OWL2 based Data Cleansing Using Conditional
Exclusion Dependencies

Olivier Curé!, Chan Le Duc?, Myriam Lamolle?

! Université Paris-Est, LIGM, Marne-la-Vallée, France
ocure@univ-mlv.fr
? LIASD Université Paris 8 - IUT de Montreuil
chan.leduc,myriam.lamolle@iut.univ-paris8.fr

1 Introduction

Ontology-based Data Access (OBDA) [6] aims to provide access to heterogeneous
data sources through a mediating ontology. Most research conducted in this area
tackles ontology expressivity, computational efficiency of reasoning services and
inferences associated to query answering. In this paper, we argue that data qual-
ity and data cleansing are domains where OBDA could contribute in an efficient
manner. That is we aim to prevent the execution of update operations which are
corrupting database instances and to propose their (semi-)automatic cleansing.
This can be performed by handling integrity constraints (ICs), especially those
that can not be easily represented and processed in a strict relational context.

In [3], we have already proposed a first solution based on extensions of
standard dependencies, i.e. Conditional Functional and INclusion Dependencies
(henceforth denoted CFDs and CINDs) in the context of OWL2. Based on ex-
periments conducted on real world databases [2], we found out that a form of
Conditional Exclusion Dependency (CED) may be relevant in capturing more
real-life data inconsistencies. To the best of our knowledge, this work is a first
approach to address data quality and cleansing problems using CEDs in either
a strict relational or OBDA context. Intuitively, CEDs correspond to standard
exclusion dependencies extended with a pattern tableau (inspired from tableau
queries presented in [1]) containing variables and constant values which are part
of the active domain of the database. The discovery of CEDs is a hard prob-
lem since negative information are generally not stored in relational databases.
In this work, we highlight that novel OWL2 constructs, e.g. negative property
assertions, can assist our system in this discovery process. Moreover, the use of
OWL2 reasoning services over ontologies containing concept and property ax-
ioms enables to represent and process CEDs in a compact and efficient way using
the formalism of SPARQL queries.

In the rest of this paper, we consider that elements of a domain ontology are
mapped to relations of a relational database. Due to space limitation, we do not
present these mapping assertions on our running example.

2 Conditional Exclusion Dependencies

An exclusion dependency (ED) [1] corresponds to forbidding the appearance of a
given tuple in a relation S when a tuple appears in a relation R and is represented
as the following axiom: Vz,y, z, 2, 2’ R(x,y, z) — =S(2/, x,).

A conditional extension of an ED forbids the appearance of tuples in S when
tuples satisfying a set of patterns appear in R. Formally, a CED ¢, defined over a
pair of relations R and S, is a pair (R(X; X,) C =S(Y;Y,),T,) where X, X, and
Y.Y, are attribute sets of respectively R and S. R(X) C =S(Y) is a standard
exclusion dependency and T, is a tableau pattern of ¢ with attribute sets X,
and Y, such that for each pattern ¢, and each attribute B in X, and Y, ¢,[B]
is either a constant in the domain of B or a wild card, denoted ’_’.

An instance (I1, 1) of (R, S) satisfies a CED ¢, denoted (I3, I5) | ¢, iff for
each tuple ¢, in T}, and for each ¢ in Iy, if ¢1[X,] = ¢,[X,] then there does not
exist a tuple ¢y in S such that ¢ [X] = t2[Y] and t2[Y,] = t,[Y}].

Example 1: We consider an extract of a medical database with the following

relations: drug(idDrug, nameDrug, form), contraDrug(idDrug, idContra)
and atcDrug(idDrug, atcCode) which respectively contain information con-
cerning drug products (with an identifier, name and the form of the product,
e.g. allopathy, homeopathy), contraindications of drug products (with a drug
identifier and a contraindication identifier) and molecules of drugs identified by
ATC? codes. In this context, the following CEDs hold:
¢1 ¢ (drug(idDrug; form) C —contraDrug(idDrug; idContra), Tp1) with Tp; as
{("s" homeopathy'||" " 1), ("' phytotherapy'||" ")}
¢2; (ateDrug(idDrug; atcCode) C —contraDrug(idDrug; idContra), Tys) where
Tye is: {("; R5DAY'||"";’ Anti-coughing’) }
These CEDs respectively state that homeopathy and phytotherapy drugs do
not have contraindications and that the molecule identified with 'TR5DA9’ must
not be contraindicated to ’anti-coughing’. Note that these forms of CEDs, i.e.
constants in the left hand side only for ¢; and constants on both sides in ¢o,
correspond to the most widely encountered CEDs in studied use cases.

3 Discovery approaches

OWL2 ontologies correspond to the SROZQ description logic [4] which allows
for new role constructors such as composition, disjointness and negation. This
enables to represent RBox axioms of the form R C —S where R and S are both
DL roles. Note that this axiom corresponds to an exclusion dependency where
the relations are necessarily binary and supports the discovery of EDs, i.e. CEDs
with an empty pattern tableau. Such axioms are frequently encountered in role
hierarchies. For instance, consider a property hasContralndication with two
subroles, hasDiseaseContraIndication and hasDrugContraIndication. Then
it would be useful to state that these two subroles are disjoint. Note that class

3 Anatomical Therapeutic Chemical: http://www.whocc.no/atcddd/

disjointness, already available in the first version of OWL, can also be used to
identify CEDs. In both cases, OBDA ’s mapping assertions need to be considered
in order to maintain the data quality of underlying relational databases.

