Emergency Services: Process, Rules and Events

Mauricio Salatino, Esteban Aliverti, and Demian Calcaprina

Plugtree
salaboy@gmail.com

Abstract. The Emergency Service Application was built as a blue print
for architect applications using the Drools and jBPM5 platform. The
main goal of this application is to show how we can model and implement
a complete and complex business scenario using declarative approaches
like: Business Rules, Business Process and Complex Event Processing.
From the technical point of view, this application shows how components
like a Rule Engine and Business Process Engine can be integrated with
technologies that are widely used in most system architectures. Compo-
nents - like Distributed Caches, Transactional Frameworks, Messaging
Systems, Web Services Stacks and Web Frameworks - can be combined
to work around the declarative power of rules, processes and events.

1 Application Scope, Domain and Requirements

The application was created to represent complex scenarios that are being exe-
cuted by an Emergency Services company that deals with concurrent emergen-
cies within a city. The company needs to solve different situations where different
entities need to be coordinated to deal with an emergency situation.

The Emergency Services Application shows how we can provide a tool that
helps the company to improve their services by giving them full visibility of their
actions, traceability of their resources, suggestions and advice based on the con-
text without sacrificing any degree of flexibility that they need to solve real life
situations. One of the most important requirements of the application is related
to the the fact that most of the emergencies can be classified under different
categories based on their characteristics. We can model guidelines to solve each
of these categories but in real life, each emergency will be treated differently, de-
pending on the context, the state of the company and their resources. For each
particular situation, different actions will be evaluated, suggested and executed.

Two generic situations will be described by this paper: Heart Attack Emer-
gencies and Fire Related Emergencies. But the application is in no way limited
to these two scenarios.

To design the application we gather, understand and formalize the knowledge
that the company experts use to drive their activities. The formalization of
this knowledge will be introduced in the following sections where the Business
Processes, Business Rules and Events modeled for this application are described.



2 Declarative Knowledge Representation

The application uses the concept of procedure to define the set of business pro-
cesses, business rules and domain specific services that will be used to deal with
an emergency. We have defined a set of default procedures that describe the
activities that can be executed during specific emergencies. The “Default Heart
Attack Procedure” can be used to drive a standard set of activities that needs
to be executed each time a person suffers a heart attack. The “Default Fire
Emergency Procedure” describes the same but for emergencies that include fire
situations where we need to coordinate the firefighters department in order to
mitigate the dangerous situation as soon as possible.

Both procedures set up the basic activities that the company needs to execute
in each specific situation, but in no way do they limit the company to add, remove
or execute more activities in parallel.

Before executing these procedures, the company needs to identify the context
of the emergency by executing a set of activities that were designed to pick up the
initial information and find out what is happening. These activities are contained
in a Generic Emergency Procedure that is executed each time the phone rings
in the central offices.

3 Generic Emergency Procedure

This procedure will initiate the information about an emergency and is based
on the initial information that is being gathered by the phone operators of the
company. Using this information, a suggestion mechanism based on Business
Rules will be in charge of suggesting the most appropriate, specific procedures
out of all the available procedures.

This generic procedure is driven by the following business process:

| <<For Each Selected |
\ Procedure>> \

Ask For Suggest Acncnt/ Moawy e re—
O_- Emergency Emergency Suggested ‘ Specmc Procedure
Information Procedures Procedures

|

Glooal Report .

,,,,,,,,,,,,,,,

<<All Procedures Ended>>
Operator Control
Expert

Fig. 1. Heart Attack Emergency Procedure

The Suggest Emergency Procedures activity inside this business process uses
a set of rules to analyze the context of the emergency gathered to suggest a set
of procedures that fits with that specific situation. These rules will evaluate the
status of the company in order to suggest viable procedures.



Once the Suggestion rules are executed, the control expert in charge reviews
the suggestions and modifies or approves the selected procedures. The business
process automatically will start each selected procedure in parallel and it will
wait until it receives a notification that all the specific procedures have ended.

The main purpose of this generic procedure is to speed up the activities that
need to be executed for every emergency that the central offices handle. The
suggestion rules help the experts by giving them a clear set of procedures that
can be executed based on the current status of the company and also on the
contextual and semantic information gathered for each specific situation. Once
the procedures are started, a separate group of resources will be used to monitor
all the activities executed for each emergency.

