
ACESMB 2011

Fourth International Workshop on
Model Based Architecting and Construction

of Embedded Systems

October 18th, 2011, Wellington, New Zealand

Organized in conjunction with MoDELS 2011
14th International Conference on Model Driven Engineering Languages and Systems

Edited by:
Stefan Van Baelen (K.U.Leuven DistriNet, Belgium)

Sébastien Gérard (CEA LIST, France)
Ileana Ober (University of Toulouse IRIT, France)

Thomas Weigert (Missouri University of Science and Technology, USA)
Huascar Espinoza (ESI Tecnalia, Spain)

Iulian Ober (University of Toulouse IRIT, France)

Table of Contents

Table of Contents...3

Foreword...5

Acknowledgments7

Towards Integrated System and Software Modeling for Embedded Systems

Hassan Gomaa (George Mason University, USA) ...9

A Multidisciplinary Design Methodology for Cyber Physical Systems

Frank Slomka, Steffen Kollmann, Steffen Moser, and Kilian Kempf (Ulm University, Germany) 23

A Model Driven Approach for Software Parallelization

Margarete Sackmann, Peter Ebraert, and Dirk Janssens (Universiteit Antwerpen, Belgium) 39

A Refinement Checking Technique for Contract Based Architecture Designs

Raphael Weber, Tayfun Gezgin (OFFIS, Germany), and Maurice Girod (Airbus Operations,
Germany)... 55

Model based Consistency Checks of Electric and Electronic Architectures against Requirements

Nico Adler, Philipp Graf (FZI, Germany), and Klaus D. Müller Glaser (KIT, Germany) 71

Modeling and Prototyping of Real Time Embedded Software Architectural Designs with Colored
Petri Nets

Robert Pettit (The Aerospace Corporation, USA), Hassan Gomaa (George Mason University, USA),
and Julie Fant (The Aerospace Corporation, USA) ... 85

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 3

Foreword

The development of embedded systems with real time and other critical constraints raises
distinctive problems. In particular, development teams have to make very specific
architectural choices and handle key non functional constraints related to, for example, real
time deadlines and to platform parameters like energy consumption or memory footprint.
The last few years have seen an increased interest in using model based engineering (MBE)
techniques to capture dedicated architectural and non functional information in precise (and
even formal) domain specific models in a layered construction of systems. MBE techniques
are interesting and promising for the following reasons: They allow to capture dedicated
architectural and non functional information in precise (and even formal) domain specific
models, and they support a layered construction of systems, in which the (platform
independent) functional aspects are kept separate from architectural and non functional
(platform specific) aspects, where the final system is obtained by combining these aspects
later using model transformations.

The objective of this workshop is to bring together researchers and practitioners interested
in model based engineering to explore the frontiers of architecting and construction of
embedded systems. We are seeking contributions relating to this subject at different levels,
from modelling languages and semantics to concrete application experiments, from model
analysis techniques to model based implementation and deployment. Given the criticality of
the application domain, we particularly focus on model based approaches yielding efficient
and provably correct designs. Concerning models and languages, we welcome contributions
presenting novel modelling approaches as well as contributions evaluating existing ones. The
workshop targets in particular:

Architecture description languages (ADLs). Architecture models are crucial elements
in system and software development, as they capture the earliest decisions which
have a huge impact on the realisation of the (non functional) requirements, the
remaining development of the system or software, and its deployment. We are
particularly interested in examining:

o Position of ADLs in an MBE approach;
o Relations between architecture models and other types of models used

during requirement engineering (e.g., SysML, EAST ADL, AADL), design (e.g.,
UML), etc.;

o Techniques for deriving architecture models from requirements, and deriving
high level design models from architecture models;

o Verification and early validation using architecture models.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 5

Domain specific design and implementation languages. To achieve the high
confidence levels required for critical embedded systems through analytical
methods, in practice languages with particularly well behaved semantics are often
used, such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony,
Esterel), super synchronous models (TTA, Giotto), scheduling friendly models (HRT
UML, Ada Ravenscar), or the like. We are interested in examining the model oriented
counterparts of such languages, together with the related analysis and development
methods.
Languages for capturing non functional constraints (MARTE, AADL, OMEGA, etc.)
Component languages and system description languages (SysML, MARTE, EAST ADL,
AADL, BIP, FRACTAL, Ptolemy, etc.).

We accepted 6 full papers for the workshop. We hope that the contributions for the
workshop and the discussions during the workshop will help to contribute and provide
interesting new insights in Model Based Architecting and Construction of Embedded
Systems.

The ACESMB 2011 organising committee,

Stefan Van Baelen,
Sébastien Gérard,
Ileana Ober,
Thomas Weigert,
Huascar Espinoza,
Iulian Ober.

The ACESMB 2011 steering committee,

Mamoun Filali,
Susanne Graf.

October 2011.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 6

Acknowledgments

The Organizing Committee of ACESMB 2011 would like to thank the workshop Programme
Committee for their helpful reviews.

Jean Michel Bruel (University of Toulouse IRIT, France)
Agusti Canals (CS SI, France)
Daniela Cancila (Atego, France)
Arnaud Cuccuru (CEA LIST, France)
Huascar Espinoza (ESI Tecnalia, Spain)
Jean Marie Farines (UFSC, Brasil)
Mamoun Filali (University of Toulouse CNRS IRIT, France)
Robert France (CSU, USA)
Pierre Gaufillet (Airbus, France)
Sébastien Gérard (CEA LIST, France)
Susanne Graf (Univ. Joseph Fourier CNRS VERIMAG, France)
Bruce Lewis (US Army, USA)
Ileana Ober (University of Toulouse IRIT, France)
Iulian Ober (University of Toulouse IRIT, France)
Isabelle Perseil (Inserm, France)
Dorina Petriu (Carleton University, Canada)
Andreas Prinz (University of Agder, Norway)
Bernhard Rumpe (RWTH Aachen, Germany)
Douglas C. Schmidt (Vanderbilt University, USA)
Bran Selic (Malina Software, Canada)
Martin Törngren (KTH, Sweden)
Stefan Van Baelen (K.U.Leuven DistriNet, Belgium)
Tullio Vardanega (University of Padua, Italy)
Eugenio Villar (Universidad de Cantabria, Spain)
Thomas Weigert (Missouri S&T, USA)
Tim Weilkiens (OOSE, Germany)
Sergio Yovine (VERIMAG, France)

This workshop is organised as an event in the context of

The IST 004527 ARTIST2 Network of Excellence on Embedded Systems Design
The research project EUREKA ITEA2 EVOLVE (Evolutionary Validation, Verification
and Certification)
The research project EUREKA ITEA2 VERDE (Validation driven design for component
based architectures)
The research project EUREKA ITEA2 OPEES (Open Platform for the Engineering of
Embedded Systems)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 7

 Towards Integrated System and Software
Modeling for Embedded Systems

Hassan Gomaa

Department of Computer Science
George Mason University, Fairfax, VA

hgomaa@gmu.edu

Abstract. This paper addresses the integration of system modeling and software
modeling, particularly for embedded systems, which are software intensive
systems that consist of both hardware and software components. This paper
describes a systems modeling approach to create structural and behavioral
models of the total system using SysML. The systematic transition to software
modeling using UML is then described.

Keywords: systems modeling, software modeling, SysML, UML, embedded
systems, structural modeling, behavioral modeling.

1 Introduction

Model-based systems engineering [1, 2] and model-based software engineering [3, 4,
5, 6] are increasingly recognized as important engineering disciplines in which the
system under development is modeled and analyzed prior to implementation. In
particular, embedded systems, which are software intensive systems consisting of
both hardware and software components, benefit considerably from a combined
approach that uses both system and software modeling. This paper describes a
modeling solution to this problem with an approach that integrates these two
disciplines for the development of embedded systems. In particular this paper
concentrates on developing the hardware/software boundary of a system, the
decomposition of the system into hardware and software components, and designing
the interface between hardware and software components. The modeling languages
used in this paper are SysML [7] for systems modeling and UML [8, 9] for software
modeling.

This paper describes a systems modeling approach to develop a multi-view model
of the system, in terms of a structural block definition diagram of the problem
domain, a system context block definition diagram, a use case model, and a state
machine model, which forms the basis for a transition to software models. This is
followed by modeling the hardware/software boundary, which involves decomposing
the system into hardware and software components and modeling the possible
deployment of components. The steps in software modeling that address the software
side of the hardware/software interface are described next, in which the boundary of
the software system is established and the software components are determined. From

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 9

there, the software components are categorized as active (i.e., concurrent) or passive
and their behavioral characteristics are determined. Although the approach can be
used for most systems, it is intended in particular for embedded systems, which are
software intensive systems that typically have a large number of hardware
components, including sensors and actuators, which need corresponding software
components to interface and communicate with them. An example of this model-
based approach is given using a Microwave Oven system.

2 System and Software Modeling

The objective of the model-based approach described in this paper is to clearly
delineate between systems modeling and software modeling, with a well-defined
transition between the two phases. This section describes the steps in systems
modeling, hardware/software boundary modeling, and software modeling.

2.1. Overview of System Modeling

System modeling consists of structural and behavioral (dynamic) modeling of the
total system using SysML to get a better understanding of the system. The following
steps consider the total system perspective, consisting of hardware, software and
people, without consideration of what functionality is carried out in hardware and
what functionality in software.

1. Structural modeling of the problem domain using block definition diagrams.
In structural modeling of the problem domain, the emphasis is on modeling
real-world entities, including relevant systems, users, physical entities and
information entities.

2. System context modeling. A system context block definition diagram
explicitly shows the boundary between the total system, which is treated as a
black box, and the external environment. In considering the total
hardware/software system, users and external systems are external to the
system, while hardware and software entities are inside the system.

3. Use case modeling. In order to get an understanding of the system behavior,
use case modeling is carried out. This involves determining the actors (users)
of the system and the sequence of interactions between the actor(s) and the
system.

4. Dynamic state machine modeling. State machines provide a more precise
method for modeling the behavior of state-dependent embedded systems. For
these systems, state machine modeling is preferred to activity diagrams
because embedded systems are highly state dependent.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 10

3

2.2. Overview of Hardware/Software Boundary Modeling

The following steps address the decomposition of the total system into hardware and
software components, in particular determining what is done by hardware and what is
done by software.

1. Decompose system into hardware and software components. Develop a block
definition diagram that depicts the hardware components and the software
system.

2. Deployment modeling. Develop deployment diagram depicting the
deployment of hardware and software components.

2.3 Overview of Software Modeling

Once the hardware/software boundary has been determined, the next steps address the
decomposition of the software system into its constituent components. They involve
determining the boundary of the software system, and determining those software
components that interface to and communicate with the hardware components.

1. Software context modeling. Unlike system context modeling, software
context modeling depicts the boundary of the software system with the
hardware components external to the software system.

2. Software component structuring. This step involves determining the software
components that are needed to interface to and communicate with the
hardware components. The software components are further categorized as
active (concurrent) or passive.

3. Having determined the boundary between the hardware and software
components, the subsequent development steps follow a UML-based
software modeling and design method, in particular the COMET [4] method.

3. System Modeling

3.1 Structural Modeling of the Problem Domain

In structural modeling of the problem domain, the initial emphasis is on modeling
real-world entities, including relevant systems, users, physical entities and
information entities. Physical entities have physical characteristics – that is, they can
be seen and touched. Such entities include physical devices, which are often part of
the problem domain in embedded applications. Information entities are conceptual
data-intensive entities that are often persistent – that is, long-living. Information
entities are particularly prevalent in information systems (e.g., in a banking
application, examples include accounts and transactions). Structural modeling using
block definition diagrams allows the representation of these real-world entities as

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 11

blocks, as well as the relationships among these blocks, in particular associations,
whole/part (composition or aggregation) relationships, and
generalization/specialization relationships. Composite relationships are used to show
how a real-world system of interest is composed of blocks. In embedded systems, in
which there are several physical devices such as sensors and actuators, block
definition diagrams can help with modeling these real-world devices. Individual
entities are categorized as input devices, output devices, timers and systems, and
depicted on block diagrams using stereotypes.

As an example, consider the structural model of the problem domain for the
Microwave Oven System, which is an embedded system and is depicted on the block
definition diagram in Fig. 1. The Microwave Oven System is modeled as a composite
component, which senses and controls several I/O devices through sensors and
actuators respectively. The oven is composed of three input devices: a door sensor
which senses when the door is opened and closed by the user, a weight sensor to
weigh food, and a keypad for entering commands. There are two output devices: a
heating element for cooking food and a display for displaying information and
prompts to the user. There is also a timer component, namely the real-time clock.

Fig. 1 Block definition diagram for Microwave Oven System

3.2 Structural Modeling of the System Context

It is very important to understand the scope of a computer system – in particular, what
is to be included inside the system and what is to be excluded from the system.
Context modeling explicitly identifies what is inside the system and what is outside.
Context modeling can be done at the total system (hardware and software) level or at
the software system (software only) level. A system context diagram explicitly shows
the boundary between the system (hardware and software), which is treated as a black
box, and the external environment. A software system context diagram explicitly
shows the boundary between the software system, also treated as a black box, and the
external environment, which now includes the hardware.

In developing the system context (which is depicted on a block definition diagram)
it is necessary to consider the context of the total hardware/software system before

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 12

5

considering the context of the software system. In considering the total
hardware/software system, only users and external systems are outside the system,
while hardware and software components are internal to the system. Thus, I/O devices
are part of the hardware of the system and therefore appear inside the total system.

To differentiate between different kinds of external entities, stereotypes [4, 9] are
used. For the system context diagram, an external entity could be an «external
system», when the system to be developed interfaces to either a previously developed
system or a system to be developed by a different organization, or an «external user»,
to model a user of the system.

As an example, consider the total hardware/software system for the Microwave
System. The system context diagram (shown on the block definition diagram in Fig.
2) is modeled from the perspective of the system to be developed, which is the
Microwave Oven System and is categorized as «system». External to the system is the
external user (modeled as an actor, see below) who uses the oven to cook food.

Fig. 2 System context diagram for Microwave Oven System

3.3 Use Case Modeling

In order to get an understanding of the system behavior, use case modeling [3, 4] is
carried out. A use case describes a sequence of interactions between an actor (which is
external to the system) and the system. In information systems, actors are usually
humans. However, for embedded systems, actors could be also be external systems. In
addition, a primary actor initiates the sequence of use case interactions. It is also
possible to have one or more secondary actors that participate in the use case.

For the Microwave Oven System, the only actor is the user. In this simple example,
there is one use case, Cook Food (see Fig. 3). The use case describes a main sequence
in which the actor opens the door, places the food in the oven, closes the door, enters
the cooking time, and presses the start button. The oven starts cooking the food and
sets the timer. When the timer expires, the oven stops cooking the food. There are
alternative to the main sequence, which the system has to be capable of handling, such
as user opening the door before the food is cooked or pressing start before the time
has been entered.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 13

User

Cook Food

Fig. 3 Use case diagram for Microwave Oven System

3.4 Dynamic State Machine Modeling

Use case modeling provides an informal textual statement of requirements, which is
usually sufficient for information systems but is unlikely to be precise enough for
state-dependent embedded systems. State machines provide a more precise method
for modeling such systems. A state machine can be developed by starting from the
use case description and carefully considering all possible state-dependent scenarios.
In particular, many events on the statechart correspond to inputs from the external
environment, such as opening the door and placing the item in the oven, and many
actions are outputs to the external environment, such as starting and stopping cooking.

The dynamic behavior of the microwave oven can be modeled as a state machine
and depicted on a state machine diagram (also referred to as statechart [10]) as shown
on Fig. 4, which depicts the states, events, and actions. The scenario described in the
main sequence of the use case involves transitioning through the following states:
Door Shut, Door Open, Door Open with Item (when item placed), Door Shut with
Item, Ready to Cook (when cooking time entered), Cooking (when Start is pressed),
Door Shut with Item (when timer expired), Door Open with Item, Door Open, and
finally Door Shut. Many other transitions are possible corresponding to alternative
scenarios.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 14

7

Cooking

entry/Start Cooking

exit/Stop Cooking

Door Shut Door Open

Door Open
With Item

Door Shut
With Item

Ready To
Cook

Door Opened

Door Closed

Item Placed Item Removed

Door Opened

Door OpenedDoor Closed [Zero
Time]

Door Opened/
Stop Timer

Cancel/
Cancel Timer

Cooking Time Entered/
Display Cooking Time,
Update Cooking Time

Timer Expired

Start/
Start Timer

Cancel/
Stop Timer

Cooking Time Entered/
Display Cooking Time,
Update Cooking Time

Door Closed [Time
Remaining]

Cancel/
Cancel Timer

Fig. 4 State machine diagram for Microwave Oven System

4. Hardware/Software Boundary Modeling

Given the system requirements in terms of the structural model of the problem
domain, the system context diagram, the use case model, and the state machine
model, the system modeler can now start considering the decomposition of the system
into hardware and software components. Hardware and software components are
categorized using UML stereotypes.

4.1 Modeling System Decomposition into Hardware and Software Components

To determine the boundary between the hardware and software components, the
modeler starts with the structural model of the problem domain (Section 3.1 and
Figure 1) and then determines the decomposition into hardware and software
components. The physical hardware components are explicitly modeled on the
hardware/software block diagram while the software system is modeled as one
composite component. In particular, the physical entities of the problem domain, as
described in Section 3, are often input and/or output hardware devices that interface to
the software system.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 15

An example of a hardware/software system block diagram is given for the
Microwave Oven System in Fig. 5. For this system, the devices originally identified in
the structural model of the problem domain are analyzed further. The six part
components of the Microwave Oven System identified in Figure 1 all have a hardware
component to them, which are the hardware sensors and actuators that interface to the
software system. There are three hardware input device components, Door Sensor,
Weight Sensor, and Keypad (which all provide inputs to the Microwave Oven
Software System), and two hardware output device components, Heating Element and
Display (which receive outputs from the Microwave Oven Software System). There is
also a real-time Clock hardware timer component, which signals the Microwave Oven
Software System. The hardware components are categorized using UML stereotypes.

4.2 Deployment Modeling

The next step is to consider the physical deployment of the hardware and software
components to hardware and software platforms. One possible configuration for the
Microwave Oven System is depicted in the UML deployment diagram in Figure 6, in
which the hardware and software components are deployed to different nodes
physically connected by means of a high speed bus.

Fig. 5 Hardware/Software block diagram for Microwave Oven System

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 16

9

Fig. 6 Deployment diagram for Microwave Oven System

5. Software Modeling

The system context diagram depicts the systems and users that are external to the total
system, which is modeled as one composite component. The hardware and software
components are internal to the system and are therefore not depicted on the system
context diagram. Together with the decomposition of the system into hardware and
software components, this is the starting point for the software modeling.

5.1. Software System Context Modeling

The software system context model, which is used to model the boundary of the
software system, is depicted on a class diagram and is determined by structural
modeling of the external components that connect to the system. In particular, the
physical hardware devices modeled on the hardware/software diagram are external to
the software system.
 The software system context diagram is modeled from the perspective of the
software system to be developed, the Microwave Oven Software System, as shown in
Fig. 7. From the software system point of view, the hardware sensors and actuators
are external to the software system and interface to and communicate with the
software system. Thus the hardware devices are external input and output devices, and
an external timer as depicted in Figure 7, which is structurally similar to Fig. 5.
However the categorization of the stereotypes is from the software system’s point of

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 17

view. Thus the hardware devices on Fig. 5 are categorized as external devices on Fig.
7.

Fig. 7 Software context diagram for Microwave Oven Software System

5.2. Software Component Structuring

The next step is to determine the software components starting from the software
system context model and working from the outside (hardware components) inwards
to the software boundary components, which interface to and communicate with the
hardware components. For every hardware component, there is a corresponding
software boundary component, which is categorized using a UML stereotype. To
receive input from an external input device, there needs to be a software input
component. Each external output device component needs to receive output from a
software output component. Each external hardware timer needs to signal a software
timer component.

Software component structuring for the Microwave System is depicted on the class
diagram in Fig. 8. Every external hardware component on the software system context
diagram has a corresponding internal software component. Thus, there are three input

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 18

11

software components, Door Sensor Interface, Weight Sensor Interface, and Keypad
Interface, which receive inputs respectively from the Door Sensor, Weight Sensor,
and Keypad external input devices. There are also two output software components,
Heating Element Interface and Display Interface, which output to the Heating
Element and Display external output devices, respectively. There are two additional
components, a state-dependent control component, Microwave Oven Control, which
executes the microwave oven state machine depicted in Figure 4, and an entity
component, Oven Data, which contains data about the cooking time. In addition, there
is one timer component, Microwave Timer, which receives periodic inputs from the
hardware Clock.

5.3. Software Concurrent Task Design

A characteristic of real-time embedded systems is that of concurrent processing in
which many activities occur simultaneously and the order of incoming events is
frequently unpredictable [11]. Consequently, it is desirable for a real-time embedded
system to be structured into concurrent tasks (also known as concurrent processes or
threads).

During concurrent task design, the system is structured into concurrent tasks and
the task interfaces are defined [4, 11]. As before, stereotypes are used to depict the
different kinds of tasks. Each task is depicted with two stereotypes, the first is the role
criterion, such as input or control. The second stereotype is used to depict the type of
concurrency.

