
Managing High Disease Risk Factors : a use case
in the KMR-II Healthcare Infrastructure

Davide Sottara1, Emory Fry2, Esteban Aliverti3, Mauricio Salatino3, and John
Harby4, Stefan Killen4, Tuyet Nguyen4, Mike Wright4

1 Università di Bologna (davide.sottara2@unibo.it)
2 Naval Health Research Center (eafry@gmx.com)

3 PlugTree
4 Soadex Inc.

Abstract. The goal of the KMR-II project is the creation of a unified
architecture for a knowledge intensive patient healthcare management.
Using a combination of knowledge integration techniques, it provides a
framework for the interaction between patients, providers and managers.
At the same time, is provides intelligent clinical decision support and
automates management procedures. In this paper, we introduce some of
the architectural aspects and show how it allows to manage a simple use
case, where a predictive model is used to notify both a patient and their
provider that there is a high probability that the patient will develop
some disease in the future.

1 Introduction

Supply and demand forecasting in the healthcare industry is predicated on the
dual requirement of an accurate analysis of care resources within a community
and equally accurate demand forecasting. Unfortunately, current predictive mod-
els for projecting population-based demand and the resource required to provide
quality care are simply inadequate. It is not unusual for organizations to esti-
mate demand using simplistic models for generalized populations regardless of
the clinical characteristics of the patients being served, or to adequately analyze
the capacity of availability of resources.

The Distributed Decision Support and Knowledge Management Repository
(KMR-II) system provides healthcare planners with the analytic tools they re-
quire to develop and deploy sensitive predictive models tailored to the specific
characteristics of the target population. It allows organizations to (i) develop
disease specific models for accurate forecasting of demand (anticipated number
of patients with a specific disease), and (ii) plan for the optimal utilization of
existing resources to care for them. It is focused on the integration of commodity
rule and workflow management systems for we believe this approach represents
the best opportunity to deliver “knowledge services” that can be layered on both
military and civilian health information networks.

The second mission of the KMR infrastructure is to change behavior - its
inference engines decide what to do, its workflow capabilities automate those



2

tasks, and its notification capabilities communicate with intended recipients.
Ultimately, all these capabilities need to be exposed to the end user if behavior
is to change. KMR provides managed Presentation Services to assist developers
in deploying tightly integrated graphical user interfaces that not only ensure the
results of Clinical Decision Support (CDS) and Predictive Analytics can alert
and inform the intended user, but can also materially e↵ect behavior by writing
orders, booking appointments, changing device settings, etc . . .

To this end, we are developing a knowledge intensive infrastructure, capable
of leveraging di↵erent forms of knowledge: from a semantic description of the
application domain, to predictive, diagnostic and planning models for decision
support, to complex event processing for real-time operation management, to
business rules and workflows for policy enforcement. We have adopted, but not
limited ourselves to, a patient-centric architecture, in which a context (“virtual
medical record” or VMR) is built for each patient, where all their historical
data are stored. Each context is actually the working memory of a reasoning
engine, capable of applying various inference strategies to the the clinical data
contained therein. The engine, then, is provided at runtime with the appropriate
knowledge, according to the specific evaluations which must be performed on the
patient.

To give an overview of the architecture and its design principles, we will
show a simple use case built on top of our general-purpose infrastructure. In this
scenario, a healthcare organization recommends the usage of a set of predictive
models, in order to evaluate the risk level a person may have, to develop one or
more diseases. A provider is given the capability to apply one or more of those
models to their patients. The models would leverage the clinical, historical data
present in a patient’s medical record - or allow the provider to fill in any missing
piece of information - to estimate the probability (with an associated confidence
interval) that the patient might su↵er from a certain disease in the future. The
result of this evaluation, usually based on a comparison of the patient’s charac-
teristics with the features of a reference population of individuals, can then be
used to apply diagnostic and preventive actions5. In particular, should a model
detect that a risk threshold has been exceeded for a disease, the system would
make sure that both the patient and their provider are notified of this event, de-
livering a content-rich, informative alert message, using one or more predefined
channels (e-mail, SMS, voice call, . . . ) and ensuring that an acknowledgment is
returned.

