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Abstract. Usage of background knowledge about events and their relations to
other concepts in the application domain, can improve the quality of event pro-
cessing. In this paper, we describe a system for knowledge-based event detection
of complex stock market events based on available background knowledge about
stock market companies. Our system profits from data fusion of live event streams
and background knowledge about companies which are stored in a knowledge
base. Users of our system can express their queries in a rule language which
provides functionalities to specify semantic queries about companies in the RDF
SPARQL language for querying the external knowledge base and combine it with
event data streams. Background makes it possible to detect stock market events
based on companies attributes and not only based on syntactic processing of stock
price and volume.1
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1 Motivation

The reality in many business organizations is that some of the important complex events
can not be used in process management because they are not detected from the work-
flow data and the decision makers can not be informed about them. Detection of events
is one of the critical factors for the event-driven systems and business process manage-
ment. Semantic models of events can improve event processing quality by using event
metadata in combination with ontologies and rules (knowledge bases). The successes of
the knowledge representation research community in building standards and tools for
technologies such as formalized and declarative rules are opening novel research and
application areas. One of these promising application areas is semantic event process-

ing.
Several complex event processing systems are already proposed and developed [4].

Existing methods for event processing can be categorized into two main categories,
logic-based approaches and non-logic-based approaches [9]. One of the logic-based

1 This work has been partially supported by the “InnoProfile-Corporate Semantic Web" project
funded by the German Federal Ministry of Education and Research (BMBF) and the BMBF
Innovation Initiative for the New German Länder - Entrepreneurial Regions.



2 Kia Teymourian, Malte Rohde, and Adrian Paschke

approaches is introduced in [8] which proposes a homogeneous reaction rule language
for complex event processing. It is a combinatorial approach of event and action pro-
cessing, formalization of reaction rules in combination with other rule types such as
derivation rules, integrity constraints, and transactional knowledge.

Examples of commercial CEP products are: TIBCO BusinessEvents2, Oracle CEP
3, Sybase CEP4 Some of these existing CEP systems can integrate and access external
static or reference data sources. However, these systems do not provide any inferencing
on external knowledge bases and do not consider reasoning on relationships of events
to other non-event concepts. Previously, we proposed in [11, 10] a new approach for the
Semantic enabled Complex Event Processing (SCEP). We claim that semantic models
of events can improve the quality of event processing by using event stream data in
combination with background knowledge about events and other related concepts in
the target application domain. We described how to semantically query and filter events
and how to formalize complex event patterns based on a logical knowledge represen-
tation interval-based event/action algebra, namely the interval-based Event Calculus
[5–7]. Other related approaches like [2, 3] are also relevant for our approach, but these
approaches are not combining the complex event detection based on event correlations
and detection semantics with the relationships between events and other non-event con-
cepts/individuals in the background knowledge base.

In this paper, we describe a demonstration system for knowledge-based complex
event processing to extract complex stock market events using live stock market events
and background knowledge about companies and other related concepts. Fusion of
event data streams and background knowledge can build up a more complete knowledge
about events and their relationships to other concepts. The rest of this paper is organized
as follows. In Section 2, we focus on use case scenario and show which kind of complex
events can be detected using a background knowledge base. The use case is described
by providing a concrete example. Section 3 describes our method for knowledge-based
event processing which includes methods for data fusion with the background knowl-
edge base. In Section 4 we describe our demonstration system in details and provide an
other example.

2 Use Case Scenario

Stock market brokers gather information from different parties and monitor different
stock market graphs to be able to make the best possible stock market handling strategy.
They have to be able to make the right decision at the right time. They get all of the
“chunks” of information and are face with the difficult tasks of mentally/intuitively
combining them together, enriching/aggregating and inferencing on them. The vision of
our system is to have real-time information processing support system for stock market
brokers.

Consider that Mr. Smith is a stock broker and has access to stock exchange event
stream like listed in Listing 1.1. He is interested in special kinds of stocks and would

2
http://www.tibco.com/

3
http://www.oracle.com

4
http://www.sybase.de
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like to be informed if there are some interesting stocks available for purchasing. His
special interest or his special stock handling strategy can be described in a high level
language which describes his expressed interest using background knowledge about
companies.

Mr Smith would like to start the following query on the event stream: Buy Stocks of
Companies, who have production facilities in Europe and produce products from iron

and have more than 10,000 employees and are at the moment in reconstruction phase

and their price/volume increased stable in the past 5 minutes.

Listing 1.1: Stock Exchange Event Stream
{ { ( Name , ‘ ‘GM’ ’ ) ( P r i c e , 2 0 . 2 4 ) ( Volume , 8 , 8 3 5 ) } , { ( Name , ‘ ‘SAP ’ ’ ) ( P r i c e , 4 8 . 7 1 ) (

Volume , 8 , 7 0 3 ) } , { ( Name , ‘ ‘MSFT’ ’ ) ( P r i c e , 2 4 . 8 8 ) ( Volume , 46 ,829 ) } , . . . }

As we can see the above query cannot be processed without having background
knowledge which can define the used concepts in this query. Mr. Smith needs an in-
telligent system which can use background knowledge about companies like listed in
Listing 1.2. This background knowledge should be integrated and processed together
with event data stream in real-time manner so that interesting complex events can be
timely detected.

