FLAGS model. The implementation model may
change when process level adaptations are performed. The FLAGS model can
change when the designer manually modifies it or when goal level adaptations are
applied, and, in these cases, the implementation model must evolve accordingly.

4.1 Process Level Adaptations

Adaptations at the process level are applied on a single process instance and
may perform a small set of actions. They can change the process execution
flow (action perform) or substitute a partner service with another one (action
substitute). These adaptations require to keep the process blocked at specific
execution points, while their conditions are checked and their actions are applied,

if necessary. The trigger of these adaptations must clearly identify the execution
point where the adaptations are performed. Since conditions must be evaluated
“on-the-fly”, while the process is blocked, they must be expressed as untimed
formulas. The Process Reasoner can verify them by invoking one of the Analyzers
that have been plugged in the infrastructure.

To apply action perform([o1, . . . , on], g/o), the operations included in the
first argument (op1, . . . , opn) are translated into a sequence of activities that
must be temporarily performed. These activities can be executed, for exam-
ple, by invoking an external partner service. The second argument is associ-
ated with a concrete execution point where the process execution must be re-
stored. This action can be applied at runtime through a suitable Adaptor, such
as Dynamo [12], which provides recovery actions call(wsdl, operation, ins) and
restore(destLocation). The former calls an operation exposed by an external web
service, which is identified by its wsdl. The third parameter (ins) represents the
data that are to be sent to the service. Action restore takes the process back to
the point of execution immediately prior to the destLocation (indicated with an
XPath expression), and resumes the process execution from there.

To apply action substitute(a1, a2 [, o]), the BPEL partner links p1, p2 that are
associated with agents a1, a2 must be identified. This action substitutes p1 with
p2 for all process activities in which p1 is used, in case the third parameter is not
specified. Otherwise, it is necessary to identify the process activities associated
with operation o, and substitue p1 with p2 for all of them. Both adaptation
actions can be supported by Dynamo. In the first case, we can use recovery
action rebindPartnerLink(name, wsdl), which changes partner link p1, identified
by a name, with p2, identified by its wsdl. In the second case we can apply
action rebind(wsdl, operation), which substitutes partner link p1, which performs
activity operation, with p2, identified by its wsdl.

while [cond1]
pick

onMessage
(SearchByName)

invoke-receive
SearchByName

reply
RestList

onMessage
(Select)

cond1 <- false

...

AG1 ...

Restaurant <-
Select.idinvoke-receive

Get Restaurant

invoke
Add Restaurant

trigger

invoke-receive
FilterRestaurant

ES

add

call

restore
G1.1.1 AG3

Fig. 3. BPEL process for the Click&Eat application.

For example, AG1 is an adaptation goal that applies action perform(GetRe-
staurant, AddRestaurant, G1.1.1) on a single process instance. To support its
enactment at runtime, the Internal Probes must be instrumented to intercept
the process execution at the points when event Show (trigger) takes place. In
our example (see Figure 3) this corresponds to the execution point after activity
reply RestList. This way, every time the process terminates this activity, its exe-
cution is blocked, and, in case the condition is satisfied, an external service (ES)
is invoked. It performs a sequence of activities associated with the operations
GetRestaurant and Add Restaurant and restores the process execution before
activity pick, which is the execution point where G1.1.1 starts to be activated.

All adaptations that are applied on all process instances have a permanent
effect on the implementation model. The trigger of these adaptations only iden-
tifies the moment when the condition can be verified. A set of “safe points”
must be identify the process point at which an adaptation must be applied. In
case a running process instance has already passed all safe points, it cannot be
migrated. All the other adaptations at the process level are temporarily deac-
tivated, until all instances complete the migration to the next version of the
process, when possible. The new mappings between the new version of the pro-
cess and the last version of the FLAGS model must be also added to the Process
Reasoner. Finally the adaptation capabilities at the Data Collector and Process
Reasoner may also change.

AG2 falls in this category, since it applies action fix(AG1) to modify the
process definition. After the Process Reasoner performs AG1 (trigger) for one of
its process instances, the condition associated with AG2 must be verified. AG2
applies a set of modifications at the Process Reasoner, since it removes AG1 and
all the directives necessary to support its execution. AG2 also modifies the pro-
cess definition by inserting a set of activities after the execution point identified
by the trigger of AG1 (i.e., after activity reply RestList). These activities are:
an if activity, which verifies the condition of AG1, and the activities that were
temporarily performed by external service ES. A new version of the process that
includes all these modifications is deployed as well in the BPEL Engine.