Thus, an active «I/O» component is concurrent and is categorized further using a
second stereotype as one of the following: an «event driven» task, a «periodic» task,
or a «demand» driven task. Stereotypes are also used to depict the kinds of devices to
which the concurrent tasks interface. Thus, an «external input device» is further
classified, depending on its characteristics, into an «event driven» external input
device or a «periodic» external input device.

Figure 8 is the starting point for designing the concurrent tasks, which are depicted
using the UML 2 notation of parallel lines on the left and right hand side of the object
box, as depicted in Figure 9. The three input software components, Door Sensor
Interface, Weight Sensor Interface, and Keypad Interface, are designed as event
driven tasks, since they are awakened by interrupts from the respective input devices
(see below). The two output software components, Heating Element Interface and
Display Interface, are designed as demand tasks, since they are awakened by the
arrival of messages from Microwave Control. Oven Timer is a periodic task since it is
awakened by the arrival of timer events from the external clock. Microwave Oven
Control is designed as a demand task, since it is awakened by messages from the input
tasks or the periodic task.

The entity objects Oven Data and Display Prompts are passive objects and do not
have a thread of control. Because the entity objects are passive, they cannot be
deployed independently of other components. Furthermore the passive objects are
composed into a composite component with the tasks that access the passive objects.
Thus Microwave Control is a composite component with groups the two tasks,
Microwave Oven Control and Oven Timer, which access Oven Data. Microwave

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 19

Display Interface is a composite component that groups Display Interface with
Display Prompts.

Fig. 8 Software components for Microwave Oven Software System

Fig. 9 Concurrent components for Microwave Oven Software System

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 20

13

5.4 Modeling and Design of Input/output Tasks

This section describes the concurrent modeling and design of the input/output tasks,
since these tasks directly interface to and communicate with the hardware devices.

An event driven I/O task is needed when there is an event driven I/O device to
which the system has to interface. The event driven I/O task is activated by an
interrupt from the device, performs the I/O operation and then waits for the next
interrupt. An example is given on the UML communication diagram in Fig. 10 in
which the Door Sensor Interface event driven input task is awakened by an interrupt
from the Door Sensor event driven external input device. This diagram uses the UML
notation for active objects for the Door Sensor Interface task and the Microwave
Control demand driven task.

Fig. 10 Event driven input task and demand driven control task for Microwave Oven
Software System

In the case of a passive device that does not generate interrupts, a periodic I/O task
is developed to poll the device on a regular basis. The periodic I/O task is activated by
a timer event, performs an I/O operation, and then waits for the next timer event. An
example is given on the UML communication diagram in Fig. 11 in which the
Temperature Sensor Interface periodic input task is awakened by a timer event from
the Digital Clock, and polls the Temperature Sensor passive external input device.

Fig. 11 Periodic input task for Microwave Oven Software System

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 21

6. Conclusions

This paper has described an approach for the integration of system modeling and
software modeling, This approach is particularly useful for embedded systems, which
are software intensive systems that consist of both hardware and software
components. This paper has described a modeling solution to this problem with an
approach that integrates system modeling using SysML with software modeling using
UML for the development of embedded systems using both structural and behavioral
modeling. In particular this paper has concentrated on the hardware/software
boundary of a system with the decomposition into hardware and software
components, and designing the interface between hardware and software components.
The modeling approach described in this paper can also be extended to address the
performance requirements of embedded systems [11] and to model system and
software product lines [12].

7. References

1. Buede, D.M. The Engineering Design of Systems: Methods and models. New York: Wiley
(2000)

2. Sage, A. P. and Armstrong, J. E., Jr., An Introduction to Systems Engineering, John Wiley &
Sons (2000)

3. Booch, G. et al. Object-Oriented Analysis and Design with Applications, 3rd ed. Boston:
Addison-Wesley (2007)

4. H. Gomaa, "Software Modeling and Design: UML, Use Cases, Patterns & Software
Architectures", New York: Cambridge University Press (2011)

5. M. Blaha and J. Rumbaugh, Object-Oriented Modeling and Design with UML. Upper Saddle
River, NJ: Prentice Hall (2005)

6. Douglass, B. P. Real Time UML: Advances in the UML for Real-Time Systems, 3rd ed.
Boston: Addison-Wesley (2004)

7. S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The Systems
Modeling Language, Morgan Kaufmann (2009)

8. Booch, G., J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide, 2nd
ed. Boston: Addison-Wesley (2005)

9. Rumbaugh, J., G. Booch, and I. Jacobson. The Unified Modeling Language Reference
Manual, 2nd ed. Boston: Addison-Wesley (2005)

10. Harel, D. and E. Gary, “Executable Object Modeling with Statecharts”, Proc. 18th

International Conference on Software Engineering, Berlin (1996)
11. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with UML",

Boston: Addison Wesley, (2000)
12. Gomaa, H., Designing Software Product Lines with UML: From Use Cases to Pattern-

based Software Architectures. Boston: Addison-Wesley (2005)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 22

A Multidisciplinary Design Methodology for
Cyber-physical Systems

Frank Slomka, Steffen Kollmann, Steffen Moser and Kilian Kempf �

Institute of Embedded Systems / Real-Time Systems
Ulm University

{frank.slomka, steffen.kollmann, steffen.moser, kilian.kempf}@uni-ulm.de

Abstract. Designing cyber-physical systems is a challenge originating
from the multidisciplinary and mixed-signal requirements. In order to
handle this challenge, many design languages have been developed, but
none is able to connect different application domains adequately. This
paper proposes a new system based view for cyber-physical system de-
sign which can be easily adapted by MARTE or SysML, as it uses a
model based design technique. Instead of defining another UML profile,
we present an intuitive idea for the development of cyber-physical sys-
tems by refinement and introduce new abstraction layers that help to
describe operating system and mixed-signal issues. Using new abstrac-
tion layers, it is now possible to support all views of the platform based
design by using one consistent language. The approach explicitly dis-
tinguishes between the physical system and the computational system.
The benefit of this new approach is presented in a case study where a
cyber-physical system is designed.

1 Introduction

The design of cyber-physical systems [14] – consisting of software as well as
digital and analog hardware – is still a great challenge that is caused by the in-
creasing complexity and the multidisciplinary requirements which are typical for
mixed-signal applications. One issue is to connect different application domains
of the system in a whole design process. To cope with this, many different design
languages have been developed.

Model-based design with the Unified Modeling Language (UML) [20] is a
common way to model software systems. During the last years it has been
adapted to embedded systems. For this, UML has been extended by the pro-
files Modeling and Analysis of Real-Time and Embedded Systems (MARTE)
[18] and OMG Systems Modeling Language ((OMG) SysML) [19]. A lot of dif-
ferent functional and extra-functional1 diagrams and models are defined in both
modeling languages. UML diagrams in MARTE are defined for embedded sys-
tem design and support a lot of different views. However, a closer look at the
specification of MARTE shows that the authors are software oriented. System
aspects like the description of physical behavior with differential equations are

� This work was supported by the German Research Foundation.
1 Extra-functional is similar to non-functional. But in our opinion, each requirement

is needed for the functionality of a function. Therefore, requirements like time are
considered as extra-functional.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 23

marginal. However, for both, MARTE and SysML, the platform-based design is
not considered well. Certainly it is possible to define hardware architectures as
well as the binding of computational elements to processing elements, but the
language does not support hierarchical bindings and does not support operating
system issues and physical design aspects needed in mixed-signal design. There-
fore the system view in the Y-diagram of platform-based design [6] is poorly
implemented in MARTE and UML. SysML does not support graphical repre-
sentations for different types of physical and logical flows [19]. In SysML, the
attribute of a flow is described by using flow properties. However, to support en-
gineering of cyber physical systems, a clear distinction between different classes
of types is needed. Such an approach is presented in this paper.

Another possibility to specify cyber-physical systems is the use of process
models like the ANSI/ISA-5.1-1984 (R1992) standard [11] to describe measuring
and control devices. For example, it allows the modeling of devices used by
control room operators. Such a process model is able to describe different aspects
of the physical environment and the connection, but the design of the computer
architecture is not covered in detail.

It is inherent to the design of cyber-physical systems that the design process
has to cover different application domains like automotive, avionic, industrial
control, mobile communication, etc. Each domain has different views on tech-
nical and physical details. As a consequence to cyber-physical systems design,
the design methodology has to consider all these different aspects. To cope with
this problem, domain specific languages have been developed to cover the de-
sign challenges of specific systems. For example, the tool PREEvision of the
company aquintos [3] can be used as design entry in the automotive domain.
Unfortunately, other domains are not covered.

To handle the problems discussed above, we introduce a new approach for
system modeling. We supply a new idea to support cyber-physical system de-
sign by introducing new symbols. These symbols are independent from UML,
MARTE, or SysML but can be easily adapted to them. The goal of the methodol-
ogy is to give the designer the opportunity to refine a system during design. The
approach extends the object-oriented philosophy of designing software systems
to multidisciplinary, multi-technology hardware/software systems. Therefore the
methodology supports application design as well as platform design in a single
view. This approach is only suitable if the methodology supports the refine-
ment process and a refinement history. It should be possible to move in both
directions of the refinement process, an approach that could be compared to the
possibilities of version control tools.

Using such a new description language, it is necessary to include it into the
design flow of cyber-physical systems. This is essential and often not sufficiently
considered when new languages are designed. For example, in [23] a generic de-
sign flow for embedded systems is presented, but the granularity is not sufficient
for our idea. A design flow for the automotive domain is presented in [26] and
is confirmed by a real example in [13]. But in that contribution, only the auto-
motive domain is covered. No adequate design flows exist that are suitable for
cyber-physical systems and therefore we introduce an appropriate design flow in
Sect. 2.

The remainder of the paper is as follows: The different abstraction layers are
presented in Sect. 3. In Sect. 4, the new system model is introduced. After this,
an exhaustive case study is given (Sect. 5), followed by a conclusion.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 24

Technical
System

Requirement
Engineering

System
Analysis

System
Design

System
Implementation

System
Specification

System
Architecture

Requirement
Specification

Component
Specification

Platform
Design

Hardware Software

Parameter
Extraction

Constraint
Checking

Technology
Partitioning

Stability
Checking

Cyber-physical
System

1

2

3

4

5

Constraint
Analysis

Fig. 1. Generic design flow of cyber-physical systems

2 Design Flow

Figure 1 gives an overview of the proposed design methodology which adapts
object-oriented design methodologies as given in [12] to a multi-technology com-
ponent approach.

In the first step, well known from software system techniques, a require-
ment specification is conducted 1©. After finding the requirements, the system’s
functionality has to be worked out. For this, a system analysis based on the re-
quirements is performed. It will identify which subsystems are needed and how
the information, material, or energy flows between these subsystems. Note that
this step is in most cases not a software or information technology problem. It
is an engineering problem, and the information technology does not play an im-
portant role at this stage. The result is a small model-based system specification
which considers all aspects of the whole system.

Based on the resulting system specification 2©, the system design starts.
At this stage, the previously specified subsystems have to be refined and the
underlying technology has to be chosen. Both parts, system design and com-
ponent specification 3©, are done on the application view [8]. The system and
component design follow the well known steps of object-oriented methodolo-
gies, called system analysis and system design, where the design flow bases on a
refinement technique. This means an engineer can first verify the system’s sta-
bility independently from the computer platform which is designed later. This
is an important aspect of controller dominated applications. The next step is
to perform a technology partitioning. The subsystem has to be partitioned into
different technology domains. This means the designer has to assign which part
of the system has to be implemented in mechanical, electrical, or computational
hardware and which technologies are used to realize the implementation of the
hardware. Be aware that at this point in the design flow no decision concerning

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 25

software is made. At this stage we distinguish only between mechanical, analog
and digital.

The step after the technology partitioning is the platform design, where com-
ponents, tasks, or controllers are mapped to allocated computational resources.
The platform design contains several design steps like the allocation of process-
ing elements, communication elements, memory elements, scheduling spaces or
address domains, and the binding of tasks to scheduling spaces, tasks and buffers
to address spaces, scheduling spaces to processing elements, or address spaces to
memory components. The result is the system architecture 4©.

The next step is the constraint analysis 5©, which is well known as hard-
ware/software co-design or system synthesis. Further details can be found in
[25] and [7]. During this design step, a constraint checker verifies the chosen
computer architecture and the schedule of the chosen binding. It delivers plat-
form parameters for the component model.

After this, the system’s stability considering the influence of the platform
on the application and the technical system can be verified. Based on a design
space exploration step to find the cost optimal platform that allows a robust
operation of the whole system, the design of the hard- and software starts. After
implementing hardware and software, model parameters are extracted from the
implementation specifications and the model of the cyber-physical system is
checked against the specified constraints.

Considering the whole process, the system design usually starts with the plat-
form design immediately after the system specification. This means the global
view on the system design is still missing. In the following sections we will close
this gap with a new system view that allows to consider multidisciplinary design
criteria during the design process of cyber-physical systems. Thereby a refine-
ment process is supported to enable stability corrections at a high level.

3 Refinement

After introducing the design flow of cyber-physical systems, we now give a closer
look at the refinement process which is included. We distinguish between the
hardware, software, and system refinement. It will be discussed that the classic
abstraction layers of hardware and software are not sufficient for complex cyber-
physical systems.

3.1 Hardware Abstractions

From hardware design, six different layers of abstractions are known. These
layers are well established in the semiconductor industry and each is supported
by different models of computation and verification tools. The classification is
given in [8] and is divided into system level, behavioral level, register transfer
level, gate level, transistor level, and layout level. As hardware design is well
understood, we will not deal with these levels anymore. In the design flow given
in Fig. 1 we find these parts downwards from the platform design.

3.2 Software Abstractions

Software development differs from hardware development. However, a closer look
shows that software development can also be separated into different abstraction

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 26

Technology Partitioned Level

System View

Platform ViewApplication View

Task Level

Module Level

System (Time & Space) Partitioned Level

Component Level

Operating System (Domain) Level

Module Level

Process.
Element

I/O
Element

Memory
Element

Comp.
Task

Physical
Task

Task

Module Module

Domain

S

M

Processing Element
with Threads

S

M

Thread

Thread

Processing Element
with Processes

S

Process M

Process M

MComputational Task
(Mathematical Model)

a
b

+x
.

x
..

= f

Physical Task
(Mechanical)

No Technology
(Converting Task)

Computational Task
(Digital Signal
Processing)

Physical Task
(SignalProcessing)

Physical Task
(Electrical)

Fig. 2. Abstraction levels in the design flow

layers. This classification is adapted from [24] and is divided into architecture
level, component level, algorithmic level and machine code level. The abstraction
starts at the platform design as well as in hardware design, because the platform
is needed to start the software design. The result is that the previous system
design as given in Fig. 1 is not covered by these abstraction layers. Therefore we
define a new approach to system abstraction on higher levels.

3.3 System Abstractions

Since the introduction of the system-on-a-chip paradigm, the conventional model
does not apply anymore. The common approach ends below the system level,
but systems have to be consistently explained in the whole. Therefore a new
paradigm has been developed to support system synthesis. This platform based
design is shown in Fig. 2 by a Y-structure. It is distinguished between the differ-
ent views Application, Platform and System, as further discussed in [22]. This
means the development of the application’s functionality is separated from the
development of the hardware platform. Hence, this approach takes into account
that in many projects, hardware platforms are used for different products. The
system axis describes the mapping or binding of application functions to the
hardware components. Although the application and the platform view is cov-
ered by UML and AUTOSAR [1], the system view is not supported well by these
techniques.

We introduce the abstractions top-down and start with the module level in
the application view. Normally, the mission level is the starting point as intro-
duced in [4], because many cyber-physical systems are part of larger distributed
systems. For example an autonomous underwater vehicle contains many differ-
ent subsystems which interact: the sonar system, the navigation, the actuator of

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 27

the vehicle, and the control unit. The interaction of all these components is con-
sidered on the mission level. For this paper, the mission level is not considered
any further.

Application View The application view is supported in three abstraction lev-
els: We distinguish between the module and the task level. The task level itself
is separated into two different levels: The first one is a level at which a designer
only concentrates on the functionality of the system. This models the middleware
abstraction of a system which is comparable to the AUTOSAR [1] standard for
the automotive domain whereby our middleware is not domain dependable. It is
done by the composition of the several tasks describing the behavior of specific
system parts. Each behavior is encapsulated by a task and tasks may communi-
cate with each other. Note that in this context a task does not mean an operating
system task or process. In other words, only entities of functions are composed.
In the second task level, the technology partitioned level, design decisions for the
mapping of tasks to technologies are described. At this stage of the development
process the designer documents the choice between digital hardware and analog
electronics or mechanical elements. The computational tasks are mapped to the
platform in a later stage described in detail in the step System View.

Platform View The platform view considers only the hardware for the com-
putational tasks. The process starts with the module level to describe the ap-
proximated platform. The refinement step Component Level defines the system
platform in more detail. At this level the processing elements (like CPU or
buses), I/O elements, and memory elements are specified. The resulting archi-
tecture from the component level can then be refined at the operating system
level. At this stage the different components are divided into domains, describing
the scheduling behavior and memory architecture of the platform.

Note that this is an abstraction to support space and time partitioned plat-
forms for the applications. For the application it is not important how the com-
ponents are connected, it is important which memory can be used and when
it gets resource time. Therefore this level supports an abstraction for operating
systems.

System View The system view unites the application and platform view. At
this level application tasks are mapped or bound to the elements of the platform.
Each computational task is assigned to a platform domain describing its schedul-
ing and memory architecture. Based on the mapping it is possible to classify if
a task is implemented as a thread sharing memory with other threads or as a
process having its own memory.

In MARTE, allocation means the mapping of application to a platform [5].
In system synthesis, allocation means to choose a component, while binding is
the term to describe mappings of tasks to allocated components. As described
in [5], MARTE distinguishes between structural and behavioral bindings. In this
paper we use the system synthesis terms instead, as the aim of the methodology
is to synthesize embedded systems. As shown in [5], the binding mechanism in
MARTE does not consider that a task needs both a computational resource
as well as memory resources. If this is modeled in a naive way, for each part
– computational binding and memory binding – different allocation arrows are

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 28

needed. In complex architectures this is not an elegant way because of the rising
complexity. This approach is given by MARTE (see pages 132 ff. [18]).

In this paper we introduce domains. Domains are an abstract model of re-
sources and can be modeled using the service construct in MARTE. However,
services are not the concept needed by synthesis, because services hide archi-
tectural aspects. Therefore domains are a special kind of modeling element, as
they allow an abstract formulation of architectures. Not in the detailed way like
component diagrams, but more in an abstract way. Using the concept of hier-
archical composition of domains, it is possible to describe complex hardware
architectures easily. Such a model is needed because a complex binding relation-
ship as proposed by MARTE is very hard to use if an automatic design space
exploration has to be designed and implemented because there exist a lot of de-
pendency rules between the different views. A comparable approach is presented
in [15]. However, the activity threads discussed in that paper are mappings of
the detailed architecture to the application. This is equivalent to modeling the
binding with application arrows and does not reduce the complexity. Addition-
ally, our approach explicitly supports the design refinement of cyber-physical
systems. In MARTE or SysML this is only supported by using attributes.

In UML, MARTE, or SysML it is only possible to describe the application
or platform view. Binding and mapping is only supported in a graph based
approach like in [25]. Memory is not considered in it. The whole system view is
also missing in all cases. This gap is closed in this paper by the newly introduced
system view.

4 System Description Language

In this section we introduce our new system description language as a design
entry for cyber-physical systems. As discussed in the last section, this view allows
to support the refinement process in the design flow as well as the connection
of different technology domains into one model. In contrast to other models, the
design of the computer system is still possible, because the methodology can be
easily adapted to UML/SysML and other techniques. Models given in a graphical
specification language have to be intuitively understandable. As mentioned, this
is one reason for the legitimacy of domain specific languages. Our intention is
to consider the domain of cyber-physical systems in general. Limitations of the
approach as described in this paper are a missing binding from constraints to
clocks. The analog part is just drafted in the paper to separate it from the digital
part. Therefore the presented methodology does not allow a compositional design
flow on the analog parts of the cyber-physical system.

4.1 Application View

To support a multi-technology model, different symbol types are defined for the
application view, which are depicted in Fig. 2. First of all it is distinguished
between modules and tasks. Modules are blocks containing other design enti-
ties such as modules and tasks. They are used to support a hierarchical design
methodology. A module may contain different tasks. However it is also possi-
ble that a module contains mathematical models, functions, or formulas. There
are different types of modules specified to support intuitive and readable sys-
tem models: modules keeping mathematical models, modules keeping electronic

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 29

Binary SignalMass Stream

Energy Stream

Signal

Message

Electrical

Pneumatical Hydraulical

Acoustical

(())

Radio

Examples:

Electrical Signal

Energy Stream (Electrical)

Optical Signal

Optical

Fig. 3. Symbols of communication

systems, modules keeping electrical models, and modules keeping mechanical
models. These types are supported in all abstraction levels as shown in Fig. 2.
So a task can be a converting task where the technology is not specified. But it
is also possible to have tasks with a technology binding and a type.