We can also consider that Mr. Smith works for a company and may need to share
this knowledge base with other brokers. Each of the brokers may be able to gather new
information about companies and update this knowledge base, e.g., the Opel company
is not in reconstruction phase, or the Apple company has a new chief executive officer.

Listing 1.2: An Excerpt of a Knowledge Base about Companies
(OPEL , belongsTO , GM ) , (OPEL , isA , automobilCompany ) ,
( automobilCompany , b u i l d , Cars ) , ( Cars , areFrom , I r o n ) ,
(OPEL , h a s P r o d u c t i o n F a c i l i t i e s I n , Germany ) , ( Germany , i s I n , Europe ) ,
(OPEL , isA , M a j o r C o r p o r a t i o n ) , ( M a j o r C o r p o r a t i o n , have , over10 , 0 0 0 employees ) ,
(OPEL , i s I n , r e c o n s t r u c t i o n P h a s e ) , . . .

3 Semantic Enabled Event Processing

The fusion of background knowledge with the data from an event stream can help the
event processing engine to know more about incoming events and their relationships
to other related concepts. We propose to use an external knowledge base which can
provide background conceptual and assertional information about the events as it is
shown in Figure 1. This means that events can be detected based on reasoning on their
type hierarchy relationships, or temporal/spatial relationships. It can also be based on
their connections to other relevant concepts from the domain, e.g., relationship of a
stock price to the products or services of a company.

The realization of SCEP is a challenging task, because it should provide real-time
processing and high scalability. The naïve approach for SCEP might be a storage-based
approach. This means to store all of the background knowledge in knowledge bases and
start pulling the knowledge base, every time when a new event comes into the system,
and then process the result from the external knowledge base with event data. This
approach may have several problems when the throughput of the event stream is high,
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Fig. 1: High Level Architecture of Semantic-Enabled Complex Event Processing

the size of background knowledge is high, or even when expressive reasoning should
be done on the knowledge base.
Event Query Pre-Processing:
We propose to do an Event Query Pre-Processing (EQPP) before the event processing
is down on the event stream. In this approach, the original complex event query can be
pre-processed by use of a knowledge base and rewritten into a single new query. This
new query is a query which can be syntactically processed only with the knowledge
from the event stream and without an external knowledge base.

In this paper, we are addressing a simple pre-processing of event queries and il-
lustrates the potential of such a pre-processing approach for SCEP. In our method the
user query is pre-processed and rewritten into a single new query which has the same
semantic meaning as the original one. The advantage of this method is that the user can
define event queries in a high level abstraction view and does not need to care about
some details, e.g., the user can specify queries like “companies who produce products

from iron” and does not need to know all of the products of companies which might
not be simple for humans to remember. One other advantage is that the SCEP system
is able to provide real-time event processing as events arrive into the system because
the external reasoning on knowledge base is done in advance. On the other side, one
disadvantage of this approach is that the query needs to be updated each time when the
knowledge base is changed (or when a part of the KB is changed). We assume that in
most of the use cases the rate of background knowledge updates is not very high as the
rate of the main event stream.

4 System Architecture and Demonstration

In this section we describe the architecture of our system and describe how our demon-
strator works. The architecture of our implementation is shown in Figure 2, it shows
different components of our system, event procudcer, APIs and user interfaces, main
event processing engine and a knowledge component base which can be used to store
background knowledge and doing reasoning on background knowledge base.
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Fig. 2: Architecture of our SCEP Implementation

As main event processing engine, we use Prova5 as a rule-based execution which
can be used as event processing engine and as reaction rule language formalization.
Prova uses reactive messaging6, reaction groups and guards7 for complex event pro-
cessing. Multiple messages can be received using revMult(XID, Protocol, Destination,
Performative, Payload) ; XID, a conversation id of the message; Protocol, message
passing protocol; Destination, an endpoint; Performative, message type; Payload, the
content of message. Prova implements a new inference extension called literal guards.
During the unification only if a guard condition evaluates to true, the target rule will
proceed with further evaluation.

We implemented a Prova sparql_select built-in8 to run SPARQL queries from Prova
which can start a SPARQL query from inside Prova on an RDF file or a SPARQL
endpoint. This Prova buit-in can use results which come from the SPARQL query and
use them inside Prova.

During the processing of a SPARQL query inside Prova rules, the rule engine
sends the embedded SPARQL query to the triple store and gets the results back. After-
wards it waits for incoming events to process. It processes the sequence of events using
the provided results from the knowledge base. The SPARQL_select has the follow-
ing syntax: sparql_select(QueryString, [SetOfOutputVariables], [SetOfInputVariables],
ServiceEndpoint). The set of output variables are the results which come from the
SPARQL query, the set of input variables provide the possibility to replace variables

5 Prova, ISO Prolog syntax with extensions http://prova.ws , July 2011
6 Prova Reactive Messaging http://www.prova.ws/confluence/display/RM/

Reactive+messaging , July 2011
7 Event Processing Using Reaction Groups http://www.prova.ws/confluence/

display/EP/Event+processing+using+reaction+groups, July 2011
8 Source codes for Semantic Web extensions in Prova 3 can be found in https://github.
com/prova/prova/tree/prova3-sw , October 2011
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Fig. 3: A Simple Company Ontology

in SPARQL string which are starting with $ with variables in Prova, and the service
endpoint is the SPARQL endpoint.