The knowledge-based part of the architecture has been implemented using the
open source Knowledge Integration Platform Drools. In addition to its friendly
licensing model, it is a suite of tools which allows to model, combine and execute
di↵erent forms of knowledge in the same environment, facilitating the develop-
ment of complex applications such as the one we are describing. Drools comes in
the form of a core rule engine, supporting a rich, semi-declarative language, and
is extended with a set of additional modules which greatly enhance its inferential
capabilities. In section 2, then, we will describe how the tool has been used to

5 also recommendable by the system, although the topic is not covered in this paper



3

develop the core of our application, while section 3 will provide more details on
the use case we are presenting.

2 A Knowledge Intensive Architecture

Nowadays, large-scale applications are implemented either using Service-Oriented
Architectures (SOA), Event-Driven Architectures, or a combination thereof. The
two have been proven to be complementary ([4]), since the distinction mostly de-
pends on how the components interact (synchronously vs asynchronously) rather
than on structural di↵erences. In our setting, we need both event-driven and
request-driven services. A patient record would be continuously updated with
information coming from various and heterogeneous sources, possibly triggering
the parallel execution of di↵erent policies and processes. At the same time, vari-
ous individuals in the healthcare management organization could request access
or even perform operations on the patient’s VMR to manage their status.

Given the nature of the data in the records, the knowledge-intensive nature
the operations to be performed, the necessity to adapt the policies as the patient’s
conditions change in time and ultimately the need to provide a highly dynamic
set of functionalities, we chose not to implement the core functionalities strictly
as services. While still using more traditional (web) service interfaces for pe-
ripheral components such as the persistence, security and GUI sub-systems, we
have decided to found the core of the architecture on the concept of rich, intelli-
gent agents rather than services. Even from a modelling perspective, an “agent”
better represents the idea of a dedicated patient manager: it is the agent, then,
who is in charge of processing the incoming events and providing the required
services.

Drools Agents. A Drools Agent is itself a knowledge-based application: its in-
ternal logic is programmed using rules rather than traditional imperative code.
Its external interface is based on the concept of communication performatives

and has been designed according to the principles of the FIPA6 standard. This
standard regulates the interactions between intelligent agents, defining formats
for messages and their content, in addition to formalizing protocols for agent-
to-agent communications. To integrate agents in a non agent-based SOA, the
agents expose a single endpoint as a (web) service, named tell. This service
allows to deliver messages to the agent, either from another agent or a more
traditional service. When a message is received, it is immediately inserted into
a knowledge session, where a set of rules will interpret and process it. The agent
currently understands most of the FIPA performatives and is designed to rely
on the concept of expectation [1] to make sure that the appropriate protocols
are respected when exchanging messages (e.g. either refusals or responses are
received in a timely fashion for a given request).

6 http://www.fipa.org/



4

Internally, the agent leverages the functionalities of drools-grid to deploy
and maintain separate knowledge sub-sessions (i.e. runtime instances of the rea-
soning engine) on di↵erent nodes of a network. Each session is usually dedicated
to a single patient. The rules in the main agent session, then, preprocess the
messages and implement a dynamic content-based routing service [3], to ensure
that messages regarding a specific patient are ultimately processed in the appro-
priate sub-session. The master session, in fact, converts each message into a set
of working memory commands (assert, retract, query, . . . ). These commands are
executed in the appropriate sub-session: when the results are available, they are
delivered back to the main session where the appropriate response message is
generated. In addition to the obvious load balancing benefits, this architecture
allows to separate the messaging and protocol management rules (applied in the
main session) from the clinical knowledge, since the sub-sessions are not aware
of the agent-oriented nature of the environment sustaining them. An overview
of the agent structure is summarized in figure 1.