4.2 Platform View

The platform view also starts with modules to support a hierarchical design
methodology. The modules can consist of several modules or components. Com-
ponents are hardware elements such as memory, processors or processing ele-
ments and interface elements. Therefore components are model elements of a
hardware view. The components can then be refined by domains. A domain in
the platform view describes on the one hand the access to the resource through
a scheduling strategy and on the other hand the memory architecture in which
the domain is embedded.

4.3 Communication

To connect the different tasks in the application view, different types of com-
munication mechanisms exist. They are depicted in Fig. 3. As well known from
hardware description languages, the communication links are called signals and
messages. The following classes of signals are supported: 1. Mass stream: Trans-
port of mass. 2. Energy stream: Transport of energy. 3. Signal: Transport of
information. 4. Binary signal: Computational signals as known from hardware
description languages with the binary states, like true, false, undefined and high-
impedance. 5. Messages are only supported in computer systems. It is also pos-
sible to define message types with complex payload data unit structures, like
integer or string messages. Additional symbols are added to the communication
links to characterize the link: electrical, radio, optical, acoustical, pneumatical
and hydraulical types are supported. This is illustrated by three examples in
Fig. 3.

Signals of different semantics can only be connected by using transformers.
An example is given later in the paper: a transducer transforms an electrical
signal to an acoustical/mechanical signal. Therefore design tools have to check
the type of a language construct in order to separate different views and to avoid
connecting different incompatible components.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 30

Triggered
Interface

Blocking
Interface

Non-blocking
Interface

Fig. 4. Symbols of interfaces

Event
Constraint

Clock

Power
Constraint

P

Energy
Constraint

W

Safety
Constraint

Utilization
Constraint

Timing
Constraint

t

Constraint

x
1

Probe

Probe
Connection

Fig. 5. Symbols of requirements

4.4 Interfaces

Figure 4 gives an overview of different graphical symbols that model interfaces
to computational tasks. An interface is generally specified by a rectangle with
round sides. It is distinguished between different types of interfaces that have
been partly inspired by the abstract communication channels presented in [9].
There are blocking, non-blocking, and triggered interfaces. Blocking means that
the sender is blocking until the data is received by the receiver. Non-blocking
means that the data is stored until the receiver is ready to receive the data.
Triggered means that the receiver task is triggered to receive the data. Other
possibilities for interfaces between computational tasks can be found for instance
in [10].

4.5 Constraints

To specify extra-functional constraints, graphical elements are defined. Such el-
ements are a diamond in a typical comment symbol defining the type of the
constraint as shown in Fig. 5. We distinguish between timing constraints, area
or cost constraints, power and energy constraints, and safety constraints. Due to
the compositional approach of the diagram types it is very easy to define addi-
tional constraints. Note that requirements are always specified between probes.

Assume that in this paper the time model presented in [17] is used instead
of the models given in MARTE. This is done because MARTE does not give a
formal semantic to its model and the MARTE model is just a syntactic extension
to the time model of [17].

5 Case Study

In this section, a design example is considered. The sonar system is part of a
larger project, an autonomous under water vehicle (AUV). The major task of the
sonar system is to detect objects in the water that will be used for navigation and
maneuvering of the robot. The sonar system sends acoustic waves into the water
and, if there is any object, receives the acoustic reverberation of that object.
Such a system is a typical example of mixed technology domains. It consists of
an electromechanical part to generate acoustic signals, an analog electronic part
to drive the electromechanical sound generator and to receive the reverberation,
and a digital electronic part with hard- and software for signal processing and
target detection. We divide the design process into three parts. The first one is

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 31

Low Pass
Filter

Transducer

M
E

Main
Controller

Range (50 m, 100 m, 200 m)
TX

RX

Sound (200 kHz)
Signal Generator

Auto Correlation Target Detection

Fig. 6. Analysis components

the system design, starting with the requirements analysis. In the second step
the platform design is conducted. Finally, the system is implemented with well
known procedures for hardware and software design.

5.1 System Design

We start with the system design. The focus here is to perform the requirements
engineering and to conduct the system analysis. Based on this, the main com-
ponents are specified and the technology partitioning takes place.

Requirement Analysis The sonar has the ability to detect underwater objects
(targets) by using sound signals of in this case 200 kHz. It sends an acoustic signal
and then waits for echos from the targets. In order to accomplish that, the sonar
has to measure the time from the emission of the signal up to the reception
of the echos generated by several targets. The system should be able to detect
objects in the range from 2m up to 200m. To support a high resolution and a
fast detection of narrow targets, the range has to be chosen from three ranges:
2–50 m, 2–100 m, and 2–200 m. These ranges are available in different modes of
the sonar.

System Analysis The second step in the design process is the application
analysis, as shown in Fig. 6. In this step, the main functionality of the system is
specified. The design of an actor oriented system starts with its design entities.
In the case of the sonar system, the following analysis objects are defined: A
signal generator that forms the sending signal, a transducer that transforms the
electrical signal into an acoustic signal, and a receiver that filters the received
signals. This step is mandatory because the signal strength of the received signal
is very low compared to the strength of the sending signal. After receiving the
echos of detected objects, an auto correlation function detects the echos of the
sending pulse (see Fig. 6). This means that the pulse form of the received signal
must be the same as the pulse form of the sending signal. After filtering, only
signal echos remain. A target detection then analyzes the echos and determines
the target’s destination. The whole system is controlled by a main controller.
In this phase, the main controller, the low pass filter, and the transducer are
modeled as tasks, while the signal generator, the auto correlation, and the target
detection are drawn as blocks. These blocks will be divided into subtasks during
the following design steps.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 32

Multiplication

*Transducer

M
E

Voltage
Source

Level
Converter

Voltage
Multiplier

U
U

FT

t
s

 Envelope
Filter

 Threshold
Filter

t

FT

s
t

t

IFT

t
s

Signal
Generator

Main
Controller

Pulse
Response Time

4 Hz

Range (50 m, 100 m, 200 m)
TX

RX

Sound

Low Pass
Filter

Amplifier

Fig. 7. Design components

System Design In the next step, the application design has to be refined. How
is the auto correlation and the target detection implemented, and how does the
signal generator work? The resulting application design is shown in Fig. 7.

Signal Generator: The sonar signal will be generated by a signal generator
which forms digital pulses. A level converter transforms these pulses to the volt-
age level needed by the acoustic transducer, an X-cut crystal which transforms
electrical signals into acoustic waves. The transceiver sends pulses of 200 kHz as
given in the requirements. To prepare the signal detection, the sending signal
generated by the signal generator is transformed by a Fourier transformation.

Auto Correlation: After amplifying the signal, the echo detection is per-
formed by an autocorrelation function which can be implemented with a signal
convolution. The autocorrelation identifies the sent pulse in the received audio
spectrum. This step is necessary to be able to detect the received signal against
the background noise of the sea. A convolution contains an integration of the
received signal. However, it is known from signal and system theory that such
an operation in the time domain can be transformed into a multiplication in the
frequency domain. This transformation is performed by the Fourier transforma-
tion. The multiplication then may perform the convolution or the correlation
function.

Target Detection: After transforming the signal back into the time domain,
the targets are detected by an envelope filter and a threshold filter. The envelope
filter reduces the information of the signal to just the interesting envelope while
the threshold filter detects the received pulses and their timing. The timing
of the received pulses is then sent to the main controller which calculates the
range of the detected objects. The sonar data can then be sent to other system
components like the navigation module of the robot.

Technology Domain Binding The first step in system refinement is the do-
main binding. The system architect has to decide which parts of the system
are implemented in which technology. As seen in Fig. 8, the transducer and the
level converter are implemented in the physical electronic domain. The system
architect decides to implement the signal processing in digital electronics be-
cause the maintainability of digital systems is better and the design of digital
electronic is easier than the design of analog components. However, to support

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 33

Pulse
Response Time

4 Hz

21

1

2

Required Target
Detection Time

t

Maximal
Signal Delay

t

Transmit Signal
Detection Time

t
Low Pass

Filter
Amplifier

Transducer

M
E

Voltage
Source

Level
Converter

Voltage
Multiplier

U
U

FFT

t
s

 Envelope
Filter

 Threshold
Filter

t

FFT

s
t

t

IFFT

t
s

Main
Controller

Range (50 m, 100 m, 200 m)

TX

RX

Sound

A/D

A
D

Multiplication

*

Signal
Generator

D/A

D
A

Sample
Time

1 MHz

Fig. 8. Technology binding with added probes and timing constraints

this decision, a new component must be added to the signal flow. An analog
digital converter is needed to discretize the received analog signal. As seen in
Fig. 8, the Fourier transformation, the signal multiplication the signal genera-
tor, the inverse Fourier transformation, the envelope and threshold filter, and the
main controller are now refined into digital processes. After binding tasks to a
technology domain, electrical signals are refined into binary signals or messages.

Timing Requirements Fig. 8 also shows the timing requirements, which are
added in this step. To sample 200 kHz signals, a sampling rate of twice that fre-
quency is needed. However, the sampling rate of the analog-digital conversation
is chosen to be 1 MHz, because the low pass filter is not perfect and the sig-
nal contains parts with frequencies above 200 kHz. So additionally, three timing
specifications are added: the sampling rate of the analog-digital conversion, the
required time for the target detection, and the overall computation time of the
system. The time required for target detection was calculated in the following
way: As given by the system specification, the sonar has three detection ranges.
A short range up to 50 m, a mid range up to 100 m, and a long range up to
200 m. According to the average signal speed in water, a signal from an object
in a distance of 50m is received after 71ms, so after sending a pulse, the system
has to wait for this time before sending the next pulse. Because the 50 m range
is the fastest system mode, a target detection time of 71 ms is needed. From
these considerations, the maximal pulse response time may be calculated. To
support the auto correlation, an additional timing requirement is needed, the
transmission signal detection time. The Fourier-transformed sending signal has
to be stored before the first echos are received. As stated in the AUV specifi-
cation, the minimal detection range is 2m, which leads to a transmission signal
detection time of 3 ms.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 34

M

t

IFFT

t
s

Transducer

Signal
Generator

Sound

Main
Controller

t

FFT

s
t

D
A

 Envelope Filter
 Threshold

Filter
Multiplication

*

Sample
Time

 1 MHz

 4 Hz

Pulse
Response

Time

M

PRIORITYTDMA

FFT

t
s

M

M

A
D

Fig. 9. Architecture of the sonar

5.2 Platform Design

After the definition of the application, the platform has to be designed. In this
step, the hardware/software architecture of the system is devised. This means the
required circuit techniques are selected in the analog domain, while in the digital
domain, hardware technologies, hardware architectures, processing components,
and software architectures are designed.

The first step is to specify buffers in the form of non-blocking interfaces. Each
process has to be able to communicate with other processes through messages.
To model the message communication, buffers are added to the model. Their size
can not be specified at this first step because it depends on the scheduling and
binding of the processes. After adding the buffers, the scheduling and memory
spaces are selected. This step is an optimization process and will be performed
with the help of a design space exploration.

Binding and Allocation of Computation A typical example is shown in
Fig. 9. In this example, a hardware component which implements the signal
generation, an instruction set processor and a coprocessor are allocated. The co-
processor implements the fast Fourier transformation (FFT) and a subsequent
multiplication. The FFT coprocessor can also be used to execute the inverse
Fourier transformation. This is the reason why the IFFT is bound to its own
scheduling domain. All FFT operations are scheduled to the hardware copro-
cessor FFT that also performs the multiplication and on which a TDMA (Time
Division Multiple Access) scheduling is employed. The main controller and the
two digital filters are mapped onto the instruction set processor and are sched-
uled by a fixed-priority system. The hardware/software model is analyzed in
the next step. The architecture presented in Fig. 9 can be directly used as a
specification for Symta/S [21], the real-time calculus [27], or the event-spectral
calculus [2] by adding the required model parameters like the worst- and best-

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 35

case execution times. The event models necessary for the analysis can be derived
directly from the specification as well as the timing requirements.

Binding and Allocation of Memory In embedded systems, the platform of-
ten consists of more than one processor. In our example, two application specific
hardware processors and one instruction set processor are used. The data spaces
of the tasks and the message buffers for the interprocessor communication has
to be bound to the system’s address space. One solution could be the allocation
of one memory element and the binding of all buffers and process data areas into
one address space. However, there are several possible solutions. The FFT pro-
cessor may have its own memory and the buffers to and from the FFT processor
are bound to that memory. In order to perform a communication to the filters
implemented on the instruction set processor, the buffer between this task then
has to be implemented on a shared memory.

5.3 Implementation

The last step is to implement the system based on the embedded architecture.
From here, well known established methodologies can be used to implement
the software and hardware components as introduced in Sect. 3. For example,
the system can be defined in Matlab/Simulink [16], which will provide an ap-
propriate model for the verification. Based on code generation toolboxes it is
possible to generate the hardware description language and software code for
the implementation. Using automated back end processes leads to the desired
implementation.

6 Conclusion

In this paper we have presented a new methodology for the description of cyber-
physical systems. We have introduced a new way to model such systems in the
whole. The main focus was the definition of a new entry for the design process,
covering multidisciplinary design constraints. In contrast to other models, the
presented approach provides the possibility to model systems with their influ-
encing physical properties. A stepwise refinement of the system model has been
introduced. One advantage is that the developed methodology is not orthogo-
nal to the established standards MARTE or SysML and can therefore be easily
adapted by these. The future work will cover a detailed discussion of the plat-
form aspects and how domains are described at the component level. Another
open issue is to go into deeper details of the physical and analog concepts of the
methodology to better support the mixed-signal code generation and simulation.

References

1. AUTOSAR. http://www.autosar.org/
2. Albers, K., Slomka, F.: Event Stream Calculus for Schedulability Analysis. In:

Analysis, Architectures and Modelling of Embedded Systems, IFIP Advances in In-
formation and Communication Technology, vol. 310, pp. 102–114. Springer Boston
(2009)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 36

3. aquintos: Preevision. http://www.aquintos.com/
4. Baumann, T., Salzwedel, H.: Mission Level Design using UML 2.0. In: Proceedings

of the NODe ’05, Object Oriented Software Design for Real Time and Embedded
Computer Systems (2005)

5. Boulet, P., Marquet, P., Piel, É., Taillard, J.: Repetitive allocation modeling with
marte. In: Forum on specification and design languages (FDL07) (2007)

6. Carloni, L., De Bernardinis, F., Pinello, C., Sangiovanni-Vincentelli, A., Sgroi,
M.: Platform-Based Design for Embedded Systems. In: The Embedded Systems
Handbook. R. Zurawski (Ed.) (2005)

7. De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill Sci-
ence/Engineering/Math (1994)

8. Gajski, D.: High-Level Synthesis. Kluwer (1992)
9. Gerstlauer, A., Shin, D., Peng, J., Domer, R., Gajski, D.: Automatic layer-based

generation of system-on-chip bus communication models. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on 26(9), 1676–1687 (2007)

10. Gladigau, J., Gerstlauer, A., Streubühr, M., Haubelt, C., Teich, J.: A System-
Level Synthesis Approach from Formal Application Models to Generic Bus-Based
MPSoCs. In: Proceedings of the International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS) (2010)

11. International Society of Automation: ANSI/ISA-5.1-2009. http://www.isa.org/
12. Jacobson, I., Christerson, M., Jonsson, P.: Object- Oriented Software Engineering.

Addison-Wesley Longman (1992)
13. Kollmann, S., Pollex, V., Kempf, K., Slomka, F., Traub, M., Bone, T., Becker,

J.: Comparative Application of Real-Time Verification Methods to an Automotive
Architecture. In: Proceedings of the 18th International Conference on Real-Time
and Network Systems (2010)

14. Lee, E.: Cyber physical systems: Design challenges. In: 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing (ISORC) (2008)

15. Liehr, A., Rolfs, H., Buchenrieder, K., Nageldinger, U.: Generating marte allocation
models from activity threads. In: Forum on Specification, Verification and Design
Languages (FDL08). pp. 215–220. IEEE (2008)

16. Matlab/Simulink. http://www.mathworks.de/
17. Münzenberger, R., Dörfel, M., Hofmann, R., Slomka, F.: A general time model

for the specification and design of embedded real-time systems. Microelectronics
Journal 34(11), 989–1000 (2003)

18. Object Management Group (OMG): Modeling and Analysis of Real Time and Em-
bedded systems, version 1.1 (MARTE). http://www.omg.org/spec/MARTE/1.1/

19. Object Management Group (OMG): OMG Systems Modeling Language, version
1.2 (OMG SysML). http://www.sysml.org/specs/

20. Object Management Group (OMG): Unified Modeling Langauge (UML).
http://www.uml.org/

21. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models -
The SymTA/S Approach. Ph.D. thesis, University of Braunschweig (2005)

22. Sangiovanni-Vincentelli, A., Martin, G.: Platform-Based Design and Software De-
sign Methodology for Embedded Systems. In: IEEE Design and Test of Computers.
vol. 18, pp. 23–33 (2001)

23. Schliecker, S., Hamann, A., Racu, R., Ernst, R.: Formal Methods for System Level
Performance Analysis and Optimization. In: Proceedings of the Design Verification
Conference (DVCon) (2008)

24. Sommerville, I.: Software Engineering. Pearson Studium (2001)
25. Teich, J., Haubelt, C.: Digitale Hardware/Software-Systeme. Springer (2010)
26. Traub, M.: Durchgängige Timing-Bewertung von Vernetzungsarchitekturen und

Gateway-Systemen im Kraftfahrzeug. Ph.D. thesis, University of Karlsruhe (2010)
27. Wandeler, E.: Modular Performance Analysis and Interface-Based Design for Em-

bedded Real-Time Systems. Ph.D. thesis, ETH Zurich (September 2006)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 37

A Model-Driven Approach for Software
Parallelization

Margarete Sackmann and Peter Ebraert and Dirk Janssens

Universiteit Antwerpen, Belgium
{margarete.sackmann, peter.ebraert, dirk.janssens}@ua.a.c.be

Abstract. In this paper, we describe a model-driven approach that aids
the developer in parallelizing a software program. Information from a
dynamic call tree, data dependencies and domain knowledge from the
developer are combined in a model transformation process. This process
leads to a model of the application where it becomes obvious which parts
of the application can be executed in parallel.

1 Introduction

In the past, it was unnecessary to write programs that have the potential for
parallel execution since most processors contained only one processing core and
programs were therefore executed sequentially. Now, however, multiple proces-
sors are getting more and more popular, even for smaller devices such as routers
or mobile phones, and it is crucial that the possibilities offered by the parallel
processors are used well.

Despite this trend towards parallel processors, most programmers are still
used to a sequential style of programming. It is difficult for them to judge where
parallelization is both feasible and worthwhile. Even for programmers who are
used to parallel programming, it is often less error-prone to start out from a
sequential program rather than designing a parallel program from scratch, as
errors that arise from the parallel execution can then be distinguished from other
programming errors. In this paper, we propose a model-driven approach that aids
the programmer in deciding where good opportunities for parallelization are in
a program.

The starting point is the source code of a program from which a model of
the behavior of the program is derived. This is done by profiling the execution
of the program. In the resulting model, the developer may add information
about the sequential order that may be required among program parts. Model
transformations are then used to derive a parallel model of the application, taking
into account both the information derived from profiling and the information
added by the developer.

2 Related work

A popular way to parallelize programs is Thread Level Speculation (see for
instance [1] or [2]). In this compiler-based approach, the program is parallelized

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 39

during execution. The parallelization is speculative which means that in some
cases a part of the execution has to be repeated since there are dependencies
that were not taken into account. This approach seems unfit for systems where
resources such as energy are scarce, since parts of the application have to be
executed more than once to take effect.

Other approaches, for instance [3], require specific hardware. The speedups
for floating point operations are close to optimal, however porting the application
to different platforms is not possible.

When trying to parallelize applications for different hardware platforms, an
approach that focuses on the software is a better solution. Examples are Em-
bla 2 [4] which links back the profiling information of the program to the source
code to help the user identify possibilities for parallelizing the code. iPat [5] is
an Emacs assistance tool for parallelizing with OpenMP. However, it is entirely
text-based and provides no visual aid to the developer.

In [6], a model transformation process is used to generate parallel code. The
difference to our approach is that information about possible parallelism in the
program has to be added to the code as compiler directives. Via various model
transformations, code can then be generated for different hardware platforms.

An approach that helps to extract a parallel model of the application is the
Compaan/Laura approach [7]. It gives a more complete view of the program
than the approach presented here since the extracted model is representative for
any input data. However, it requires a massive restructuring of the code and an
initial idea about the program behavior to help with this restructuring.

3 Approach

We propose a toolchain that focuses on the software so as to ensure portability
of the code to different hardware platforms. The approach is based on model
transformations and provides a visual interface to the developer. Several models
of the application are used throughout the toolchain to represent the application
at different levels of abstraction and with different levels of detail. The advantage
in this context is that the approach is not bound to the profiling tools we use
and that details that are not important for the parallelization can be hidden.
The resulting parallel model can be used to parallelize the source code or to
schedule the application on a multiprocessor platform. Parts of the application
are represented as nodes in a graph, and dependencies between them – implying
precedence relations – as edges in that graph. Thus, the developer gets a visual
aid that helps him to understand the data and control flow in the program. The
toolchain will be illustrated on the Fast Fourier Transform (FFT) application of
the MiBench benchmark [8].