4.2 Goal Level Adaptations

For goal level adaptations things work slightly differently. Their trigger and con-
ditions are checked by the Goal Reasoner every time a new element of the goal
model is updated. When an adaptation at the goal level is applied, the Goal
Reasoner suspends all further updates of the goal model and stores all runtime
data received from the Process Reasoner in a buffer, until the adaptation com-
pletes. It also sends a notification to the Process Reasoner to block all running
process instances at the end of the activity they are currently executing. An
adaptation at the goal level generates a new version of the FLAGS model, and
must apply the corresponding modifications onto its live instances. Note that
only those instances that comply with the last version of the FLAGS model can
potentially migrate to the new version. The migration can take place only if

the corresponding process instance has not already passed the safe points where
modifications must be applied.

A new version of the implementation model is created accordingly. In par-
ticular, the Process Reasoner creates a new version of the mappings between
the process and the goal model and indicates what are the process instances
that must actually follow this mapping. Consequently the probes and the Pro-
cess Reasoner change their configuration to respectively intercept the process
at different points, collect different data, evaluate different leaf goals (specified
with different constraints) and activate different adaptation actions. Finally the
definition of all running and next process instances must change to comply with
the modifications of the goal model. For example, if some goals or operations are
added/removed, the corresponding activities in the process definition must be
added/removed. In case agents are added/removed, the corresponding partner
links must be added/removed from/to the process definition and so on.

After all aforementioned actions are performed, the execution of all process
instances can be restored. All runtime data received by the Process Reasoner
that are not associated with any element at the goal level are automatically re-
moved. The Goal Reasoner will start to process the data stored in its buffer only
after all process instances correctly migrated to their new version (if possible).
The Goal Reasoner will discard all the data that are associated with leaf goals,
entities and events that do not exist anymore or have been modified. Goal level
adaptations can be triggered while a process level adaptation, which modifies the
process definition, is being performed on the process. In this case, it is necessary
to guarantee that only the previous adaptation is applied, or both of them are
applied. In other cases a goal level adaptation can be triggered while one or more
process instances are performing a process level adaptation that just temporar-
ily modifies the process execution flow. In this case the process instance must
terminate the execution of the temporary activities and must be blocked before
performing the activity associated with the restore point.

In our example, AG3 applies a goal level adaptation when the satisfaction of
G1.5 is low (trigger). It changes the definition of goal G1.1.1 and its operational-
ization. As an effect, the Goal Reasoner creates a new version of the FLAGS
model, manage the migration for the live instances of the model, and adds a
new version of the mappings to the Process Reasoner. At the process level the
next process instances can be migrated by deploying a new version of the BPEL
process, which complies with the new version of the FLAGS model. The running
process instances can be migrated by intercepting their execution before activ-
ity pick and adding activity invoke-receive FilterRestaurant after invoke-receive
SearchByName, as shown in Figure 3. A similar procedure is followed when a
new version of the FLAGS model is manually created by designer, who directly
modifies the last version of the FLAGS model. This can happen when, for ex-
ample, the requirements of the system change, as shown in Figure 1(b). In this
case, the Graphical Designer notifies the Goal Reasoner that propagates the
modifications on the live instances of the FLAGS model and on the process. A
goal model at runtime allows us to reshape the adaptations at the process level,

depending on the modifications applied on the process. In this example all the
adaptation goals that have been defined can persist, since goal G1.1.1 and event
Show are not removed. However the way adaptations are supported at runtime
changes. For example, at the process level AG3 will be added after another ac-
tivity (invoke-receive SearchOpenByName), and will modify the new definition
of G1.1.1 by adding its conjunct constraint to its modified consequent.