4 Default Heart Attack Procedure

As soon as we identify a heart attack situation, the system will automatically
suggest to the expert which procedures best fit based on contextual information.
If the Default Heart Attack Procedure is selected, the activities described by the
following business process will be executed:

Information Scoped based
on the vehicle availability

O-{ o= H [H}-O
T I &

Local to the Heart
Attack Procedure

<<PatientPickUp>> <<PatientAtHospital>>

Garage Doctor

Fig. 2. Fire Emergency Procedure

This sequence of activities and events defines exactly how the company must
deal with a Heart Attack situation. Briefly, an ambulance will be selected accord-
ing to the company status and the patient information and it will be dispatched
to the emergency location. Once that ambulance arrives, the Doctor will send
an updated report to the central about the situation. This information will be
correlated with the emergency location, the location of different hospitals based
on distance, and the availability of the health-care services in each hospital to
select the most appropriate facility. Once the patient is at the hospital, a report
about this procedure will be created.

This business process is enriched by different sets of rules that are being
executed in different activities to take automated actions to speed up the service
and the human involvement times. For this particular use case, a set of rules
is being defined to automatically select the best hospital based on the available



information. Taking advantage of the Complex Event Process features provided
by the platform, another group of rules are defined to take care of more dynamic
and reactive aspects that need to be covered.

The following rule is one of the set of rules created for the hospital selection
mechanism:

Listing 1.1. Rule 2

rule "Select Closest Hospital"
ruleflow-group "hospital-selection"
when
$pI: WorkflowProcessInstance( $pid : id )
$emergency: Emergency( $type: type.name )
$selectedHospital: Hospital() from accumulate (
$hospital: Hospital() from externalEntities.getAllHospitals(),
hospitalDistanceCalculator (
new HospitalDistanceCalculationData (
$hospital,, $emergency )
)

)
then
String callld = ( (Call) $pI.getVariable("call") ).getId();
//Send Hospital Selected Message
MessageFactory.sendMessage (
new HospitalSelectedMessage( callld, $selectedHospital ) );
end

This basic rule calculates the closest hospital to the emergency location it-
erating the location of all the available hospitals. The available hospitals are
being dynamically calculated based on periodical updates reports received in
the central.

The following business rule uses the temporal operators to analyze and react
based on the patients vital signs. Once the patient is inside the ambulance, all
his/her vital signs are sent to the central offices and monitored by a set of rules
that are designed to analyze anomalous situations and generate warnings. These
warnings are automatic reactions executed by the system when a specific pattern
is found in multiple sources of real time events. These warnings can be used to
influence the hospital selection, the route to reach the selected hospital, or even
trigger new on-demand procedures.

Listing 1.2. Rule 3

rule "Patient heart attack pattern"

when
ArrayList ( $num : size > 7 ) from collect (
PulseEvent ( processed == false, $pulse: value )
over window:time (1s)
from entry-point "patientHeartbeats" )
then

MessageFactory.sendMessage (
new PatientMonitorAlertMessage(
callld, vehicleld,
"Warning, patient suffering a heart attack ",
new java.util.Date() ) );
end

This simple rule evaluates in real time the events that are coming from a
stream called “patientHeartBeats”. If we find more than 7 events per second
filtering the values of those particular events, we can say that it is very likely



that the patient is having a heart attack. The application provides a config-
urable module that allows us to set up different devices to be used as input for
these events. We have designed a set of bindings for the Wii Remote Control
Accelerometer, the IPhone Accelerometer and Android Devices Accelerometers
that can be plugged as event sources. Based on the values that are being sent
by these devices, the rules will react if a pattern is found.

5 Default Fire Emergency Procedure

This procedure will be executed each time that the company needs to deal with
a fire situation. Once again, a set of business processes and business rules will
compose this procedure. For this procedure, we will analyze a business process
that describes a more dynamic set of activities that needs to be executed.