In Figure 1, an overview of the transformation process from source code
to parallel model is given. In the next section, the different models that are
used throughout the transformation, i.e. call trees, call graphs and the parallel
model, are introduced. In Section 5, the transformation from source code to a
parallel model of the application is explained. Section 6 shows how to implement

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 40

the model transformation in practice. The results of the transformation process
for the FFT application are given in Section 7 and ideas for future work are
explained in Section 8. We also explain some of the limitations of the approach,
that can arise for instance from variable reuse or structural problems in the
original program. Some conclusions are presented in Section 9.

Fig. 1. The transformation process. Dashed lines stand for the use of a profiler. Solid
lines represent a parsing and transformation step. Dotted lines represent model trans-
formations.

4 Models used during the Transformation

In this section we present the models that can be seen in Figure 1: the parallel
model that is the goal of the model transformation, the call tree model and the
enriched call tree model with data dependencies and dependencies added by the
developer that is used during the model transformation.

To abstract from implementation details, we chose to represent the program
at the level of functions. This means that a single function execution is the
smallest part of the application that can be discerned in the different models.
In case that is too fine-grained, several functions can be grouped into coarser-
grained modules. If a finer grain is required, functions have to be broken up: If the
user for instance suspects that a loop could be parallelized, then the calculations
that are done within the loop body should be put into a separate function.

4.1 Parallel Model

The goal in the transformation process is to derive a model of the program that
shows which parts of the application can be executed in parallel. The Parallel
Model (PM) that is the outcome of the transformation process is a graph-based
model. The nodes represent function instances that occur during an execution
of a program. The edges in the parallel model represent a precedence relation
between functions. An edge from function instance f1 to f2 means that f1 has
to start execution before f2. The more important information in this model

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 41

is however the lack of edges or a path between two functions. If there is no
path between two function instances, they can be executed in parallel. This
information can then be used for scheduling or to insert code to parallelize the
program, for instance with OpenMP. A second type of edge, which we will call a
subgraph edge, represents a stronger precedence relation. A subgraph edge from
function f1 to function f2 means that f1 and all its successors, i.e. its children,
their children and so on, have to finish execution before f2 can start execution.

The information provided by the subgraph edges can be used to get a greater
flexibility of the model when the software has to be executed on different plat-
forms with varying numbers of processors. In case the number of processors is
small, a function f that is the source or target of a subgraph edge can be com-
bined with all its successors into a subgraph that is scheduled as a whole. For
a larger number of processors, the subgraph edges can be replaced by regular
edges and more nodes can be distributed over the parallel processors.

4.2 Call Trees

To derive the parallel model, we start by analyzing the program code. One way to
analyze the relation between the different functions is to track the calls from one
function to another. This can either be done statically on the whole source code,
or dynamically at run time. We chose for dynamic analysis, since it represents
the actual execution of the program. During program execution, a profiler tracks
which functions are called in which order. The resulting model, the call tree, is
specific to a single execution of the application. Therefore, this approach works
best for applications that always have a similar behavior (i.e. the same function
calls are executed even if the actual data on which the calculations are performed
is different), for instance Digital Signal Processing (DSP) applications such as
digital filters or matrix multiplications. An advantage of using dynamic call
trees is that functions that are not used during execution (and thus do not have
to be distributed on the parallel platform) are not considered. Recent research
has shown that in many circumstances dynamic analysis is better suited for
parallelization than static analysis (see for instance [9]). A disadvantage of using
dynamic analysis is that programs may be executed differently based for instance
on the input. In that case, a system scenario [10] approach, where different types
of execution behaviors are identified can be used.

Call trees can be represented as graphs, where the nodes are function in-
stances and the edges are calls between the function instances. An excerpt of
the call tree that is derived from the FFT application can be seen in Figure 2.

As can be seen in Figure 1, besides function calls we also add data dependen-
cies and dependencies added by the developer to the call tree in our toolchain.
A data dependency edge from a function f1 to a function f2 means that f1 reads
or writes data that is also read by f2. This implies that at least some part of
f1 has to occur before f2. Otherwise, a correct outcome of the program cannot
be guaranteed. f1 and f2 can consequently not be executed in parallel. At the
moment, we use the Paralax [11] compiler to automatically detect the data de-
pendencies. It logs for each data element that is used in the program, such as

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 42

Fig. 2. Part of the call tree of the FFT application.

arrays or integer variables, which functions access this data in which order. This
is done by tracking accesses to the address space of the data. Paralax also logs
the access type, i.e. whether it is a read or write access. The read accesses are
the critical ones and therefore the ones that are included into the model. The
functions accessing a specific piece of data are identified by their call path, so
that if a function is called from several other functions, a data dependency is
only added if the whole call path matches. The data dependencies can be auto-
matically included in the call tree model via a model transformation. To avoid
loops, data dependencies are only added from a function f1 to f2 if f1 occurred
earlier in the call stack than f2. The position in the call stack is recorded while
obtaining the call tree and is a function attribute in the model transformation.

The third type of edge can be added by the user, in contrast to the function
calls and data dependencies that can be detected and combined into a model
automatically. The user can add edges between two function instances that are
called by the same function instance. In Figure 2, the user can for instance add
edges from the srand function instance to rand. An edge from f1 to f2 should
be added if the execution of f1 has to be finished before the execution of f2 can
start. Again, this implies that f1 and f2 cannot be executed in parallel. These
extra edges can for instance be useful when the profiling tools could not detect
all data dependencies due to the use of pointer arithmetics.

It could be argued that using call graphs rather than call trees would reduce
the number of nodes. This approach is taken in [11], which we use to profile data
dependencies. In a call graph, all instances of a function are combined into a
single node. The problem with this approach is that the information contained
in a call graph is not detailed enough. Consider for instance the call graph in
Figure 3. The information that is included in this call graph is too limited to
be able to parallelize the application properly. Many different executions can
correspond to a call graph. In Figure 4 two call trees are shown that would both
result in the call graph of Figure 3. For the parallelization step that is described

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 43

in the following chapter it is important however, that the exact instance of a
function that calls another function is known.

Fig. 3. A call graph

(a) Evenly distributed call tree (b) One instance of b calls all instances
of c

Fig. 4. Two possible call trees for the call graph in Figure 3

5 Transforming Source Code into a Parallel Model

In this section, the transformation process from the source code of an application
to a parallel model of this application is described. The starting point is a dy-
namic call tree of the application (see 5.1) that is then enhanced with additional
edges that represent data dependencies (5.2) and domain-specific knowledge of
the user (5.3). The automatic transformation into the parallel model is described
in Subsection 5.4. In Subsection 5.5, the usage of special edges that represent a
dependency between subgraphs in the parallel model is explained.

We assume that, if a function f calls a function g, then there are no further
computations (only possibly calls to other functions) in f after g returns. This
form can be easily established in the source code: in case there are computations
in f after the call to g, then these can be put into a new function h, and a call
to h is added in f after the call to g.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 44

5.1 Pruning the Call Tree

As explained above, the size of a call tree can be quite large. Even for simple
programs, thousands of functions are called. However, many of these functions
are library calls or other functions that the user does not have control over.
Therefore, we concentrate on functions that either are part of the source code
that the developer programmed, or that are called from within that source code.

Example 1. In Figure 5 a loop from the main routine of the FFT application is
shown. The functions sin and cos are called inside a loop. Even though these
functions were not implemented by the user, they can be responsible for a large
amount of execution time. Additionally, the user can add code to parallelize
the different calls to these functions. Therefore, these functions are included in
the call tree, but the functions that are not visible in the source code are not
included (for instance functions that are called by sin).

for (i =0; i<MAXSIZE; i++) {
RealIn [i]=0;
for (j =0; j<MAXWAVES; j++) {

i f (rand ()%2) {
RealIn [i]+=c o e f f [j]∗ cos (amp [j]∗ i) ;

}
else {

RealIn [i]+=c o e f f [j]∗ s i n (amp [j]∗ i) ;
}

}
}

Fig. 5. Standard library functions called within a program

Even when leaving out calls to library functions, the number of function
instances can be overwhelming. Therefore, only the functions with the largest
instruction count are picked. Although this instruction count can vary on some
processors with specialized computation units and may also be different for dif-
ferent compilers, this number is in general a good indicator on the expected
execution time. This way, the user can later concentrate on parallelizing those
parts of the software that make up the largest part of the execution time.

5.2 Data Dependencies

Besides the calling relation between functions, there exist other relationships
between functions that can require them to be executed sequentially. If two
functions for instance change the value of the same variable, then they have to
be executed in a given order. However, these data dependencies are not visible in

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 45

the call tree. Adding data dependencies that are later taken into account when
producing the parallel model prevents race conditions that might occur when
the program is parallelized.

As we work with models of the application, adding precedence relations be-
tween functions simply means adding directed edges in the graph representation
of the model. Therefore, different profilers can be used to derive the data depen-
dencies. Even profilers that can extract different dependencies between function
instances could be used to include more edges in the call tree.

5.3 User Input

Since it is possible that some dependencies that will prohibit a parallelization are
not included in the dependencies from the call tree and the data dependencies,
the developer gets to add precedence relations that were not discovered by the
profilers. Sometimes, as in the case of the FFT application, not all dependencies
can be recognized by the profiler for instance due to the use of pointer arith-
metics. In that case, the user has to add these dependencies by hand. Simply
allowing the user to add edges between any two nodes of the graph would, how-
ever, not result in a very good parallel model. A call tree can be rather large
and the user is bound to make mistakes if he is allowed to add edges unrestrict-
edly. In addition, parallelizing function instances that are called from the same
function can be realized rather easily and without having to rewrite parts of the
code. Therefore we chose a step-by-step approach, where only a part of the call
tree is presented to the user in each step.

Fig. 6. A call tree where all leaves are shown in black. The subtrees marked in gray
consist of one parent node and its children nodes that all have to be leaves.

A subgraph that consists of a parent node and its children nodes is presented
to the user in each step. The children nodes all have to be leaves of the call tree,
as illustrated in Figure 6. If there is a dependency between two children nodes
of the subgraph, the user adds an edge between these nodes. In case that the
user does not add any precedence relations for some children, it is assumed that
these children nodes can be executed in parallel.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 46

5.4 Transformation to a Parallel Model

In the automatic step from the enhanced call tree to the parallel model of the
application, all the information from the profilers and the developer is combined.
A model transformation is used to build up the parallel model of the application,
while at the same time deleting nodes from the call tree in a bottom-up way.
Before presenting the first subgraph to the user, all nodes of the call tree are
copied to a new graph, the parallel model PM , without however copying the
edges. The edges are inserted step-by-step, as the subgraphs are modified by the
user. Redundant edges are not copied to the parallel model. An edge between
nodes f0 and f1 is redundant if there is a directed path from f0 to f1 that
consists of edges of the same or a higher importance. The call tree edges are the
least important edges and the data dependencies are the most important edges.

We chose to keep all data dependency edges in the transformation from the
call tree to the parallel model. This is not strictly necessary to get a parallel
model of the application. However, it is better to keep the data dependencies
intact if this parallel model is used for scheduling where the data communication
is important, such as embedded systems. If the data on a data dependency edge
is for instance very large, it is better to schedule the functions on both ends
of this data dependency on the same processor to avoid a large overhead for
communication.

After copying the edges of the call tree subgraph in the manner just described
to the parallel model, all children nodes of the subgraph are now deleted in the
call tree. That way, it is ensured that for each function f , the subgraph with f
as the parent node is presented to the user at some point.

5.5 Subgraph Edges

In the parallel model PM one needs to be able to see which subgraphs were
already considered, i.e. for each node it needs to be obvious which function
instance it was called from. This is best explained by way of an example.

Example 2. Imagine a subgraph with parent node p that has a child c. According
to the transformation algorithm, the edge from p to c is copied to PM . In a
later step, p and another node q are the children in a subgraph with parent t
as shown in Figure 7(a). The user now indicates that q has to be executed after
p as indicated by the dotted line in the figure. If no information is kept that p
and c formed a subgraph earlier, then edges will now go from p to both c and q
in the parallel model, indicating that c and q can be executed in parallel. This
is shown in Figure 7(b). However, this is impossible to implement in practice
without rewriting a part of the code.

This is why subgraph edges are allowed in the parallel model. These edges
can be removed in a later step and replaced with the regular edges in the parallel
model, but are useful during the transformation phase. For the example that was
just discussed, the parallel model in Figure 7(c) is the result of using a subgraph
edge. All nodes inside the dotted circle on the right p′ have to be executed before

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 47

all nodes inside the dotted circle q′ on the left. The subgraph edge is indicated
by a dashed arrow.

We could of course also allow users to specify that c and q in the example in
Figure 7 can indeed be executed in parallel. However, in practice this will most
likely be difficult to realize. It would force the programmer to ensure that q can
be executed in parallel with c, but only after some of the computations of p are
already done. While our approach is more conservative, it allows for an easier
adaptation of the source code and will lead to less errors.

(a) A call tree with a
precedence relation from p
to q. The parts that are
in gray are already deleted
from the call tree, but are
shown here to indicate the
precedence relations in the
subtrees with parents p
and q.

(b) Transforming the call
tree into a parallel model
without subgraph edges.
Here, it seems as if q and
c could be executed in par-
allel.

(c) Transforming the call tree
into a parallel model using a
subgraph edge. In this case, all
parts of p′ are executed before
any nodes in q′ can start exe-
cution.

Fig. 7. Using subgraph edges to prevent undesired parallelism in the parallel model
after the transformation from a call tree

Subgraph edges can e.g. be useful if the parallel model is used for scheduling,
but the number of nodes in the call tree is much too large compared to the
number of processors. In that case, subgraphs can be seen as a single node.

An optional model transformation step allows to replace subgraphs and sub-
graph edges with nodes and regular edges to adapt the granularity of the parallel
model.

Example 3. An example is given in Figure 8, where h represents the subgraph
that consists of h0 and its successors. The edges that lead away from h0 have
to be redirected. For that, all leaves within h have to be found. In Figure 8 this
would be nodes h1, h3 and h4 since they have no outgoing edges. The subgraph
edges going out from h0 will each lead to three outgoing edges from h1, h3 and h4

respectively. Finally, the subgraph edges can be deleted. The result of replacing
the subgraph edges of h0 in Figure 8 is shown in Figure 9.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 48

Fig. 8. Subgraph edges in the par-
allel model

Fig. 9. Replacing the subgraph
edges in Figure 8

6 Implementation

We implemented the above approach in a toolchain that goes from the software
source code via call trees to a parallel model of a software application.

The call tree is represented graphically within the AToM3 [12] modeling tool.
Each edge type – function call, data dependency and user-defined dependency –
has a different color, so that the user can keep track of what kind of dependency
an edge represents.

The first type of edge is a function call. To derive these edges, the toolchain
uses a modified version of the Callgrind profiler [13] that is part of the Valgrind
tool suite [14]. The adaptations were necessary to filter out the functions that
do not appear in the source code of the application. In addition, Callgrind had
to be modified to produce a call tree as an output rather than a call graph. The
call tree that is produced as the output of the modified Callgrind tool is then
parsed into a Python file that can be opened in AToM3. In the parsing step, we
allow to adapt the granularity of the call tree by transferring only the function
instances with the largest instruction count to the Python file.

The second type of edges are data dependencies. They are derived from the
output of the Paralax [11] compiler. Data dependencies in Paralax are depen-
dencies between different call paths. For a data dependency between call path
f1, . . . , fn and call path g1, . . . , gm that is found by the Paralax compiler, an
edge has to be inserted in the call tree between each instance of fn and each
instance of gm in the call tree, provided that the predecessors of fn resp. gm are
instances of f1, . . . , fn−1 resp. g1, . . . , gm−1.

Example 4. Consider the call tree in Figure 10. Assume that there is a data
dependency from call path a → b to a → c → d. Then, two data dependencies
would be added, from b1 to d1 and d2. There will be no data dependency from
b1 to d3, since the call path of d3 does not match with the one described by the

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 49

call path a → c → d. The resulting call tree with the added data dependencies
is shown in Figure 11.

Fig. 10. A call tree where function d
can be called from functions c and e.

Fig. 11. Adding the data dependency
from call path a → b to a → c → d in
Figure 10.

The last type of edge is a user-defined edge. As explained above, these user-
added edges can be added one subgraph at a time. In each step, a subgraph of
the call tree is highlighted. This subtree consists of a function instance p and all
its children that all have to be leaves in the call tree. The user can add missing
dependencies by drawing edges in the model. The position of each function
instance in the call stack is given, so that the developer can see in which order
the different function instances were actually executed during the profiling.

Once the user inserted all edges in a subgraph, he can indicate this with
the click of a button and wait until the next subgraph is highlighted. The edges
of the current subgraph are then copied to the parallel model in the manner
described above. All children of the subgraph are then deleted along with the
edges leading to and from them. A rule that determines for each node if it is a
leaf of the call tree is invoked, so that the parent of the call tree will now be
marked as a leaf. Then, the next subgraph is highlighted and so on.

After all nodes of the call tree have been deleted there is an optional step for
replacing the subgraph edges. This is done in a top-down way, meaning that the
subgraph edges closest to the root node (usually the main function) are replaced
first so that the granularity of the model can be adapted.

7 Results

We tested our approach on the FFT implementation of the MiBench benchmark.
In order to get usable results, we had to divide the loop that computes the FFT in
the program into function calls. Although this was done within a few minutes,
it shows a limitation of our approach that is due to it using functions as the
smallest entities.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 50

During the transformation phase, it was shown that it is a good idea to
present the model to the user instead of just relying on the information given by
the profiling tools. When we profiled the FFT application, the dependency that
arises from filling the input signals with random numbers as seen in Figure 5 to
using these signals in the actual Fast Fourier Transform was not detected by the
Paralax profiler.

From the resulting parallel model, it became apparent that the best oppor-
tunities for parallelization are in two loops. The first loop is the inner loop of
the actual Fast Fourier transformation (the outer loop has data dependencies)
and the second loop is the one shown in Figure 5. These two loops make up
more than 50 percent of the execution time. This shows that our approach can
indeed help the developer in identifying the program parts where parallelization
will bring the largest benefit.

The code was parallelized by inserting OpenMP [15] directives according to
the parallel model. To parallelize the loop that computes the FFT, it was enough
to add a simple line of code that allows the concurrent execution of the loop.
Parallelizing the loop that initiates the input signals for the FFT is more difficult.
As seen in Figure 5, there is a conditional execution within the loop. Therefore,
the code had to be changed into the form seen in Figure 12. This already gives
a slight improvement in the sequential execution of the code. This new for-loop
can then be parallelized. Note that in order to get the same results as with the
sequential version of the code, it has to be ensured that the random numbers are
used in the same order. Therefore, they are stored beforehand in a separate array.
Creating this array takes about one quarter of the total execution time of the
parallelized program. When executing the program on an Intel Core i3 processor
(dual core model with hyper-threading technology), the overall speedup when
parallelizing both loops in the manner just described was 2.5.

for (i =0; i<MAXSIZE; i++) {
RealIn [i]=0;
for (j =0; j<MAXWAVES; j++) {

x = rand ()%2;
RealIn [i] += x∗ c o e f f [j]∗ cos (amp [j]∗ i)+

(1−x)∗ c o e f f [j]∗ s i n (amp [j]∗ i) ;
}

}

Fig. 12. Modifying the code in Figure 5 so that there is no conditional statement in
the for-loop.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 51

8 Future Work

A line of future work would be to automatically trace back the parallelism that
becomes apparent in the parallel model to the source code (as for instance seen in
[16]). This could then be used to include the necessary code that parallelizes the
application automatically. However, since the correctness of the parallel model
depends on the user input, the model is not guaranteed to be correct. It might be
more difficult to remove automatically added code that is incorrect than to add
the code. Additionally, as can be seen from the FFT example, parallelizing the
code can sometimes mean that some part of the code has to be rewritten before
parallelizing into different threads can have a benefit. Another problem with
automatically generating code is variable reuse. In case that during sequential
execution a variable is used in a part of the code and then again in a different part
of the code in a different context, these two parts could be executed in parallel
(there will only be a write-after-read dependency, which will not be included in
the model transformation). However, to actually implement this parallelism two
distinct variables are needed. In order to be able to do that automatically, the
write-after-read dependency would have to be tracked.

When testing our approach on a medical imaging software, it became appar-
ent that pipeline parallelism is difficult to detect with our approach. In the case
of the medical imaging software, a 4-stage pipeline is used. Each pipeline stage
writes on an array that is then read by the next stage. Since the data depen-
dency profiler does not distinguish between function instances, dependencies are
added from each stage 1 function instance to each stage 2 function instance that
occurred after it in the call stack. This makes the model very cluttered and the
developer might not be able to see the possible parallelism.

The approach can be easily extended to include other profiling information
about dependencies between different functions. Our approach already considers
dependencies that can be left out in the parallel model if alternative paths exist
in the model (the function calls), and dependencies that are always copied from
the original call tree to the parallel model. Therefore, it would be straightforward
to include other dependencies without having to adapt the graph transformation
algorithm.

9 Conclusion

In this paper, we proposed a model-driven approach to help developers paral-
lelize sequential software programs. Profiling results are combined with domain-
knowledge of the user to transform source code into a parallel model of the
application. We believe that by abstracting away the implementation details we
can assist the developer significantly in the parallelization process. By provid-
ing the developer with an abstract model of the software that already includes
function calls and data dependencies, the developer gets a graphical represen-
tation of his program that hides irrelevant details. As the developer can add
precedence relations, a parallel model can be derived. It can for instance be used

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 52

for scheduling the application on a multi-processor platform or adding compiler
directives for parallel execution into the source code.