We created a light-weight ontology for companies as shown in Figure 3. We ana-
lyzed the available data from DBpedia, about 500 Companies from the S&P 500 In-
dex9, we managed to extract about 302 different properties referring to companies. We
included only the most important properties in our ontology. Our system is able to query
DBpedia and other linked data endpoints directly. The stocks of company can be de-
tected based on a set of properties for the concept “Company” and available knowledge
on the background knowledge base. The knowledge base might be updated by the users
but with a very lower frequency than the stock market events.

Listing 1.3: Prova Example for Semantic Event Detection.
:� e v a l ( s e r v e r ( ) ) .

s e r v e r ( ) :�
s p a r q l r u l e ( CompanySymbol , CompanyEmployees ) ,
r cvMul t ( XID , P r o t o c o l , Sender , even t ,
{ t im e�>Time , symbol�>Symbol , name�>Name , l a s t p r i c e�>L a s t p r i c e , volume�>Volume ,

h igh�>High , low�>Low} )
[ Symbol = CompanySymbol , CompanyEmployees > 5 0 0 0 ] ,
sendMsg ( XID , P r o t o c o l , Sender , t e s t r u l e , {name�>Name } ) .

s p a r q l r u l e ( CompanySymbol , CompanyEmployees ) :�
Query = ’ PREFIX DBPPROP : < h t t p : / / d b p e d i a . o rg / property / >

PREFIX DBPEDIA : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / >
PREFIX CSW: < h t t p : / / c o r p o r a t e�seman t i c�web . de / s cep / >

SELECT ? symbol ? employees WHERE {
? company DBPPROP : i n d u s t r y DBPEDIA : Co mpu te r_ s o f twa re .
? company CSW: t r a d e d _ a s ? symbol .
? company DBPPROP : numEmployees ? employees . } ’ ,

s p a r q l _ s e l e c t ( Query , [ symbol ( CompanySymbol ) , employees ( CompanyEmployees ) ] , [ ] , ’
h t t p : / / l o c a l h o s t : 8 8 9 0 / s p a r q l ’ ) .

9
http://www.standardandpoors.com/



Processing of Complex Stock Market Events Using Background Knowledge 7

The Listing 1.3 provides an excerpt of the Prova code example which illustrate our
implementation. In this query, a broker is interested in software companies which have
more than 5000 employees.

The complete pre-processing step should be updated on the knowledge base, when-
ever there is a change in the knowledge base, e.g., if new products are added to the
product lists of a company. In many use cases like ours, the frequency of such updates
can be considered to not be very high. Here, one useful approach is to implement the up-
dates also in an event-based manner, if any relevant changes are done on the knowledge
base a notification informs the event processing engine to update the event query.

Prova follows a workflow paradigm in event processing. It is possible to use Prova
for the realization of Plan-based complex event detection as proposed in [1]. However,
in our experiments we assume that all of the event streams come to a central process-
ing point. Our system shows clearly that the EQPP can achieve a better performance
than the naïve storage-based (or pulling) approach. It also demonstrates that the EQPP
approach is an applicable approach for the above described use case. It shows also
that the scalability of SCEP systems has five different dimensions; 1. Discharge rate of
events,2. Number of rules in main memory, 3. Number of triples in the knowledge base
(amount of knowledge), 4. Rate of knowledge updates,5. Expressive level of reason-
ing on background knowledge. Our demonstration system can be found on the Web at
http://slup.imp.fu-berlin.de/scepdemo/ .

Fig. 4: Screenshot of KnowCEP: Knowledge-Based Complex Event Processing System

The user interface of our demonstration system consist of four parts, each of them
have different functionalities; The first part is CEP Engine Status, a user can see the
current status of the system, can start or stop the CEP engine. The second part is called
Event Query, a user can give an event query in form of a Prova rule. The third part is
Knowledge Base of the system, in this part a user can specify a SPARQL endpoint as
an external knowledge base, can send SPARQL queries to end point and get the results
back to the system, the user can also post and add RDF data to the external RDF store.
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The next component is the configuration of the event sources, as shown in Figure 4,
users can select between different event producers, live stock market data stream, stored
stream from a database, or randomly generated stock market events for demonstration
purposes. After the configuration of the CEP system, it can be started from the main
system menu.

5 Conclusion and Outlook

We described our initial work on semantic event processing and semantic pre-processing
of event queries, and illustrated the potential of this approach by means of a demonstra-
tion. Our future steps are to work on the semantics of event processing languages and
define which semantics can be adequate for Complex Event Processing. Furthermore,
we are working on an algorithm for rewriting of complex event queries to several sim-
ple queries which can be distributed on an event processing network to achieve high
performance and scalability.
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