5 Discussion

Different solutions have been already proposed to support requirements evo-
lution. Courbis and Finkelstein [13] analyze the requirements in a number of
possible environments where the system can execute. This analysis is used to
identify alternative requirements definition and architectural choices to foster
“design for change”. Note that identifying all possible changes in advance is not
always possible. For this reason requirements@runtime [5] are fundamental to
trace the modifications of both the requirements and the operative environment
where the system is executing. Ali et al. [14] use requirements at runtime to
support their evolution when wrong assumptions are discovered. Requirements
evolution can be performed automatically, by changing the priority given to soft-
ware variants, or can be manually performed by the designer. However this work
neglects how requirements changes are applied onto the system.

To support requirements at runtime the link between the requirements and
the underlying implementation cannot be lost. The changes in the system re-
quirements at runtime may trigger the execution of a set of analysis (e.g., con-
sistency check, requirements verification) that have been traditionally performed
offline. Baresi and Ghezzi [15] foster this idea. In particular, they claim that the
rigid boundary between development time and runtime must be broken and
more support must be provided to analyze and re-design the software at run-
time. According with this idea, Epifani et al. [16] use a live model of the system
to reason about its reliability. They use runtime data to feed the model and
perform probabilistic analysis to improve its accuracy. The updated model can
be used to detect or predict if a reliability property will be violated in the
running implementation. Our work also maintains the link between the require-
ments model and the implementation model and apply unforeseen requirements
and application features through aspects, as already proposed by Courbis and
Finkelstein [17]. A similar idea has been also proposed in the DiVA project [18],
which models variability dimensions as aspects and performs dynamic aspect
weaving as model transformations when an adaptation need occurs.

Our approach needs further improvements. It lacks a mechanism to verify the
consistency and correctness of the models updated by the designer. It should bet-
ter handle conflicts between adaptations that are activated at the same time.
We are also planning to exploit requirements@runtime in the security domain.
Security is a critical property whose violation must be avoided. The countermea-
sure used to support this property depend on the context and, for this reason,
it may be fundamental to detect changes that can take place in the assets to be

protected or in the environment. These changes may trigger suitable analysis at
runtime and activate new countermeasures necessary to continue to guarantee
the satisfaction of security requirements.

References

1. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-Driven Adap-
tation. In: Proc. of the 18th Int. Requirements Eng. Conf. (2010) 125–134

2. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: Proc. of the 17th
Int. Requirements Eng. Conf. (2009) 79–88

3. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
Requirements for Adaptive Systems. In: Proc. of the 6th Int. Symposium on
Software Eng. for Adaptive and Self-Managing Systems. (2011) 60–69

4. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML
Models to Software Specifications. John Wiley (2009)

5. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems. In: Proc.
of the 18th Int. Requirements Eng. Conf. (2010) 95–103

6. OASIS WSBPEL TC: Web services business process execution language. http:

//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

7. B. Cheng et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Software Engineering for Self-Adaptive Systems. Volume 5525.
Springer Berlin / Heidelberg (2009) 1–26

8. Active Endpoints: The activebpel engine. http://www.activevos.com/

community-open-source.php

9. G. Kiczales et al.: Aspect-Oriented Programming. In: Proc. of the 11th European
Conference on Object-Oriented Programming. (1997) 220–242

10. Baresi, L., Pasquale, L.: An Eclipse Plug-in to Model System Requirements and
Adaptation Capabilities. In: Proc. of the 6th IT-Eclipse Workshop. (2011) (to
appear)

11. JBoss Drools Team: Drools expert. http://jboss.org/drools

12. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Trans. on Software
Eng. 37(2) (2011) 247–263

13. Bush, D., Finkelstein, A.: Requirements Stability Assessment Using Scenarios. In:
Proc. of the 11th Int. Conf. on Requirements Eng. (2003) 23–32

14. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements Evolution: From
Assumptions to Reality. In: Proc. of the 12th Int. Conf. BMMDS/EMMSAD.
(2011) 372–382

15. Baresi, L., Ghezzi, C.: The Disappearing Boundary Between Development-time
and Run-time. In: Proc. of the Workshop on Future of Software Eng. Research.
(2010) 17–22

16. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proc. of the 31st Int. Conf. on Software Eng. (2009)
111–121

17. Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proc. of
the 27th Int. Conf. on Software Eng. (2005) 69–77

18. DiVA-Dynamic Variability in complex, adaptive systems. http://www.ict-diva.
eu/