References

1. Quiñones, C.G., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen,
D.M.: Mitosis compiler: An infrastructure for speculative threading based on pre-
computation slices. (In: 2005 Conference on Programming Language Design and
Implementation (PLDI))

2. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAMPede Approach to
Thread-Level Speculation. Transactions on Computer Science (2005)

3. Chen, M.K., Olukotun, K.: The Jrpm System for Dynamically Parallelizing Java
Programs. (In: 30th Annual International Symposium on Computer Architecture
(ISCA ’03))

4. Mak, J., Faxèn, K.F., Janson, S., Mycroft, A.: Estimating and exploiting potential
parallelism by source-level dependence profiling. (In: Euro-Par 2010)

5. Ishihara, M., Honda, K., Sato, M.: Development and Implementation of an Interac-
tive Parallelization Assistance Tool for OpenMP:iPat/OMP. IEICE Transactions
on Information and Systems (2006)

6. Ismail Assayad, Valérie Bertin, F.X.D.P.G.O.Q.S.Y.: Jahuel: A formal framework
for software synthesis. In: Proceedings of the Seventh International Conference on
Formal Engineering Methods ICFEM. (2005)

7. Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., Deprettere, E.: System design
using kahn process networks: The compaan/laura approach. In: Proceedings of the
conference on Design, Automation and Test in Europe (DATE). (204)

8. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: A free, commercially representative embedded benchmark suite.
(In: Proceedings of the Workload Characterization 2001 Workshop)

9. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic approach
to auto-parallelization. (In: 2009 Conference on Programming Language Design
and Implementation (PLDI))

10. Miniskar, N.R., Hammari, E., Munaga, S., Mamagkakis, S., Kjeldsberg, P.G.,
Catthoor, F.: Scenario based mapping of dynamic applications on mpsoc: A 3d
graphics case study. In: SAMOS Proceedings of the 9th International Workshop
on Embedded Computer Systems: Architectures, Modeling and Simulation. (2009)

11. Vandierendonck, H., Rul, S., de Bosschere, K.: The paralax infrastructure: Auto-
matic parallelization with a helping hand. In: Parallel Architectures and Compi-
lation Techniques (PACT). (2010)

12. de Lara, J., Vangheluwe, H.: Using AToM3 as a Meta-CASE Tool. (In: 4th Inter-
national Conference on Enterprise Information Systems (ICEIS 2002))

13. Weisendorfer, J., Kowarschik, M., Trinitis, C.: A tool suite for simulation based
analysis of memory access behavior. (In: Proc. of the 4th Int. Conference on
Computational Science (ICCS 2004))

14. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instructions. (In: Proc. of ACM SIGPLAN 2007 Conference on Programming
Language and Design (PLDI 2007))

15. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP. The MIT Press (2007)
16. Johnson, S., Evans, E., Ierotheou, C.: The parawise expert assistant – widening

accessibility to efficient and scalable tool generated openmp code. (In: Workshop
on OpenMP Applications and Tools (WOMPAT 2004))

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 53

A Refinement Checking Technique for
Contract-Based Architecture Designs �

Raphael Weber1, Tayfun Gezgin1, and Maurice Girod2

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany,
{raphael.weber,tayfun.gezgin}@offis.de

2 Airbus Operations GmbH, Kreetslag 10, 21111 Hamburg, Germany,
maurice.girod@airbus.com

Abstract. During the development of software intensive systems, typ-
ically several models of this system are designed. These various models
represent the system structured by different concerns, e. g. abstraction.
While these approaches help to cope with complexity, the need of relating
the models to one another arises. A major task is to keep model speci-
fications consistent and traceable through special relations. The relation
of interest for this work is the refinement relation between abstraction
levels. In this work we describe a technique to check the validity of these
refinement relations with respect to formal behavior/interface specifica-
tions of design items. For evaluation, we apply our refinement technique
to an industrial example modeled with the contract-based methodology
from our previous work.

1 Introduction

In recent years, the design process of systems in domains like automotive, au-
tomation technology, avionics, or consumer electronics has become a more and
more complex task: The increasing number of functions which are realized by
software, inter-dependencies of software tasks, and the integration of existing
sub-systems lead to highly complex software intensive systems. This complex-
ity in conjunction with the increasing demand on a short time-to-market and
on quality aspects make it difficult for engineers to develop such systems. In
order to cope with this difficulty we proposed a new meta-model along with a
methodology in [2] to support the system architect.

The proposed common systems meta-model (CSM) is based on the meta-
model of Heterogeneous Rich Components (HRC) [6], which provides the con-
cept of contract-based specifications. The term “rich” alludes to the key ingre-
dient of HRCs to provide rigorous interface specifications for multiple aspects,
encompassing both functional and extra-functional (e. g. safety and real-time)
characteristics of components. To structure the design space and enable differ-
ent development approaches (e. g. top-down, bottom-up, . . .), we described the
� This paper was partly funded by the German Federal Ministry of Education and Re-

search (BMBF) through the project “Software Platform Embedded Systems (SPES
2020)”, grant no. 01IS08045.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 55

concept of Abstraction Levels and Perspectives along with their CSM represen-
tation. For the designer to navigate and model relations between abstraction
levels and perspectives, we briefly introduced the concept of a Mapping relation
(called Realization between abstraction levels and Allocation between perspec-
tives). Analyzing these mappings was not discussed in detail in our previous
work and is subject of this work.

For evaluation, an industrial example was proposed by Airbus: the Air-Condi-
tioning-System. We evaluate a certain portion of that example through refine-
ment check. This check finds out whether a component of a specific design can
be replaced by a component of a different design, i. e. it finds out whether the dif-
ferent design component can be virtually integrated into the environment of the
other component. The refinement check is done via model checking an Uppaal
[9] timed automata representation of the formal requirements of the model.

By formal requirements we mean the specification of requirements via the
pattern-based requirements specification language (RSL). The RSL is developed
and evaluated in the European CESAR project. While this requirement spec-
ification technique allows for easy transformation from predefined patterns to
automata it may not be the most intuitivly usable one. Yet, there are a variety
of methods to help to derive natural language requirements down to pattern
based requirement specifications (contracts). However, that subject is not part
of this paper, for more information about the RSL and requirement specification
methods in general refer to [4].

Related Work In current literature one can find many works that deal with
refinement checks via timed automata. One similar work is [15] in which the au-
thors use Uppaal timed automata (among others) to verify the correctnes of
their requirements. However, timed automata are not used to formally check the
refinement of these requirements. The theoretical foundation and practical appli-
cation of the contract-based specification method were elaborated in [5, 3]. One
could consider our work as a follow-up work of [5]. In [13] the authors propose a
basic calculus for adding and removing channels and components in a dataflow
architecture. The calculus formally allows for refinement checking between two
system architectures. While this approach covers adding and removing entities it
does not include the modification of artifacts. Furthermore, there is no relation
to meta-modelling concepts or to the (then emerging) UML standard. There
is also no practical example on which the calculus was applied and evaluated.
There is, however, an introducing example to motivate the approach.

The remaining parts of this paper are organized as follows. In the next section
we give a short introduction on the modeling concepts of the CSM. In Section 3
we describe the refinement check for the case in which one contract is refined by
exactly another contract and give the construction principle of the automaton
networks. Section 4 illustrates the air-conditioning-system example by Airbus
and explains how we applied the refinement check to the example. In Section 5
we discuss the extension of the refinement check where the specification of a
component may consist of a set of contracts. In the last section we will sum up
our findings and draw a conclusion.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 56

2 Modeling Concepts

In our previous work [2] on a new common systems meta-model (CSM), Hetero-
geneous Rich Components (HRCs), which originate from the European SPEEDS
project [17], represent the major modelling artifact. In addition to HRCs a new
methodology to traverse along the design space is also proposed in [2]. This sec-
tion gives a short introduction to the concepts of HRC and the design method-
ology of the CSM.

2.1 Heterogeneous Rich Components

The CSM provides basic constructs needed to model systems like components
with ports and connections (bindings) between them. We refer to these com-
ponents as Heterogeneous Rich Components (HRCs). HRCs rely on the basic
concepts of SysML blocks [12]. The dynamics of an HRC can be specified by
behavior, e. g. an external behavior model, or even source code. Furthermore,
requirements (or contracts) refer to a required behavior whereas the actual be-
havior is specified as stated above. The idea of contracts is insprired by Bertrand
Meyer’s programming language Eiffel and its design by contract paradigm [10].

In HRC, contracts are a pair consisting of an assumption and a guarantee,
both of which are specified by some text. Here we assume that assumptions and
guarantees are specified by a pattern based formalism called requirement specifi-
cation language. An assumption specifies how the context of the component, i. e.
the environment from the point of view of the component, should behave. Only
if the assumption is fulfilled, the component will behave as guaranteed. This
enables the verification of virtual system-integration (integrate a more detailed
component or a subcomponent in a more abstract environment) at an early stage
in a design flow, even when there is no implementation yet. Thus, the system
decomposition can be verified with respect to contracts. Details about the se-
mantics of HRC are given in Section 3.1. Note that in this work we consider
only the HRC semantics where a connection between two ports describes their
equality. A deeper insight into HRCs can also be found in [8, 16].

2.2 Structuring the development process

When developing an embedded system, an architecture is regarded in different
Perspectives at several Abstraction Levels during the design process as mentioned
in Section 1. On each abstraction level the product architecture is regarded in
different perspectives. As an additional concept for separation of concerns, mod-
els in each perspective reflect different aspects. For example, an aspect “Safety”
might be regarded in every perspective but an aspect “Realtime” is not regarded
in a geometric perspective and aspect “Cost” is not regarded when considering
operational use cases.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 57

2.3 Realization and Allocation

In order to keep the models in different perspectives and abstraction levels con-
sistent (keep traceability between development steps) we defined a so called
Realization- and Allocation-Link. The basic idea behind both concepts is to re-
late the observable behavior of components exposed at its ports.

Realizations are relationships between ports of components on different ab-
straction levels. Intuitively a realization-link states, that a component (e. g. f1)
has somehow been refined and is now more concrete in terms of its interface
and/or behavior (e. g. f1’). The refinement cannot always be captured by a pure
decomposition approach. Thus, we define the realization of a component by in-
troducing a state-machine that translates the behavior of the refined component
f1’ into according events observable at a port of component f1.

Allocations are relationships between ports of components in different per-
spectives. Intuitively an allocation-link states that the logical behavior of a com-
ponent (e. g. f4) is part of the behavior of a resource (e. g. r2), to which it has
been allocated. Here, we consider the same link-semantics as for the realization.
For more details, refer to [2]. In the next section we will deal with the automatic
verification of allocation and realize links in more detail.

3 Refinement Check

In the previous section we introduced our methodological concepts of the CSM
and the HRCs. This section describes how the concepts of realize and allocate
links can be automatically validated. For this, we first give an in-depth descrip-
tion of the semantics of HRCs.

The concepts of realize and allocate links between perspectives and abstrac-
tion levels are very similar. Both links define a refinement relation between
components with respect to their specification: The refined components have
to respect the requirements specified for their abstract counterparts. We say, a
specification C ′ refines another specification C if and only if the behavior spec-
ified by C ′ is a subset of the behavior specified by C. In the following we will
formalize the refinement relation with respect to contracts and give a technique
in order to automatically check such a relation. In this work we will only consider
1-to-1 mappings, i. e. where a component is refined by exactly another compo-
nent. Mappings, where a set of components is related to another set of refined
components is subject of future work. Furthermore, we will only consider spec-
ifications which consist of exactly one contract. The generalization to a set of
contracts is subject of Section 5.

3.1 Semantics of HRC

The specification of HRCs is given in terms of contracts over their interaction
points capturing the required dynamics of a component. This means that for
specifically assumed environment conditions the component shall guarantee a

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 58

specific behavior exposed at its ports. In the following we assume without loss of
generality that each port contains exactly one interaction point, so we can refer
to that interaction point when talking about a port.

A contract is a tuple (A,G), where A defines the assumption and G the
guarantee as introduced in Section 2. The semantics of a contract is defined as

[[C]] := [[A]]Cmpl ∪ [[G]], (1)

where (X)Cmpl defines the complement of a set X in some universe U and [[X]]
is defined as the semantic interpretation of X.

The semantics of A and G is given in terms of sets of timed traces. A trace
over a port set P is a sequence of port assignments. A port assignment V is a
function V : P → D assigning each port pi ∈ P to a value in its domain Di.
Further, a time sequence τ is a monotonically increasing sequence of real values,
such that for each t ∈ R there exist some i ≥ 1 such that τi > t. A timed trace
is a sequence (ρ, τ) where ρ is a sequence of port assignements and τ a time
sequence. The set of all timed traces over P is denoted by Tr(P).

The specification S of a component is given in terms of a set of contracts, i. e.
[[S]] :=

⋂n
i=1[[Ci]]. An implementation I of a component satisfies its specification

S, if [[I]] ⊆ [[S]] holds. The refinement relation between two contracts C and C ′

is defined in a similar way. Note that the definition for n contracts is subject of
Section 5.

C ′ refines C, if [[A]] ⊆ α([[A′]]) and α([[C ′]]) ⊆ [[C]], (2)

where α : Tr(P ′) → Tr(P) is called the mapping function (represented through
a state machine as mentioned in Subsection 2.3) relating concrete traces with
abstract ones. This function is necessary as both contracts C and C ′ may talk
about different ports. Here we only assume mapping functions which can be
transformed to timed automata. Note that mapping functions are not generated
automatically but rahter are given by the systems architect.

In the following subsection we will introduce a technique to check such a
refinement relation.

3.2 Checking the Refinement Relation

We introduce our concept of verifying a refinement relation by specifications
consisting of only one contract. In order to check the refinement relation between
the contract of the abstract and the concrete component, we derive Uppaal timed
automata[9] out of both contracts and do a reachability check[1]. As defined in
Equation 2 the check consists of two parts, i. e. first checking the set inclusion
of the assumptions and second checking the set inclusion of both contracts.

Checking Set Inclusion of Assumptions In order to check [[A]] ⊆ α([[A′]]) we
derive a timed automaton out of A′ serving as passive observer O. The transitions
of O are annotated with receiving events (derived out of port names) and clock
constraints in such a way, that the observer accepts the set of timed traces which
are element of [[A′]]. For all traces which are not element of [[A′]] the observer

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 59

enters a bad state. Then we derive an automaton TA out of A which serves as
a trigger for O. The transitions of TA are annotated with sending events and
timing constraints, such that TA produces all traces that are element of A.

At least we need the automaton Gl realizing the mapping function α which
receives events from TA and translates corresponding events to the observer.
This automaton is assumed to be given by the system architect.

From all automata we build the automaton network TA ‖ Gl ‖ O. If the
trigger automaton now produces a sequence which is not element of A′ — and
therefore the subset inclusion property will be violated — the corresponding
observer will enter a bad state. So we need to check TA ‖ Gl ‖ O against the
following Uppaal query: A� not O.bad.

Checking Set Inclusion of Contracts The second part consists of checking
α([[C ′]]) ⊆ [[C]]. This is done by deriving an automaton network TC′ out of C ′ or
more precisely one automaton for the assumption part and one for the guarantee
part. Both automata serve as trigger for the observer network derived out of C.
Analogously to the first part it holds that whenever one of the trigger automata
does a step which is not defined in the contract of the abstract component, the
corresponding observer will enter a bad state.

Fig. 1. Automaton network for Observer: OG is the automaton for the guarantee, OA

for the assumption and OC for the overall state of the contract.

The observer consists of three automata: one automaton for each assumption
and guarantee and a third automaton tracing the state of the overall contract.
This is illustrated in Figure 1: The observer obtained from the guarantee (OG)
and the assumption (OA) send an event to the automaton OC when entering their
bad state. The automaton OC states whether the contract is fulfilled. According
to Equation 1 this is the case when either both the assumption and guarantee
are fulfilled or the assumption does not hold. If the assumption does not hold,
OA sends an event OA

toBad such that OC directly switches to state good. If the
guarantee was not fulfilled previously, then OC switches to its good state in the
case that the assumption is finally violated.

The automaton network TC′ ‖ OG ‖ OA ‖ OC is again checked against the
Uppaal query: A� not OC .bad. If OC enters its bad state as the corresponding
guarantee is not fulfilled, we need to check whether finally its assumption au-
tomaton also enters its bad state, such that OC switches to its state good. This
is realized by checking the query OC .bad ��� OC .good. The arrow is the leads-to

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 60

operator of Uppaal and states for this case that whenever OC enters its bad state
it will finally enter its good state.

4 Case Study: Air-Conditioning-System

In this section we will describe in text and figures how the air-conditioning-
system was modeled. Note that this is only a cut-out on two abstraction levels
described in detail in Subsections 4.2 and 4.3.

4.1 Preliminary Notes on the Example

The following two subsections contain details about a cut-out of an example
model of the air-condintioning-system (ACS) we did with Airbus in the scope
of the SPES2020 project. This cut-out deals only with the technical perspective
on two different abstraction levels, called the “upper” and the “lower”. In each
technical perspective we first define our system context (the environment outside
the system under development). The boundaries of this environment description
may change between abstraction levels, as is the case in our example. Note that
we renamed some entities of the model.

The air-generation demand calculation system which is part of the ACS was
previously modeled in the logical perspective (not described here). It is subject
of the upper level whereas the processor of the upper level is refined in the lower
level. The contracts of this particular processor and its subcomponents are de-
scribed and examined for a refinement check which is described in Subsection 4.4.

4.2 The Upper Abstraction Level

The air-generation demand calculation system is designed in a rather fine level
of granularity. At this point in the design process, it is time to initially design the
technical architecture. Our system context contains the air-generation demand
calculation system with four inputs (selected air demand from two crew selections
and two sensor values of the actual climate to be conditioned) and one output
(the calculated air demand value).

The system under design (the air-generation demand calculation system) is
decomposed into certain resource artifacts. The Input_Terminal (a device re-
source, fetching data from certain memory addresses), the Input_Com (a com-
munication resource, among others, sending requested data over an Input bus to
a computation resource), the CPU1 (a computing resource on which the actual
air-generation demand calculation task is executed), the Out_Com (a commu-
nication resource which, among others, sends the result of the calculation to the
Out_Terminal, to be distributed), and the Out_Terminal (a device resource,
writing data to certain memory addresses). The schedule, according to which
the task is scheduled, is a static time table, just like an ARINC653-Module
specification (see [7]). The system under design with its artifacts is displayed in
Figure 2.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 61

��������

	
��
������
������������������
���������

�

�

�

�

����
�����������

���������
��������������
���

�

�

�

� �

�������	
��

��

������
����
�
�

��

������
����
�
�

�������	
��

����	���

�������
���
�����������

������������������

� �����	��� �	
��	���

�������
�����������

������� �

� ���	
��	��� �
�	
� �	���

�������
���
�����������

��������!������

�� �����	��� �	
��	���

����
�����������

��������
����!�������
���

�
�

����	���
��������
������	��

�
������
����
�
��

�

Fig. 2. The air-generation demand calculation system with resources.

The terminals and busses details are not described here. Instead we focus
on the model of the CPU1. It contains one task (demand_calculation), which
performs the actual air flow and temperature calculation based on its inputs
and writes it to its output port. Furthermore, the CPU1 component contains a
scheduler slot (which contains information, relevant for the scheduler) represent-
ing a certain amount of time within the schedule of CPU1. CPU1 also contains
the scheduler that has a certain scheduling policy. The ports between the slot
and the task are SchedulerPorts, over which the slot “tells” the task when it is
executing. Likewise, the ports between the scheduler and the slot enabling the
scheduler to “tell” the slot when it executes. This scheme also makes hierarchi-
cal scheduling possible and allows other scheduling policies to be specified. The
CPU1 with its task, slot, scheduler, and a formal contract (denoted by “Con-
tract_CPU_Performance”) are displayed in Figure 3. The contract assumes that
an event on input_port occurs each 100ms and guarantees that the distance be-
tween the input event on input_port and the output event on port ouput_port
is within 12ms and 15ms.

Note that CPU1 has only one task receiving data and exporting data back
to the bus. This indicates that there might be some bus interface functionality
within the task. So maybe it is a good idea to decompose this one task a lit-
tle further. The following section will describe the lower abstraction level (the
component level), in which the technical perspective will be refined.

4.3 The Lower Abstraction Level

After designing the initial technical architecture on the upper level, we now
proceed to model the technical architecture with more detail on the lower ab-
straction level. As mentioned above, we need to decompose the air-generation-
demand-calculation-application task a bit further into the importer task, the

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 62

��������	
��
������

����

�����
��

����	�����������	�����������	����������	

� ��������	�	
	�
��	����	�
������	�����������	��

�����������

��
����������������

���������������

������������

�

��
�

�
�������

��

�
�������

��	������������������	��

• �

������	� �	�������� �����
 ���� �!! �
"

• #����	���� ����$ %��&��	 �	�������� �	�

����������� &����	 '�(�
)�*�
+"

�����
�$�

��������
� ���������
�

Fig. 3. The CPU1 component with one task.

actual calculation task, and the exporter task. This means, we will refine the
computing resource CPU1 from the upper level.