O
<<alEmergencylocation>> i

Truck
Captain Driver

b

= Select Giosest Drive to Water
( = B o
[ Waler Provider [ Provider }‘@

<<oulOfWaters>

{ Stop Tracking J—»[ Local Report

<<noMoreFire=>

Fig. 3. High Level Architecture

This more unstructured process allows us to represent a situation where we
send one or more fire trucks to a fire emergency. Each truck will have a limited
amount of water that can be recharged in the fire departments. This process is
being driven by the events that are being received in the central offices, which
allow us to coordinate if we need more trucks; or if the situation is under control,
we can reduce the number of trucks that we are using.

For this procedure a set of rules is defined to control the water tanks and

select the closest water provider; a planning algorithm is also used to calculate
the initial amount of trucks required to deal with the fire situation.



6 Inferences, Correlation, Aggregation and Dynamic
Knowledge Composition

In order to provide the flexibility required to handling these complex situations
we need to provide generic mechanisms to gather the knowledge required to
deal with each emergency on demand. This application was designed to allow
company experts to pick different business knowledge assets to solve specific sit-
uations. Composing different pieces knowledge into a single runtime will allow
us to build very flexible and reactive services that can solve high and low level
situations. These knowledge runtimes will be populated with the information
that belongs to the specific situation. Once the runtime is created and popu-
lated with information, the rules, processes and events will be analyzed and the
correspondent actions will be triggered.

Each knowledge runtime will be an isolated entity that can be distributed
in different nodes of a computer grid allowing the application to scale. Each
of these knowledge runtimes will provide a context smart enough to solve the
specific situation that causes its creation.

7 Architectural Overview

This application was created to take advantage of different technologies to solve
very specific problems. All these technologies are being used to demonstrate
how we can solve all the technical problems that arise when we try to provide a
solution that needs to drive a company. The following technical components are
being used to solve infrastructural problems such as scalability and robustness,
delegating the business logic and business definitions to the Business Rule Engine
and Business Process Engine.
Current technical components that are being integrated to the application:

— Distributed Cache (Infinispan)

— NOSQL Graph Based Database (Neo4J)

— Query and Graph Transversal frameworks (Gremlin and Chyper)

— Reliable Messaging System (HornetQ)

— Web Frameworks for Presentation Layer (FreeMarker, Spring MVC)
— Interaction Component for dynamic form builder (Smart Tasks)

The architecture of the application was created with the concept of distribu-
tion in mind. Usually the problems that we want to solve using this approach are
extremely complex and can involve huge amounts of data, therefore each knowl-
edge runtime can be instantiated in different physical or virtual machines. Using
different techniques, we can coordinate and monitor these knowledge runtimes
so decoupling them in order to improve performance and scalability. Most of the
interactions are being handled by messaging queues which allow us to configure
the reliability of the channels completely decoupled from the problems that we
are trying to solve.



Relatonal D8

Grapn DB

9
a
5
=3
=4
@
a
g
5]
5
@

Knowiedge
Ref

H
g

‘ ‘ Application Domain Specific Front Ends ‘ |

£ 99

Experts Manager / Employees Business
Executive Analyst

BAM Task Lists

-
=] | ]

Fig. 4. Caption here

8 Conclusions

The application right now has as the main goal to show how can we mix the
declarative power of rules, business processes and complex event processing to
create application that can be understood by business people. The future of the
application will be driven by the Drools and jBPMS5 projects that are continu-
ously evolving. Ontologies, smart and distributed agents, more powerful domain
specific languages, predictive models and planning algorithms will be included
as part of the design of the application architecture to test and demonstrate how
all these features can be complemented to provide a more flexible platform to
build applications.

Older versions of this application were presented in six international events
during 2010 and 2011. For more information about the application, you can
browse the main developers blogs [3,1,2] . All the application features are open
to the community and we encourage people to participate from the project to
learn about these technologies. The application source code is fully available to
download [4] and is licensed under the Apache Software License 2.0.

References

Aliverti, E.: Blog. http://ilesteban.wordpress.com/ (2011)

Calcaprina, D.: Blog. http://dcalca.wordpress.com/ (2011)

Salatino, M.: Blog. http://salaboy.wordpress.com/about/ (2011)

Salatino, M.: Emergency Services Application. https://github.com/Salaboy/
emergency-service-drools-app (2011)

=W