Another form of CED related axioms found in OWL2 ontologies is supported
by General Concept Inclusion (GCI) of the form: 3R.C C —35.D where concept
C corresponds to a nominal and D is either a nominal or the top concept (T). In
the context of our running example, consider that correspondences between the
atcDrug and contraDrug are defined with resp. hasATCCode and hasContraDrug
and the hasForm property is mapped to the form attribute of the drug relation,
then the following axioms correspond to resp. ¢; and ¢s:

dform.{homeo} C =IcontraDrug.T
JhasATCCode {R5DA9} C —~IcontraDrug.{ Anti-coughing}.

Moreover, OWL2 ABoxes enable the definition of negative property assertions
which together with property subsumption axioms enable to define CEDs. In
an OBDA context, all the extensional data are stored in a (relational) database
and serve to generate an ABox satisfying an ontology, e.g. by using a systems
like QUONTO [6] or SOR [5]. Hence, end-users generally do not store asser-
tions directly in the ABox. Nevertheless, such an approach could be useful to
discover the pattern tableaux of our CEDs. These assertions could be defined
as a complementary ABox and would mainly serve to store CEDs and enable
some inferences. That is they would not be stored in the relational database
generating the ABox.

4 Representation and Processing of CEDs

We propose to represent the CEDs discovered using the formalism of SPARQL
queries. This fits into the approach of [7] where the author argued that ICs
are epistemic in nature and concern “what the knowledge base knows”. These
queries aim to detect violations of CEDs and are generated by considering a
CED has a graph over elements of the domain ontology. In this graph, the
negated property is asserted to be true. Thus a translation of this graph into
an SPARQL query enables to detect objects being violated. These objects are
identified by the query’s distinguished variables which are selected using axioms
of the domain ontology, e.g. domain and range of properties. They are working
over the knowledge base underlying the application domain and which is mapped
to the relational domain. Hence, using an approach similar to the QUONTO
system, it is possible to translate these queries into SQL queries executed over
relational databases. The SPARQL queries enabling to detect violations of ¢
and ¢o are respectively:
SELECT 7x WHERE { ?x rdf:type :ATC. 7y rdf:type :Drug.
?y :hasATCCode ?x. 7y :form ’homeopathy’.}
SELECT ?x WHERE { ?x rdf:type :Drug. ?y rdf:type :ATC.

?x :hasATCCode 7y. 7y :nameAtc ’R5DA9’.

?z rdf:type :Contra. ?x :hasContraDrug 7z.

?z :nameContra ’Anti-coughing’.}

Moreover, in order to represent them in a compact way, we exploit and an-
alyze the hierarchies of concepts present as constants in object properties used
in CEDs. We provide an example of the use of such inferences with the ATC
classification which divides drug molecules into different groups according to
the organ or system on which they act and/or their therapeutic and chemical
characteristics. The classification is organized in 5 levels with each level encoded
using a letter or digits. For instance, the RECA code subsumes 11 molecules,
R5CA1 to R5CA11, which act as expectorants.

Example 2: Consider CED ¢ with a pattern tableau 7}, containing all
11 descendants of the R5CA code as X, and with the ’expectorant’ constant
in Y,. Then it will be much more compact to store one tuple with the '/R6CA’
code than 11 tuples containing its subsumed codes. The pattern would look like:
(" R5CA’||"Expectorant’). Note that in the medical domain, such gener-
alizations frequently occur since molecules of a given family generally possess
common properties.

The main idea of this approach consists of generating a SPARQL query for
each sub concept of the concept stored in a CED. The next step corresponds to
the detection of a CED violation. Such detection is activated whenever a tuple
of the data sources is updated, i.e. after the execution of a CRUD operation. In
the context of a relational database, this can be handled by the definitions of
SQL triggers. In fact, we automatically generate an AFTER/ROW LEVEL SQL
trigger for each relation mapped to a property involved in a CED. These triggers
call some generic programmed methods (in Java) defined in the framework of
our data quality system. The purpose of these methods is to execute SPARQL
queries and hence to discover and identify the data source tuples causing some
inconsistencies. Note that we must associate a trigger to both the left and right
hand side relations of a CED to ensure the consistency of data sources.

Finally, we consider that the full potential of a data quality and cleansing
implementation based on conditional dependencies lies in the study of possible
interactions between discovered sets of CFDs, CINDs and CEDs.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. O. Curé. Improving the data quality of drug databases using conditional dependen-
cies and ontologies. ACM Journal of Data and Information Quality (JDIQ).

3. O. Curé. Improving the data quality of relational databases using obda and owl2ql.
In OWLED, 2009.

4. 1. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROZQ. In KR,
pages 57—67, 2006.

5. J. Lu, L. Ma, L. Z. 0007, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu. Sor: A
practical system for ontology storage, reasoning and search. In VLDB, pages 1402—
1405, 2007.

6. A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. Data Semantics, 10:133-173, 2008.

7. R. Reiter. On integrity constraints. In Proc. TARK, 1988.