For the environment part we modeled the type with the two corresponding
ports of the CPU. For now, there is no behavior environment model, so there is
no further decomposition of the environment component. As for the CPU: It was
decomposed into its tasks, slots and the scheduler. Figure 4 depicts the model.

��������	
��
������

����

��

�����
��

���������	������������	�����	�

�����������

��
����������������

���������������

������������

�
���������

�

���������

�����
��

�������������������������

� �

�

�

�

�	�
��
����

��������������������

��������������������

�	�
��
����

�
������	�

�����
��

���� !����������� !������

�

�

�

�

�

�	�
��
����

��������������������

��������������������

�	�
��
����

��	����
�����
�

������	���	������
� � �����	���	������
�

� ��	����
�����
�

����������	�

���������������

������������

�

�

���������

���������������

���"�������"

�

�

���������

�

�

�

���������
�

�

���������

�

�	���#����#$�����#����#������	�

• %

������	�&�	���#����&�����
&����&�''�
(

•)����	����&����*&+��,��	&�	���#����&�	�&������#����&,����	&-�.�
/�0�
1(

�����
2*�

Fig. 4. The lower abstraction level CPU1 component with three tasks.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 63

As depicted there are now three tasks in the computing resource: The dataIm-
porter, calculationRoutine, and the dataExporter. The data importer has one
input (the connection to the Input_Com communication resource like on the
upper level). Likewise, the data exporter has the output port connecting to the
Out_Com communication resource. The calculation routine has an input port
for each incoming data and an output port for each outgoing data. It can only
be activated if all four incoming data packets are available.

There is also a Contract (denoted by “Input_Port_Output_Port_Deadline”)
that the CPU1 satsifies: The refined (from the upper level) deadline for the input
and output port. Note that the assumption is unchanged, but the deadline inter-
val has changed now (this often happens when traversing from a more abstract
design to a more detailed design).

Having the two technical perspectives, one on the upper and one on the
lower level, we now need to specify how they are mapped, i. e. how the upper
level is refined into the lower level. Figure 5 shows how the task on the upper
level is mapped to the tasks on the lower level. In this case it is rather simple,
though the ports have different names their types are the same and it is a simple
One-Port-To-One-Port mapping. Having said that, it is not obvious how the two
contracts on both levels relate to each other.

��������

	�
���
��
�����
���
��
��

� �

�

�

�

�������	
��

��

������
����
�
�

��

������
����
�
�

�������	
��

��	
��	���

��������

	�
���
��
�����
���
��
��

� ���	��
�
������
��

�
�����������
��

��
�	
��	���

��������

	����	�������
�����������
����

����
���

� ���	
���
�
 �
��
�
����
��������
������	����
��

����
�������� ����
��������

Fig. 5. The mapping between the task of the two abstraction levels.

Keep in mind that in the HRC semantics, a connection between two ports
describes their equality. So, for delegation connections the contract’s parts and
ports are the same and for assembly connectors assumption and guarantee have
to be checked against each other. In our case this means: The input_port
of CPU1 on the upper level is delegated to the task port input_data (see
Figure 3) denoting their equality. The same is valid for the connection be-
tween output_port and the calculated_air_flow_and_temp_demand. Again,

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 64

this also holds for the ports on the lower level (see Figure 4). So, with the con-
tracts on the upper and lower level satisfied by the corresponding CPU1, parts
of these contracts are also valid for the subcomponents of CPU1. It so happens
that these subcomponents are mapped and thus induce the necessity of an real-
ization test: Is the contract of the coarser component still valid if it is replaced
by a finer component? Or in our example: Is the CPU1 on the lower level a
valid realization of the CPU1 on the upper level, concerning their contracts and
mappings? For this we apply the refinement check which formally checks if the
answer to the above questions is Yes. The next subsection will describe in detail
how this refinement check is performed for our example.

4.4 Realization Check between Abstraction Levels

We will apply the technique checking a refinement relation introduced in Sec-
tion 3.2. For this, we implemented a tool which derives relating contracts out of
the system models, parses the RSL pattern with which the contracts are spec-
ified, generates a corresponding Uppaal timed automaton network and checks
this against the properties illustrated in Section 3.2.

Consider again the contracts of CPU1 in the upper and lower abstraction
level introduced in the previous section. In general we have to check both con-
ditions [[As]] ⊆ α([[A′

s]]) and α([[C ′]]) ⊆ [[C]], but as in our example As and A′
s

are equal, we can directly start checking the second condition. The observer
automata resulting from the CPU1 contract of the upper abstraction level are
illustrated in Figure 6. It consists of three parts:

– The automaton OA in Figure 6(a) results from the assumption of CPU1 at
the upper abstraction level, i. e. As = input_port occurs each 100ms. Each
100ms it enters its state S1 and expects to receive event input_port. If
the event is not received timely, it enters its bad state and sends an event
R1_Observer0_toBadState to the automaton depicted in Figure 6(c).

– The automaton OG in Figure 6(b) results from the guarantee part of the
contract, i. e. G = delay between input_port and output_port within [12ms,
15ms]. It enters its bad state if the delay between event input_port and
output_port is less than 12ms or greater than 15ms.

– The automaton OC in Figure 6(c) gives the overall state of the contract. If
OA switches to its bad state, the contract is trivially fulfilled and OC switches
to the state good. If the OG switches to its bad state, the OA must finally
switch to its bad state, because otherwise the contract would be falsified.

This observer network is triggered by the automaton network depicted in
Figure 7 consisting of two automata:

– The automaton in Figure 7(a) results from the assumption of the contract
of CPU1 at the lower abstraction level, i. e. As = input_port occurs each
100ms.

– The automaton in Figure 7(b) results from the guarantee part of the contract
G = delay between input_port and output_port within [14ms, 15ms].

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 65

S0 S1

badbadZwischen
z1 <=0

z0 <100
input_port2?
z1:=0

R1_Observer0_toBadState!

z0 ==100
z0:=0, z1:=0

z1 <=0
input_port2?
z1:=0

z1 >0
R1_Observer0_toBadState!

(a) Observer automaton for
As = input_port occurs each 100ms.

S0 S1

bad

badZwischen

z0 <=0input_port3?
z0:=0

lb <= z0 && z0 <= ub
output_port?
z0:=0

z0 > ub
z0:=0

z0 < lb
output_port?
z0:=0

R3_Observer1_toBadState!

(b) Observer automaton for G =
delay between input_port and out-
put_port within [12ms, 15ms].

S0 bad good

R3_Observer1_toBadState?

R1_Observer0_toBadState?

R1_Observer0_toBadState?

(c) Automata giving the state of the contract.

Fig. 6. Automata for the contract of the abstract component.

S0
z0 <=100

S1z1 <=0

bad

z0 <100
input_port!

z0:=0z0 ==100
z0:=0, z1:=0

z1 <=0
input_port!
z1:=0

z1 >0

(a) Trigger automaton for As = in-
put_port occurs each 100ms.

S0

S1
z0 <= ub input_port1?

input_port1?
z0:=0

lb <= z0 && z0 <= ub
output_port!
z0:=0

(b) Trigger automaton for G = de-
lay between input_port and out-
put_port within [14ms, 15ms].

Fig. 7. Automata for the contract of the concrete component.

This automaton network is checked against the property A� not OC .bad,
where OC is the observer automaton illustrated in Figure 6(c). This property
states that the bad state of OC is never reached. If the network fulfills this
property, we have shown a valid refinement, which is the case in this example.

5 Considering Sets of Contracts

In this section we discuss the extension of the refinement check introduced in
Section 3 in order to deal with specifications which may consist of a set of
contracts. In this section we will omit technical details of the construction of
automata networks like e. g. glue automata. Instead, we will focus on the general
checking procedure and will give an extended formulation of the proof obligations
introduced in Section 3. Further, we will discuss the construction for only a
restricted subset of properties since (as we will see in the following subsection)
that the generalization is not always applicable. For the assumption parts we
will only consider activation patterns stating periodic triggering of a port. The

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 66

guarantee parts will contain only delay patterns as demonstrated in the example
of Section 4.4. More general cases are work in progress.

5.1 Extension of the Refinement Check

The specification of a component with more than one contract is obtained by
conjugating them. Unfortunately, the conjunction of two or more contracts is
not simply the conjunction of all assumptions and all guarantees. Rather there
are various possibilities to formulate the conjunction of contracts. We will use
the following:

C1 ∧ ... ∧ Cn = (A, G), with A =

n∧

i=1

Ai ∨
n∨

i=1

(Ai ∧ ¬Gi) and G =

n∧

i=1

Gi.

The first refinement property [[A]] ⊆ [[A′]] is checked in two steps (note that
in the following we will omit the semantic evaluation brackets for the sake of
readability) :

–
∧n

i=1 Ai ⊆ A′

–
∨n

i=1(Ai ∧ ¬Gi) ⊆ A′

We omit the necessity to construct a timed automaton for the trigger part
which generates the union of both parts, by splitting this check into two parts.
Note that timed regular languages are not closed under complementation. So
this approach does not work in general. For the special case of delay patterns,
the complement of the guarantee automata can be easily constructed.

The second refinement condition becomes in the general case (A′, G′) ⊆
(A, G). In the first part of the check we have shown A ⊆ A′ which is equivalent
to ¬A ⊇ ¬A′. With this we can simplify the left hand side of this term to G′.
For technical reasons it could further be necessary to add the assumptions to
the guarantee. Consider for example the special case of activation and delay
patterns: The assumption part is used to trigger the guarantee part. Without
the assumptions an additional trigger structure for the guarantee part would be
necessary.

In order to extend the left hand side of the above expression we use the
following equivalence (zero set extension):

G′ = (

n∧

i=1

A′
i ∨ ¬(

n∧

i=1

A′
i)) ∧ G′.

Because it holds that ¬(∧n
i=1 A

′
i)∧G′ ⊆ A we can omit this term. This leads us

to the following proof obligation:

m∧

i=1

(A′
iG

′
i) ⊆ (

n∨

i=1

¬Ai ∧
n∧

i=1

(¬(Ai) ∨Gi) ∨
n∧

i=1

Gi).

Again we have the problem of complementing a timed automaton. In the case
of the automata Ap resulting from periodic activation patterns we can again find
an automaton accepting all words which are not accepted by Ap.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 67

5.2 Cyclic dependencies

If the specification of a component consists of a set of contracts, we could get
cyclic dependencies if an output port is connected to an input port. For this
we need a strong causality between events. In [11] this problem is prevented
by a stepwise definition of contracts, i. e. all guarantees hold initially and if the
assumptions hold up to the nth step then the guarantees hold up to n+1th step.
Another way to break such cyclic dependencies is to add delays to the data flow.
The cases we considered utilized delay patterns.

6 Summary

In this paper we illustrated a technique to verify refinement relations for contract-
based specifications for our previously proposed common systems meta-model
(CSM). Our CSM allows to structure the design space by concepts like Ab-
staction Levels and Perspectives. It enables formal specifications via contracts
allowing for each aspect to characterize the allowed design context of a compo-
nent. In order to preserve traceability between model artifacts and to put those
into refinement relations, the concept of Mapping was introduced.

In particular, an abstract component which is realized by a more concrete
component has a refinement relation to that component. This relation has to
respect contract specifications of both components. Thus, we formally defined
the refinement relation and introduced a timed automaton based verification
technique. For this, we derived a timed automaton network out of the assumption
and guarantee parts of relating components and defined necessary properties.
Whenever the network adheres to the properties, the refinement relation between
the corresponding contracts holds. The resulting network was checked against
the properties with the aid of the verification tool Uppaal. For evaluation, our
technique was applied to an industrial case study from the avionics domain.

Currently, we are extending our approach of refinement checking in order to
deal with more general n-to-m mappings, i. e. where one component is related to a
set of more abstract or more detailed components. Especially cycles deserve more
research: Interdependent contracts may lead to false conclusions. This problem
is widely discussed in literature, e. g. in [11, 14].

In the future, we will analyze for which set of properties our approach is
applicable. In this context we will analyze the effects which are occuring when
we extend our approach to multi viewpoint analyses.

Further research will be conducted also in the field of deeper analysis methods
for more complex mapping functions. In the future we also plan to integrate the
refinement check described in this work with a broader evaluation of architecture
alternatives in order to guide a developer through a design space exploration
process.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 68

References

1. L. Aceto, A. Burgueño, and K. Larsen. Model checking via reachability testing for
timed automata. In B. Steffen, editor, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1384 of Lecture Notes in Computer Science, pages
263–280. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0054177.

2. A. Baumgart, P. Reinkemeier, A. Rettberg, I. Stierand, E. Thaden, and R. Weber.
A model-based design methodology with contracts to enhance the development
process of safety-critical systems. In Proceedings of the 8th IFIP WG 10.2 inter-
national conference on Software technologies for embedded and ubiquitous systems,
SEUS’10, pages 59–70, Berlin, Heidelberg, 2010. Springer-Verlag.

3. A. Benveniste, J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-
Vincentelli, T. Henzinger, and K. G. Larsen. Contracts for the design of embedded
systems, Part II: Theory. Submitted for publication, 2011.

4. CESAR SP2 Partners. Definition and exemplification of requirements specification
language and requirements meta model. CESAR_D_SP2_R2.2_M2_v1.000.pdf
on http://www.cesarproject.eu/fileadmin/user_upload/, 2010.

5. W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In Design, Automation Test in Europe Conference Exhibition (DATE), 2011,
pages 1–6, march 2011.

6. W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and E. Böde.
Boosting re-use of embedded automotive applications through rich components.
In Foundations of Interface Technologies, FIT’05, 2005.

7. A. R. INC. ARINC 653 - Avionics Application Software Standard Interface - Part
1 - Required Services. Part of ARINC 600-Series Standards for Digital Aircraft &
Flight Simulators, March 2006.

8. B. Josko, Q. Ma, and A. Metzner. Designing Embedded Systems using Heteroge-
neous Rich Components. Proceedings of the INCOSE’08, 2008.

9. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer STTT, 1(1-2):134–152, 1997.

10. B. Meyer. Applying "design by contract". Computer, 25(10):40–51, 1992.
11. J. Misra and K. Chandy. Proofs of networks of processes. Software Engineering,

IEEE Transactions on, SE-7(4):417 – 426, july 1981.
12. Object Management Group. OMG Systems Modeling Language (OMG SysML

TM), November 2008. Version 1.1.
13. J. Philipps and B. Rumpe. Refinement of information flow architectures. In

Proceedings of the 1st International Conference on Formal Engineering Methods,
ICFEM ’97, pages 203–, Washington, DC, USA, 1997. IEEE Computer Society.

14. A. Pnueli. In transition from global to modular temporal reasoning about programs,
pages 123–144. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

15. R. P. Pontes, M. Essado, P. C. Véras, A. M. Ambrósio, and E. Villani. Model-based
refinement of requirement specification: A comparison of two v&v approaches.
ABCM Symposium Series in Mechatronics, 4(IV.05):374–383, 2010.

16. Project SPEEDS: WP.2.1 Partners. SPEEDS Meta-model Behavioural Semantics
— Complement do D.2.1.c. Technical report, The SPEEDS consortium, 2007.

17. The SPEEDS Consortium. SPEEDS Project. http://www.speeds.eu.com.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 69

Model-based Consistency Checks of Electric and
Electronic Architectures against Requirements

Nico Adler1, Philipp Graf1, and Klaus D. Müller-Glaser2

1 FZI Research Center for Information Technology, Karlsruhe, Germany
{adler,graf}@fzi.de

2 Institute for Information Processing Technology, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany

klaus.mueller-glaser@kit.edu

Abstract. The electric and electronic architecture (EEA), which is built
up during the concept phase of automotive electronics development, has
fundamental impact on the success of a vehicle under development. The
complexity of upcoming architectures requires novel approaches to sup-
port system architects during the design phase.
This paper describes a model-based generic approach which allows ver-
ifying an EEA with regard to its requirements by using techniques of
consistency checks during an early design phase. This includes handling
of incomplete models. In this case it offers the possibility to automate
consistency checks and in future work facilitate an automatism for op-
timization and design space exploration to check different realization
alternatives of an initial EEA. Automatic report generation of results
serves for documentation.

Keywords: electric and electronic architectures, model-based engineering,
automotive, verification, requirements

1 Introduction

Electric and electronic architectures (EEA) in the automotive and avionic do-
main build a complex network of a multitude of embedded systems. In the au-
tomotive domain we already see an amount of up to 70 networked electronic
control units (ECUs) in current upper class vehicles [1, 2]. Various innovations,
e.g. driver assistance systems, and new technologies, e.g. FlexRay,make the EEA
of vehicles more complex, including numerous technical and functional aspects.
Driven by customer demands for more safety, comfort and infotainment, this
bears growing challenges for upcoming development activities [3].

The Original Equipment Manufacturer (OEM) must find new ways to control
and manage the rising complexity of an EEA. In addition different variants of
the EEA, as a single product can have several equipment concepts, increase the
difficulty to analyze, whether an EEA meets all requirements [4, 5]. Moreover
new standards like ISO26262 [6] increase quality requirements and efforts to
verify an EEA regarding functional safety.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 71

2 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

Fig. 1. Simplified product life cycle and EEA development cycle [7]

Within the product life cycle the concept phase deals with functionality, con-
venience, risk and profitability of the vehicle [8]. The result must be a concept
that meets the main requirements of a vehicle. During the development phase the
OEM implements the variants of the solution from the concept phase into proto-
types. This deals with the technical feasibility of alternative solutions. Further
phases follow and are out of the scope of this work.

During the concept phase about 80 percent of lifecycle costs will be deter-
mined, although the concept phase itself is only about 6 percent of the total
incurred costs [9, 10]. After finalization of the concept phase subsequent changes
in the EEA are either associated with enormous costs or may not be feasible
anymore. Inconsistencies, which cannot be eliminated, in the worst can put the
project’s success in risk. Therefore, it is a necessity to perform optimizations
and verification already during the concept phase.

A simplified iterative process for developing an EEA can be described using a
cycle with five steps, as shown in Fig.1. First of all, during architecture modifica-

tion, system architects try to improve an existing initial EEA concerning different
criteria. This can be done by optimization or by design space exploration. In the
second step, the architecture verification, they must prove if the modified archi-
tecture meets all requirements. This is a very challenging and time-consuming
task and can be accomplished using consistency checks. Subsequently the EEA
has to be evaluated. This can be done using a cost breakdown structure to get
the total system costs with regard to product lifecycle [11]. To find the most
acceptable solution and to achieve an architecture decision, different realization
alternatives are benchmarked.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 72

Model-based Consistency Checks of EEA against Requirements 3

The development process for vehicle architectures is usually spread over sev-
eral departments. This results in difficulties for global design decisions and es-
pecially in the proof of overall consistency of an EEA. The objective is to verify
and demonstrate in an early stage, which (sub-) areas present or could present
inconsistencies against requirements, so thatmeasure can be taken to solve them.

This paper focuses on a concept for automatically verifying an EEA during
the concept phase regarding requirements and specifications and is organized
as follows: The next section briefly defines verification and gives an overview of
model-based domain specific languages for EEA. Section 3 briefly relates ver-
ification to model-based engineering. The following two sections present our
methodology for verification of model-based EEA. A discussion of the adap-
tion to a domain specific toolset for a first prototype is given in Section 6. The
final section gives a conclusion and presents future work.

2 Related Work

Verification of an EEA is one of the significant points during development.
Boehm described the basic objectives of verification and validation (V&V) early
in the product life cycle with identification and solving of problems and high
risk issues [12]. The V-Model-XT V1.3 describes: ‘verification is to ensure that
selected work results meet their requirements’. Therefore a definition of verifica-
tion procedures and setting up the necessary verification environment must be
done [13].

Electric and electronic architecture modeling supports system architects as
models abstract complex problems. Different approaches and projects for the
model-based description of especially automotive EEA exist, e.g. the project
Titus [14], the language EAST-ADL [15], which emerged from the project EAST-
EEA, and the EAST-ADL2 [16], which emerged from the follow-up project, and
AUTOSAR [17].

Another model-based approach for the description of EEA is the ‘Electric
Electronic Architecture - Analysis Design Language’ (EEA-ADL) [18, 19]. This
data model also forms the basis of the architecture modeling and analysis tool
PREEvision [4]. It combines the previously presented approaches within a tool
and was used for the following described implementation. PREEvision Version
3.1 provides seven abstraction layers. Requirements and Feature-Functionality-

Network constitute the first abstraction layer. Artifacts of this layer are text ele-
ments, which represent atomic features or requirements to the architecture. The
underlying layers are: logical architecture, function network, component architec-

ture with network topology, electric circuit, wiring harness and the geometrical

topology. Cross layer links between model artifacts can be modeled using map-
pings. Apart from modeling EE relevant content, the EEA-ADL provides the
opportunity to deposit attributes for costs, weight etc. This makes the model
suitable to applymetrics and perform architecture evaluations. For analysis of an
EEA an integrated, graphically notated metric framework can be used [20]. To
perform consistency checks an integrated consistency rule model editor is given.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 73

4 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

Rules for consistency checks can be modeled in a graphical way. Simple rules
for checks can be set up easily, but for complex ones with lots of constraints,
inputs and multiple involved abstraction layers, this approach is too limited.
Another disadvantage of the provided rule modeling is that only the boolean
logic operator AND can be used. Therefore, the validness of multiple solutions
is hard to model. Consistency checks have to be generated within the consis-
tency rule model and afterwards synchronized with the architecture model. This
is very time-consuming, especially for building up and testing complex rules.
The created consistency checks can be started only manually. Therefore it is
not straightforward to use this methodology for a desired semi-automatism for
optimizing an EEA as the checks must be started individually depending on the
actual optimization state.

Some of the presented domain specific languages offer an import and export of
requirements from requirements management tools like IBM Rational DOORS3.
The combination of these tools offers to map requirements within the model-
based domain specific language to the corresponding artifacts and consistency
checks.

3 Checking EEA-Consistency in the Context of
Model-Based Development

The quality of verification for EEA models is only as good as requirements are
described, the according consistency checks are derived from these and realized
as executable rules. To do this, it is mandatory that a consistent model exists,
which ensures that all EE relevant data is available and up-to-date, including
requirements. During the concept phase with consideration of model-based engi-
neering, models are not complete and different sub-parts exist at different detail
levels. Therefore model-based verification of constraints has as an additional re-
quirement to secure that verification rules also work with incomplete models.
Also, incomplete requirements and specifications either from OEM or supplier
have to be taken into account. However absolute maximum ratings of datasheets
or specifications can be precalculated or estimated from previous series to per-
form first consistency checks.

Inconsistency at any point shall not abort verifying as any information about
existing consistencies and inconsistencies are beneficial. With automated report-
ing the resultsmust be captured so that during the development process different
versions can be traced and reproduced. Guidelines or regulations of standards
must be used as a basis for documentation templates. This is, for example, re-
quested by ISO26262.

It has to be ensured that consistency checks do not apply changes to the
EEA data model. The deposited rules are only allowed to retrieve data out of
an immutable model.

3 http://www.ibm.com/software/awdtools/doors, 2011.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 74

Model-based Consistency Checks of EEA against Requirements 5

4 Overview of the Constraint Verification Approach

Starting point for model-based verification is a EEA data model, which is filled
with any available and relevant information, as shown in Fig.2 on the left hand
side. This can be done using a model-based domain specific language such as the
examples presented in Section 2.

Within this model the EEA is specified and requirements must be created or
imported from other tools. The requirements linked to the EEA data model are
the corner stones for the verification. For the requirements layer textual described
and hierarchical constructed requirements are suggested. To structure require-
ments, requirements packets should be used. Layer internal mappings are used
for building up a network between requirements and also requirements packets.
In further steps requirements can be mapped to the corresponding consistency
checks.

For automatic verification, five different functional blocks, as shown in Fig.2
on the right side, are provided and are described in the following sub-sections:
consistency check blocks with the checking rules for verification, model query

blocks concerning data acquisition, control unit, requirement block and report

generation block for documentation.

4.1 Consistency Check Block

From each requirement or requirements packet at least one consistency check
must be derived and implemented as an executable rule. As a decision criterion,
the complexity to check the requirement or requirements packet can be used.
Therefore the architect has to analyze all requirements separately.

Verification can relate to different abstraction layers in an EEA model. For
consistency checks, the corresponding artifacts, including their attributes and
their mappings between different abstraction layers, are required. This input
data for the consistency check can be provided by outsourced data acquisition
using model queries and is described in the following subsection.

The multitude of incoming model data from the model queries has to be
preprocessed. This includes sorting and filtering data, furthermore structuring
of model data which belongs together. Another task is to capture the required
corresponding attributes of model artifacts.

The crucial point to verify the EEA is the execution of the consistency check.
This is composed of a sequence and examination rule. In a first step the sequence
is partitioned into consistency checks that cannot be performed and consistency

checks that can be performed. It is advisable to inspect if all relevant data for
performing the check are available. If any relevant information is not available,
the consistency check cannot be performed.

At this point results of not possible checks must be collected and stored
for postprocessing and preparation for reporting. If the consistency check can be
performed, the examination rule describes what shall be checked and in fact rep-
resents the derived requirement or requirements packet. Instructions for checking

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 75

6 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

Fig. 2. Approach for verification of EEA against requirements

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 76

Model-based Consistency Checks of EEA against Requirements 7

on inconsistency or consistency can be implemented using a specific algorithm.
The algorithm examines the available data and executes the rule.

Results of the consistency check are lists or tables. Additionally the degree
of a possible violation of a rule can be estimated. Subsequent post-processing is
used mainly for preparing the data in a structured way for reporting.

4.2 Model Queries Block

Expert knowledge demonstrates that large parts of verification consists of data
acquisition and structuring. Model queries can be used for data acquisition and
should be based on the corresponding EEA meta-model. This ensures that model
queries are correct.

Different consistency checks may require the same model artifacts. The reuse
of existing model queries can significantly reduce the overhead of setting up new
checks. Hereby model queries can be used for different consistency checks which
need equal model artifacts, or the artifacts are part of the model query result
and must be extracted by the consistency check block. Therefore, an approach
has to be found to avoid redundancy so that model queries are implemented
only once. To provide results of model queries to different consistency checks,
the model queries must be connected to a control unit. The control unit forwards
the model query results to the corresponding consistency checks.

4.3 Control Unit

The control unit is the central block. It acts as a sequencer and is connected to
all other blocks by input and/or output ports. The ports are used to transmit
different kind of data. Two modes are differentiated: trigger mode is used for
data request and data mode is used for transmission of data consisting of header
and payload. For both port modes, it is possible to directly connect an input
port to one or more output ports. Also incoming triggers or data can be split
and/or combined.

Data preprocessing for paths coming frommodel queries to consistency checks
is not provided, because preprocessing can distort results with possible data
losses. To avoid this, preprocessing of model query results has to be imple-
mented directly in consistency checks. However data preprocessing is applied
for the path coming from consistency check output ports to report generation.
Therefore the control unit is further connected with the report engine. After
final preparation of verification results, the control unit transfers data together
with report filename to the report generation block.

The subsequent execution of the verification is to be started by the control

unit. Thus the control unit needs information about which requirements should
be verified. For this, a requirements block as a further block is incorporated.

4.4 Requirements Block

The requirements block is used to insert a collection of the demanded require-
ments which have to be verified. Therefore the corresponding requirements from

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 77

8 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

the requirements layer are mapped to the block. As data inputs, the control unit
retrieves them and triggers the derived consistency checks. No mapping means
that all consistency checks must be executed.

4.5 Report Generation Block

Reporting for documentation is an important tasks to reproduce and capture
results. Reporting can be differentiated into documentation for internal or ex-
ternal use. Therefore, an individual configurable template based approach must
be provided, as in different departments they have to fill in different forms or
bring a different proof respective to standards or recommended practice.

For internal use, there also can be some kind of documentation, but the key
factor is to design an EEA which meets all the requirements as soon as possible.
Therefore additional identified information can be documented.

The control unit must decide at runtime, which results have to be sent to the
report generation block to fill the corresponding placeholders in the templates.
Result export to other tools must also be performable. For this purpose e.g. a
XML Schema Definition (XSD) can be implemented using the templates. This
offers a wide range to interface other tools for further processing of results.
Therefore the generation of documents shall be delivered through a suitable
report engine, which can access the prepared templates.

5 Execution of Verification

The typical sequence for a model-based verification is shown in Fig.3. In the ver-
tical ‘swimming lanes’ (columns) the five different blocks are presented. Starting
point is the control unit. The control unit requests the requirement block for in-
formation which requirements should be checked by using a trigger. The bundled
requirements are sent to the control unit which selects the model queries to be
executed for the corresponding consistency checks. The results in the form of
lists or tables are sent back to the control unit. The model queries are executed
only once, because during verification the EEA data model is not modified. At
this point a loop starts. For every requested verification, the control unit block

bundles the demanded model queries results and sends them to the correspond-
ing consistency check block. The verification sequence starts and therefore the
examination. Relevant results of the consistency check are sent to the control

unit, which forwards them after potential preparation for reporting to the report
generation block.

6 Prototype Implementation in PREEvision

Integrated consistency checks require an integratedmodel as described in Section
2. PREEvision is a software tool that allows persistent modeling and evaluation
from requirements down to topology and was used for the first prototyping the
concept described before.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 78

Model-based Consistency Checks of EEA against Requirements 9

Fig. 3. Execution of verification

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 79

10 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

As a simple example we demonstrate the approach with a consistency check
derived from the requirement ‘All ECUs with the attribute isPartOfActiveVari-

ant = true and availability in crash is set to low, medium or high must be
allocated to corresponding installation spaces !’

For preparation we modeled an exemplary EEA within PREEvision. This
consisted of component layer with ECU artifacts, the topology layer with In-

stallationLocation artifacts and added HardwareToTopology-Mappings between
the two abstraction layers. The requirement was inserted in the requirements

layer of the EEA data model.

6.1 Model Query Blocks

Afterwards we identified which artifacts from different abstraction layers are rel-
evant for performing a consistency check. In this case we needed the involved
ECU artifacts from the component layer including the attribute availability in

crash. This formed the first model query. Further we needed all InstallationLo-
cations. This formed the second model query. The last model query was to find
all existing ECU mappings from the component into the topology layer.

For the model queries, the integrated rule model in PREEvision was used
which is based on the corresponding EEA data model. It allows to model rules
in a graphical way. Complex patterns to match can be defined, using not only
the source-object and its properties, but also objects and LinkPairs between the
objects, as shown in Fig.4 on the left hand side for the rule diagram ECUtoIn-

stallationLocationMappings. A further restriction was added to the example by
using one of the attributes of the ECU, thus the isPartOfActiveVariant was set
to boolean value true.

We generated the rules for the three required model queries, that can be used
within the metric framework. The results after execution of the model queries
are tables or lists shown on the right hand side in Fig.4. These can be further
processed by the consistency checks.

6.2 Consistency Check Blocks

For the consistency check block a Java-based calculation block within the metric
editor was used. With this approach we access EEA model artifacts and their
attributes using Java as a programming language instead of the graphical rule
modeling as for the model queries. Being more flexible, it allows to construct
simple to very complex consistency checks. The results of the model query blocks

are used as their input.

It is also possible to construct hierarchical consistency checks using several
calculation blocks. For example this can be used to subdivide a requirement or
requirements packet into several consistency checks. In this case trigger and data
paths have to be looped through the parent consistency check blocks.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 80

Model-based Consistency Checks of EEA against Requirements 11

Fig. 4. Rule diagram for the model query (left) and results (right)

6.3 Control Unit

The control unit was implemented using a calculation block and was connected
with all other blocks using data flows. It contains the allocation table of model
queries to the corresponding consistency checks. The execution sequence was
implemented and internal trigger and data paths were connected. It is possible
to individually improve existing consistency checks or to add new ones. Extension
of any kind can be performed easily, as existing model queries, etc. can be reused
and only the allocation table in the control unit has to be updated.

6.4 Report Generation Block

For the report generation block, we used the open source templating Apache

Velocity Engine4, which is integrated in the PREEvision metric framework. Ve-
locity permits to use a simple template language to reference objects defined
in Java code. As the output format for the first prototype we chose HTML for
the generated files. This allows graphical layout of results and ensures traceabil-
ity using hyperlinks. Using velocity templates we formed the basic structure of
the graphical appearance including a navigation bar. Placeholders in the velocity
templates were filled with the data coming from consistency check blocks, looped
through the control unit. To obtain better overview of the identified inconsisten-
cies we export the corresponding diagrams to PNG-file format automatically and
include them in the reports.

7 Conclusion and Future Work

In this paper we have presented an approach that makes it possible to automate
verification for electric and electronic architectures already during concept phase

4 http://velocity.apache.org, July 2011

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 81

12 Nico Adler, Philipp Graf, and Klaus D. Müller-Glaser

using consistency checks in a model-based way. The methodology is generic and
even incomplete models can be checked. This is a significant step to support the
system architect concerning reduction of development time and ensures EEA
being consistent against requirements. Integrated reporting serves for documen-
tation.

The developedmethodology and its implementation in PREEvision has shown
to work in our first prototype. An analysis and application of the approach in
EAST-ADL is being considered. Also, adapting to an existing standard for ex-
pressing constraints, the Object Constraint Language (OCL) which is included
in the Unified Modeling Language (UML), will be analysed.

Future work will mainly focus on expanding the approach to architecture
evaluation using metrics for calculating quality of the EEA. This ability can be
used for benchmarking different EEA realization alternatives. In further steps,
the approach can be extended to (semi-) automatic optimization and design
space exploration. For generating new EEA realization alternatives a strategy
for design space exploration must be found. For this purpose, the automatic
verification can deliver useful information about the degree of compliance to
requirements for a new generated EEA realization alternative.

Application and evaluation of the approach with a real-world EEA model
is planed for a case study, but will require the cooperation with an Original
Equipment Manufacturer (OEM) to bring in the real-word application as its
intellectual property.

Acknowledgements. This document is based on the SAFE project in the
framework of the ITEA2, EUREKA cluster programme 3674. The work has been
funded by the German Ministry for Education and Research (BMBF) under the
funding ID 01IS11019. The responsibility for the content rests with the authors.

References

[1] Larses, O.: Architecting and Modeling Automotive Embedded Systems. doc-
toral dissertation. Stockholm (2005)

[2] Reichart, G., Haneberg, M.: Key Drivers for a Future System Architecture
in Vehicles. SAE Convergence 2004, Vehicle Electronics to Digital Mobility.
Detroit (2004)

[3] Hillenbrand, M., Heinz, M., Adler, N., Müller-Glaser, K.D., Matheis, J., Re-
ichmann, C.: ISO/DIS 26262 in the Context of Electric and Electronic Archi-
tecture Modeling. Architecting Critical Systems ISARCS (2010)

[4] aquintos GmbH: PREEvision Version 3.1 Manual, www.aquintos.com. Karl-
sruhe, Germany (2010)

[5] Burgdorf, F.: Eine kunden- und lebenszyklusorientierte Produktfamilienab-
sicherung für die Automobilindustrie. doctoral dissertation. Karlsruhe Institute
of Technology, Karlsruhe (2010)

[6] International Organization for Standardization: ISO/DIS 26262 Roadvehicles-
Functional Safety. Part 1 - 10, www.iso.org, Tech. Rep. (2010)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 82

Model-based Consistency Checks of EEA against Requirements 13

[7] Adler, N., Gebauer, D., Reichmann, C., Müller-Glaser, K.D.: Modell-
basierte Erfassung von Optimierungsaktivitäten als Grundlage zur Systemopti-
mierung von Elektrik-/Elektronik-Architekturen. 14. Workshop Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen (MBMV) 2011, OFFIS - Institut für Informatik, Oldenburg (2011)

[8] Kuster, J., Huber, E., Lippmann, R., Schmid, A., Schneider, E., Witschi, U.,
Wüst, R.: Handbuch Projektmanagement. Springer (2008)

[9] Voigt, K.I.: Industrielles Management - Industriebetriebslehre aus prozessori-
entierter Sicht. Springer-Verlag Berlin Heidelberg (2008)

[10] Bürgel, H.D., Zeller, A.: Controlling kritischer Erfolgsfaktoren in Forschung
und Entwicklung. Controlling, Vol. 4 (1997), Nr. 9, S. 218-225

[11] Blanchard, B. S., Fabrycky, W. J.: Systems Engineering and Analysis. Pearson
Prentice Hall, New Jersey (2006)

[12] Boehm, B.: Verifying and Validating Software Requirements and Design Spec-
ifications. IEEE Softw., Los Alamitos, CA, USA (1984)

[13] V-Modell-XT Version 1.3, Part 7: V-Modell Reference Mapping to Standards.
(2009)

[14] Eisenmann, J., Köhn, M., Lanches, P., Müller, A.: Entwurf und Im-
plementierung von Fahrzeugsteuerungsfunktionen auf Basis der TITUS
Client/Serverarchitektur. VDI Berichte, Nr. 1374, VDI-Gesellschaft Fahrzeug-
und Verkehrssicherheit, Systemengineering in der Kfz-Entwicklung, (1997)

[15] The East-EEA Project: Definition of language for automotive embedded elec-
tronic architecture approach. Technical Report, ITEA, Deliverable D3.6, (2004)

[16] The ATESST Consortium: EAST ADL 2.0 specification. Technischer Bericht,
ITEA, (2007), http://www.atesst.org/

[17] AUTOSAR, Automotive Open System Architecture. http://www.autosar.org,
(2010)

[18] Matheis, J.: Abstraktionsebenenübergreifende Darstellung von
Elektrik/Elektronik-Architekturen in Kraftfahrzeugen zur Ableitung von
Sicherheitszielen nach ISO 26262. doctoral dissertation. Karlsruhe Institute of
Technology, Karlsruhe (2010), ISBN: 978-3-8322-8968-3

[19] Belschner, R., Freess, J., Mroko, M.: Gesamtheitlicher Entwicklungsansatz für
Entwurf, Dokumentation und Bewertung von E/E Architekturen. VDI Bericht,
Nr. 1907, S. 511-521, VDI-Verlag, Düsseldorf (2005).

[20] Gebauer, D., Matheis, J., Kühl, M., Müller-Glaser, K.D,: Integrierter,
graphisch notierter Ansatz zur Bewertung von Elektrik/Elektronik- Architek-
turen im Fahrzeug. HDT (Haus der Technik), (2009)

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 83

Modeling and Prototyping of Real-Time Embedded
Software Architectural Designs with Colored Petri Nets

Robert G. Pettit IV1, Hassan Gomaa2, and Julie S. Fant1

1 The Aerospace Corporation,
Chantilly, Virginia, USA

{robert.g.pettit, julie.s.fant}@aero.org
2 George Mason University

Fairfax, Virginia, USA
{hgomaa}@gmu.edu

Abstract. This paper describes an approach for constructing rapid prototypes to
assess the behavioral characteristics of real-time embedded software
architecture designs. Starting with a software architecture design nominally
developed the using COMET concurrent object-oriented design method, an
executable Colored Petri Net (CPN) prototype of the software architecture is
developed. This prototype allows an engineer / analyst to explore behavioral
and performance properties of a software architecture design prior to
implementation. This approach is suitable both for the engineering team
developing the software architecture as well as independent assessors
responsible for oversight of the software architecture design.

Keywords: UML, rapid prototyping. coloured Petri-nets, real-time, embedded,
concurrent, software architecture.

1 Introduction

The increasing complexity of software-intensive real-time embedded systems,
particularly with respect to the behavior of concurrently executing software tasks,
requires a thorough understanding of software architecture behavioral properties and
tradeoffs among design decisions. Analyzing and understanding the concurrent
behavior of real-time embedded software architectures during the early design stages
is imperative to the successful and cost-effective development of the system. To
address this issue, we present an approach for constructing rapid prototypes of
embedded systems to assess the behavioral characteristics of concurrent software
architecture designs. The approach leverages software design nominally developed
using the COMET concurrent object-oriented design method [1] and reusable Colored
Petri Net (CPN) [2] templates and components to rapidly prototype a concurrent
software architecture. The goal of the CPN prototype is to compare and assess
concurrent software architecture behavior to determine if the software architecture is
feasible before spending valuable resources on hardware purchase, development,
testing, etc. This paper expands on previous work [2] by specifically focusing on

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 85

rapid prototyping / independent analysis of concurrent software architectures using
reusable CPN components and templates. The complete set of CPN templates for the
Unified Modeling Language (UML) [23] behavioral patterns used in this approach
were defined in [2]. The resulting approach should provide the ability to quickly
develop prototypes of software architecture.

1.1 Related Research

Prototyping the concurrent behavior of a real-time embedded system at design time is
important to determine whether the system, with its set of concurrent tasks, behaves
as desired both in terms of functionality and performance. If potential problems can
be detected early in the life cycle, steps can be taken to overcome them.

Typical modeling and analysis methods include event sequence and queuing
modeling [1, 3]; simulation modeling [4]; and scheduling analysis [3, 5, 6]. In recent
years, there has been an increased effort to construct executable models of software
designs and thus allow the logic of the design to be simulated and tested before the
design is implemented. Existing modeling tools such as IBM® Rational® Rose®
Technical Developer [7] and Ilogix Rhapsody [8] frequently use statecharts [9] as the
key underlying mechanism for dynamic model execution. An alternative approach is
to model concurrent object behavior using Petri Nets [10-14]. Our efforts [2, 14]
have specifically focused on a Colored Petri Net (CPN) approach in which behavioral
patterns are identified for objects via UML stereotypes in the software architecture
and then modeled with CPN templates matching the behavioral patterns. We have
chosen this approach since CPNs provide excellent modeling, analysis, and
simulation capabilities for concurrent systems. Additionally, our approach supports
independent assessments of the software architecture without requiring the software
architect to adapt to a new paradigm. Furthermore, while our method for constructing
architecture and design models is based on the COMET [1] approach, any design
method that provides guidance on identification and classification of object roles and
the structuring of concurrent tasks would be sufficient for our CPN modeling and
analysis approach. With respect to COMET, we specifically use the stereotyped
behavioral patterns for class roles, including input/output classes; control classes;
entity classes; and algorithmic classes. We also use COMET’s strategies for
structuring concurrent tasks using UML active objects.

2 Rapid Prototyping Approach

The purpose of this paper is to describe an approach leveraging executable CPNs for
the rapid prototyping of the behavior of communicating, concurrent tasks that make
up the software architecture design of a real-time embedded. The purpose of the CPN
prototypes proposed in this approach is to simulate the concurrently executing
software tasks and to enable analysis and understanding of the concurrent behavior
during the early design stages.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 86

The proposed rapid prototyping approach has four major steps that are: 1) Develop
the platform independent software architecture 2) Create the platform specific
software architecture 3) Construct the CPN prototype 4) Execute and analyze the
CPN prototype. Each step is described below in more detail.

2.1 Develop the Platform Independent Software Architecture Model

The first step in our approach is to develop the platform independent software
architecture model (PIM). The purpose of the PIM is to capture the concurrent object
behavior in the form of concurrent behavioral design patterns (BDP), which in
subsequent steps will be mapped to CPN templates or components [2]. As discussed
in previous work, each BDP represents the behavior of concurrent objects together
with associated message communication constructs, and is depicted on a UML
concurrent interaction diagram. Each object is assigned a behavioral role (such as
I/O, entity, or control) which is given by the COMET concurrent object structuring
criteria [1] and depicted by a UML stereotype. An example of a behavioral design
pattern for an asynchronous device input concurrent object is given in Figure 1. Note
that these behavioral patterns are commonly seen across the UML community as
«bondary», «entity», and «control». With out approach using the COMET method,
however, additional details are provided for such things as specifying input and
output, identifying concurrency properties, and defining state-dependent behaviors.

Fig. 1. Asynchronous input concurrent object behavioral design pattern

2.2 Create the Platform Specific Software Architecture Model

The second step in our rapid prototyping approach is to develop the platform specific
software architecture model (PSM). The purpose of the PSM is to capture the
performance characteristics of how the software architecture will perform if
implemented on a specific platform. To enable fast construction of PSMs, the UML
PIM model should be annotated with platform specific characteristics. This is quicker
than creating a separate or external PSM model.

Platform specific characteristics and values can then be directly added to the UML
software architecture model using a UML Profile such as the UML Profile for
Modeling and Analysis of Real-time and Embedded Systems (MARTE) [21]. The
MARTE Profile provides the ability to capture non-functional performance
characteristics directly in UML models. For example, tagging a message in an
interaction diagram with the <<paStep>> stereotype indicates that it is a step in

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 87

sequence that uses resources. The specific platform specific values, such as execution
time, can be captured in the stereotype’s tags like hostDemand.

Performance values can be determined from published information about the
platform, as well as through measurement. Note that multiple PSMs can be applied to
a given architecture, supporting prototypes for tradeoff analyses. These models may
also be constructed at varying levels of fidelity depending on available information.
As the development efforts mature, so then can the prototypes of the architecture.
During this process, collaboration with domain experts and systems engineers is
highly recommended in order to capture the most realistic and complete set of
platform specifications. Section 3 of this paper illustrates both a PIM and PSM for a
robot controller case study.

2.3 Construct the CPN Prototype

After the PSM is developed, an executable CPN prototype from the PSM can be
systematically constructed. For each BDP in the PSM (identified by a UML
stereotype), a self-contained CPN template is required, which by means of its places,
transitions, and tokens, models a given concurrent behavioral pattern. A set of
existing reusable CPN templates can be found in [2]. These templates include: I/O
(boundary); entity; control; and algorithm. As an example, Figure 2 is the CPN
template for an asynchronous device input concurrent object shown in Figure 1.

Fig. 2. Asynchronous input concurrent object CPN template

To instantiate the templates for each specific object, an analyst using our approach

must provide a certain set of architectural parameters captured by following tagged
values:

-Execution Type: passive, asynchronous, or periodic
-IO: input, output, or I/O
-Communication Type: synchronous or asynchronous
-Activation Time: periodic activation rate
-Processing Time: estimated execution time for one cycle
-Operation Type: read or write
-Statechart: for each «state dependent» object.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 88

To illustrate pairing these architectural parameters with BDPs, refer to Figures 1
and 2. Figure 1 is an active object, “asyncInputInterface” that implements the I/O
behavioral pattern as indicated by its stereotype. Furthermore, tagged types are used
to capture specific architectural properties of the object, namely that it executes
asynchronously; handles only input; and has a yet-to-be specified processing time of
<process time>. The resulting CPN representation in Figure 2 reflects these
parameters with the selection of an asynchronous, input-only CPN template and by
setting the time inscription on the Process Input transition to @+<process time>.

This <process time> parameter is an estimate of the time required by the object to
complete one activation cycle. This information can be obtained directly from UML
MARTE annotations in the PSM. For example, process time can be found in the
<<paStep>> stereotype in the hostDemand tag.

Since CPN templates provide only the basic behavioral pattern and component
connections, they must be refined to provide application specific behavior.

To rapidly support construction of the prototype, we recommend using a reuse
repository of CPN components. A CPN component is an elaborated CPN template
for a commonly used object. For example, if a company commonly uses a specific
sensor, a CPN component can be created for the software controller for the particular
sensor. This CPN component can then be reused quickly in multiple different
prototypes. Reusing CPN components will ultimately reduce the time it takes to
construct the CPN prototypes. This is critical in rapid prototyping environments.

After all the BDPs in the PSM have an associated CPN templates or CPN
components, the CPN templates and components are then interconnected via
connector templates to create a prototype of the software architecture. The CPN
prototype is then executed using a CPN tool, thereby allowing the designer to analyze
both the concurrent behavior of the CPN prototype, with a given external workload
applied to it.

3. Case Study: Robot Control

We illustrate our rapid prototyping approach using a robot controller case study based
on the Lego® Robotics Invention System™ (RIS), commonly known as
Mindstorms™ [16]. The RIS platform was chosen based on the embedded nature of
the platform with easily reconfigurable sensors and actuators [18].

The robot controller case study is an autonomous rover employing an infrared light
sensor and two motors (actuators). The goal of the rover is to search an area for
colored discs, while staying within the course boundary and avoiding obstacles. In
this case study, the light sensor is the sole input sensor, responsible for detecting
boundary markings, obstacle markings, and discs according to different color
schemes. This case study was used as a term project for a graduate course on real-
time embedded software engineering at George Mason University.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 89

3.1 Robot Controller PIM

The architecture model for the autonomous rover is illustrated in Figure 3. In this
particular scenario, we are interested in navigating the course; responding to changes
from the light sensor; and taking the appropriate action based on the detection event.

Fig. 3. Robot controller PIM interaction diagram

In this design, there are three active, concurrently executing objects (detect, rover,
and nav) and one passive object (map). External I/O objects (depicted as actors in
Figure 3) are also shown for receiving light sensor input and for modeling output to
the two motors. Following object structuring guidelines from the COMET method,
each of the objects in the system is stereotyped according to the hierarchy previously
shown in Figure 1. These stereotypes indicate the behavioral design pattern (BDP)
implemented by each object. Further details about the behavioral properties are
augmented with the architectural parameters as follows:

The detect, rover, and nav objects all operate asynchronously and have an
Execution Type tagged value of “async”. As the input interface for the light sensor,
the detect object has an IO tagged value of “input”. All messages between the active
objects have a Communication Type tagged value of “synchronous”, indicating
synchronous, buffered communication. This particular design decision was made to
decrease the risk of missing a boundary or obstacle detection event. Other design
choices for this system would be to employ FIFO or priority queuing. The affects of
these design decisions could also be analyzed using the techniques presented in this
paper, but are not shown due to space limitations. Finally, the update() operation on
the map object has an Operation Type tagged value of “writer”.

Note that values for the Processing Time parameters are left unspecified at this
point as we will set these parameters based on the PSM in the next section.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 90

3.2 Robot Controller PSM

The next step in our approach is to create a platform specific model for the target
platform. This is shown in Figure 4 using historical data and hardware specifications
for the RIS system [18-20].

In this model, our rover is identified as the single node in the system and is based
on the Robot Command eXplorer (RCX) platform. The RCX is the central
component to any RIS system and houses the Hitachi H8 microcontroller with a 16
MHz CPU. Paired with the leJOS Java environment the execution speed of this CPU
is documented to be 1750 operations per second (OPS).

Fig. 4. Robot controller PSM interaction diagram

Additionally, there are 16 KB of ROM and 28 KB of RAM available on the RCX

of which, 17.5 KB of RAM are used by the leJOS operating system. The system
clock resolution on the RCX, at 1ms, is longer than the time required for observed
context switching between concurrent threads, thus the leJOS.overhead is set to zero.
In our system, there are three physical devices attached: one light sensor at port S2
and two motors at ports A and C. Independent control of these motors is used to steer
the rover; turning is achieved by rotating the left (Motor A) and right (Motor C)
motors in opposite directions. Using historical data, the detection latency of the light
sensor was set at 10.3 ms, while the output latency of the motors was set at 1 ms.

It would also be useful to combine the information from the PSM with historical
data on software size. This type of information is commonly maintained by software

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 91

development organizations and, in our case, we will rely on average software sizes
across the set of student projects. From this data, we discover the following:

«IO» objects average 19 instructions (in Java bytecode) per execution cycle and
have an average size of 1,182 bytes.

«coordinator» objects average 27 instructions and 2,722 bytes.
«algorithm» objects average 89 instructions and 1,015 bytes per algorithm.
«entity» objects average 1,400 bytes.

Now, using the combined historical sizing data and information from the rover, we
can augment the PSM with this platform specific information. Prior to the CPU being
available for performance measurement, an initial estimate of the execution time is
computed by multiplying the estimated average number of instructions by the
computational speed of the CPU (1750 OPS in our PSM example). These estimates
are captured in the hostDemand tag.

3.3 CPN Prototype

Using the above PSM design information, we can now begin to construct a Colored
Petri Net (CPN) prototype of the software architecture [2]. Using our approach, we
start with a context level model, capturing the system as a black box (transition) and
external sensors and actuators represented as places. This model, allowing us to focus
on the highest level of abstraction with observed inputs and outputs is shown in
Figure 5.

Fig. 5. Robot controller context level CPN

Moving forward, our second step is to decompose the RoverBot system-level
transition into a layer of abstraction representing the concurrent object architecture.
This architecture level model is shown in Figure 6. At this level, each of the active
objects from is represented as its own transition (box) in the CPN prototype. Each of
these will be further decomposed to implement the specific CPN template matching
the objects behavioral design pattern or a CPN component if one exists for the object.
We have also included the single «entity» object containing map data and it is
represented by a place for the map data to be stored along with a transition and two
places representing the behavior for calling the update() operation. Finally, as all
message communication between active objects in the RoverBot system is
synchronous, there is a CPN place modeling a buffer for the synchronous

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 92

communication between detect and rover and between rover and nav. Notice that our
external input and output places have also been carried down to this level as well.

Fig. 6. Robot controller CPN architecture

Once an architecture-level model is established, each of the transitions
representing an active object is then decomposed by applying the CPN template
associated with the behavioral design pattern of that object. For the asynchronous,
input-only «IO» object, “detect”, this CPN object-level model is shown in Figure 7.
Here, the CPN template has been inserted and instantiated specifically for the detect
object by setting the object ID to “1” as seen by the number appended to place and
transition names. The specific control token, C1 has also been added as has the
function for processing detections, “detection (sensorReading)”. To maintain
consistency, the main transition of this template, Pin1, has also been connected to the
sensor input place and to the roverBuf message buffer place.

Now, using the combined historical sizing data and information from the rover
PSM, we can augment the architectural parameters within the CPN prototype to
obtain further insights as to the behavioral and performance aspects that should be
expected when matching the original platform independent design model with the
actual platform characteristics of the target implementation.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 93

Fig. 7. CPN template for the “detect” object

To begin, we add a place, RAM, to our CPN prototype. This will model the
available memory resources measured in bytes. The initial token value for the RAM
place is calculated by subtracting the leJOS memory overhead along with the average
RAM usage for the objects in our architecture from the total available RAM specified
in the PSM.

Table 1. Calculating Memory Availability

Source Memory (Bytes)
ram.sizeKB 28,672
lejos.kbMemOverhead 17,920
«IO» detect 1,182
«coordinator» rover 2,722
«algorithm» nav 2,030
«entity» map 1,400

Available RAM: 3,418

Once the rover system begins execution, the primary consumption of memory

occurs when points are added to the map object. For each point added to the map, 16
bytes are used for x and y coordinates; detection event; and timestamp. To prototype
this memory consumption, the RAM place from the CPN context level model is
attached to the Update transition of the map object’s CPN representation on the
architecture level model. This is shown in Figure 8. Using this approach, 16 bytes
are subtracted from the available RAM each time the update operation is called. If

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 94

the system reaches a point where less than 16 bytes are available, then the CPN model
will be suspended.

Next, the <process time> parameter will be updated for each active object
template. This information can be obtained from hostDemand tag in the PSM’s
<<psStep>> stereotype. Additionally, each «IO» object template will add the
detection or output latency to the <process time>. For example, the detect object,
responsible for interfacing with the light sensor, would have a basic <process time> of
10.8ms. An additional 10.3ms are then added to account for the value of
lightSensor.detectionLatency from the PSM, resulting in a total time delay 21ms.
Once time values have been allocated to all objects, we can move forward with
analyzing the prototype of the architecture as described in the next section.
These initial estimates can eventually be replaced with higher fidelity data as it
becomes available, allowing an engineer to refine the behavioral analysis as desired.

Fig. 8. Consumption of RAM by “map” object

3.4 Analyzing the Prototype

Recall from the sequence diagram of that the primary purpose of the autonomous
rover system is to navigate an area, mapping objects discovered by the light sensor
and taking evasive action when the light sensor detects obstacles or course
boundaries. To begin analyzing this behavior with the corresponding CPN prototype,
we use a test driver to provide simulated input events at random intervals. One of the
first things we want to discover is how quickly the architecture responds to the
detection of an obstacle or boundary. This can be analyzed from the context-level
model by taking the difference in time stamps from the time an obstacle or boundary
event arrives on the light sensor place to the time that a command is issued to the
motors. For example, if the first obstacle was detected at time 6459 (all time is in
milliseconds in this model). From the timestamps on the Motor places, we can see
that from the time an input arrives to the time the system responded, there was an

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 95

elapsed time of 31ms. This information could then be used, along with the speed of
the rover, to determine if the reaction time is sufficient using this software
architecture and this particular platform.

Other forms of analysis could include observing the memory usage over time or
investigating the interaction among the concurrent objects as the simulated input rate
varies. Analysis of physical architectural variations such as different light sensors or
motors could also be conducted by applying different PSMs. Analysis of software
architecture variations such as the use of different message communication
mechanisms (e.g. FIFO or priority queuing) between the active objects could also be
explored. These analyses are not shown due to space limitations in this paper.

3.5 Comparing Prototype with Observations

To validate our prototype, the rover design presented above was implemented in
leJOS and the code was instrumented to capture timestamps. Execution of the rover
when presented with boundaries or obstacles initially identified actual response times
of 25-27ms from the point that the light sensor was presented with the boundary or
obstacle to the point that the first motor command was output in response to the
detection. This is slightly under the 31ms estimated by our analysis in the previous
section. Interestingly, though, as we conducted tests with the rover over time, we
observed response times increasing as battery power decreased. The above
measurements of 25-27ms were observed with fully charged (9.0V) batteries.
However, response times of up to 33ms were observed as the battery power was
depleted to 8.2V. These results are summarized in Table 2 below. Replacing the
depleted batteries with a fully charged set returned the response times to the initially
observed 25-27ms. Thus, we believe that future research should include a power
source with the embedded platform specific model.

Table 2. Response Time Results

Response Time in Milliseconds Team
Run 1 Run 2 Run 3 Run 4

1 27 27 29 33
2 25 26 27 27
3 26 25 26 28
4 26 27 29 32
5 25 25 26 26

4 Conclusions and Future Research

In this paper, we have presented an approach to combine information from platform-
independent and platform-specific models to construct prototypes of software
architectures for embedded systems. This approach allows an engineer / analyst to
examine behavioral and performance properties of a software architecture design

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 96

paired with a candidate implementation architecture. The underlying CPN prototype
is particularly useful in modeling concurrent object architectures in event-driven, real-
time embedded systems. Applying the behavioral design patterns in the UML-based
design along with corresponding CPN templates and components, the results from the
analyses can be directly mapped back to the original design artifacts. Furthermore, by
employing architectural parameters such as processing time, the CPN analysis model
can be rapidly modified to account for different candidate architectures.

There are other tools available for constructing executable models of software
designs such as the Rhapsody tool by IBM® [24]. While these tools are certainly
useful, we feel there are certain advantages to our CPN approach. Modeling and
prototyping of the architecture design is possible without depending on a particular
UML modeling tool or design method – we only require that the basic behavioral
patterns be identified. In fact, while we illustrate this approach with the UML, there
is really no need to enforce the use of UML as long as the patterns can be identified
for individual software abstractions. One such study applying this approach to a non-
UML design is currently underway and will be published in the future. Furthermore,
our CPN approach is more tolerant to varying levels of fidelity than other executable
modeling tools. Using Rhapsody as an example again, each object must have detailed
specifications (typically in the form of a state machine) in order for the model to be
executed. With the CPN approach, even the most basic architecture designs can be
simulated to show concurrent interactions, with increasing levels of fidelity as more
specifications are added.

Future research in this area must continue to examine properties that should be
captured and the most effective ways in which to capture them. In comparing our
observed results to our analyses, the inclusion of a power model would obviously be
desired in an embedded system. Additionally, future work should consider the ability
to model distributed software designs configured to execute on multiple distributed
embedded nodes and the communication between them. Finally, as mentioned
above, work is also underway to provide a more generic approach to the executable
CPN approach that allows for flexibility in the origin of the software design, whether
that is captured in UML or other modeling languages.

References

1. H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML, 1 ed: Addison-Wesley, 2000.

2. R. Pettit and H. Gomaa, "Modeling behavioral design patterns of concurrent
objects," presented at ICSE 2006, Shanghai, China, 2006.

3. L. Sha and J. B. Goodenough, "Real-Time Scheduling Theory and Ada,"
IEEE Computer, vol. 23, pp. 53-62, 1990.

4. C. W. Smith, Performance Engineering of Software Systems: Addison
Wesley, 1990.

5. H. Gomaa and D. Menascé, "Performance Engineering of Component-Based
Distributed Software Systems," in Performance Engineering 2001, LNCS:
Springer, 2001, pp. 40-55.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 97

6. SEI, A Practioner's Handbook for Real-Time Analysis - Guide to Rate
Monotonic Analysis for Real-Time Systems. Boston: Kluwer, 1993.

7. IBM, "IBM Technical Developer," 2006.
8. Ilogix, "Ilogix Rhapsody," Ilogix, 2006.
9. D. Harel and E. Gery, "Executable Object Modeling with Statecharts," 1996.
10. M. Baldassari, G. Bruno, and A. Castella, "PROTOB: an Object-oriented

CASE Tool for Modelling and Prototyping Distributed Systems," Software-
Practice & Experience, vol. 21, pp. 823-44, 1991.

11. O. Biberstein, D. Buchs, and N. Guelfi, "Object-Oriented Nets with
Algebraic Specifications: The CO-OPN/2 Formalism," in COPN, Advances
in Petri Nets, LNCS: Springer-Verlag, 2001, pp. 73-130.

12. L. Baresi and M. Pezze, "On Formalizing UML with High-Level Petri Nets,"
in COPN, Advances in Petri Nets, LNCS. Berlin: Springer-Verlag, 2001, pp.
276-304.

13. K. M. Hansen, "Towards a Coloured Petri Net Profile for the Unified
Modeling Language - Issues, Definition, and Implementation," Centre for
Object Technology, Aarhus, Denmark, Technical Report COT/2-52-V0.1,
2001.

14. R. Pettit and H. Gomaa, "Modeling Behavioral Patterns of Concurrent
Software Architectures Using Petri Nets," presented at 4th WICSA, Oslo,
Norway, 2004.

15. B. Huber, R. Obermaisser, P. Peti, and C. E. Salloum, "Resource
Specification of the DECOS Integrated Architecture," TU Wien, Vienna,
Austria, Technical Report October 12, 2005 2005.

16. Lego, "Lego Mindstorms - http://mindstorms.lego.com."
17. R. Pettit, "SWE 626: Software Project Lab for Real-Time and Embedded

Systems," George Mason University, 2006.
18. B. Bagnall, Core LEGO MINDSTORMS Programming: Unleash the Power

of the Java Platform: Prentice Hall, 2002.
19. K. Proudfoot, "RCX Internals - http://graphics.stanford.edu/~kekoa/rcx/,"

1999.
20. N. S. Andersen and M. N. Kjærgaard, "Advanced programming of the

LEGO RCX for education," Technical University of Denmark, 2001.
21. UML Profile for Modeling and Analysis of Real-time and Embedded

Systems (MARTE) Beta 2, OMG In, June 2008, http://www.omg.org/cgi-
bin/doc?ptc/2008-06-08

22. UML Profile for Schedulability, Performance and Time 1.1, February 2005,
OMG Inc.,
http://www.omg.org/technology/documents/formal/schedulability.htm

23. Unified Modeling Language (UML), Version 2.2, February 2009, OMG,
http://www.uml.org.

24. IBM® Rational® Rhapsody, http://www-01.ibm.com/software/awdtools/
rhapsody/

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 98