While our architecture will support most FIPA performatives, the most rel-
evant are Inform, Request and Query.

– Inform is used mainly for event notifications: it allows the asynchronous
delivery of both data and events to any patient session. The events will be
able to trigger consequences, but the source of the event will generally not
be notified.

– Query is used to access the patient records and extract any information
present therein in the form of facts

– Request is used to request the execution of specific actions on a patient
session. A request is implemented using a fact insertion (to trigger the exe-
cution) followed by a query (to get the results).

The use of the Request performative, in combination with a rule-based man-
agement of the request message content allows to provide dynamic, declarative
services. A Request contains an Action with a name and a list of arguments.
The management rules are based on patterns matching the Actions and, as
their consequences, trigger the actual executions aimed at satisfying the re-
quest, either directly or through chaining. These rules, then, are equivalent
to the implementation of a service. With respect to more traditional services,
interface contracts and registration and discovery functionalities are not (yet)
supported, but the declarative nature of the implementation has many advan-
tages in terms of deployment, maintenance and lifecycle management in general.
Rules, in fact, are generally managed using a (Business) Rule Management Sys-
tem (drools-guvnor, in our case) which takes care of issues such as authoring,
publication and versioning.

Rich Knowledge Sessions. To actually implement the patient specific services,
the individual sessions can leverage the full power of the reasoning engine. The
extension of production rules with event processing (drools-fusion) and work-
flow management (drools-jbpm) capabilities are well known and will not be



5

Fig. 1. Clinical Decision Support Agent Architecture

further discussed. To manage our complex use cases, however, additional exten-
sions are being implemented as a part of the KMR-II project. The enhanced
modules7 include:

– drools-semantics adds semantic capabilities to the engine. In addition to
providing a basic form of semantic reasoning [2], it currently implements
some techniques to extract a data model from an ontology [5]. This data
model can then be used to ground rules in the concepts defined in the on-
tology itself. The model is based on java interfaces: in order to bind to the
interfaces either object instances or - in alternative - triple-described indi-
viduals, a technique known as traiting is used, similarly to what has been
recently proposed in [8]. A high-level KMR-II ontology is currently being
defined, as a part of the project, to describe a medical domain. It will be
integrated with other medical “ontologies” to include standard vocabularies.

– drools-pmml allows to deploy PMML-encoded predictive models into a knowl-
edge session, where they can be evaluated reactively. PMML, a standard for
predictive model exchange, has been designed to declaratively describe the
models’ structure and parameters, and allows to exchange models between
di↵erent engines. Models, then, can be trained using tools such as Knime
or Weka and imported into Drools for runtime execution. Interestingly, a
Drools-based compiler is used to translate a model into a serie of rules which
emulate the behaviour of the predictive models themselves, allowing a seam-
less, homogeneous integration of the models into the rule session [7].

– drools-chance extends the traditional inference mechanisms to support un-
certain and vague reasoning in a native way [6]. It will be used by the seman-
tic and predictive reasoners, since their outputs are not boolean in general.

7 https://github.com/droolsjbpm/drools-chance



6

– drools-informer is another rule-based module, derived from a refactoring
of the open source tool previously known as “Tohu”8. It allows to automat-
ically create and manage Questions, special objects which can be bound, at
the same time, to a widget in a GUI interface and to a target object’s field.
Sets of Questions, called Questionnaires, generate dynamic forms for the
dynamic update of facts inside the working memory, e↵ectively making a
knowledge session interactive.

3 Use Case - Risk Factor Prediction and Management

To demonstrate the flexibility of the infrastructure, we propose the following sim-
ple scenario. We assume that a soldier, just returned from deployment in a war
zone, visits their provider for a check-up. Given the patient history, the provider
has chosen to evaluate a risk assessment model to estimate the probability that
the soldier will su↵er from post-traumatic stress disorder (PTSD). The system
loads the appropriate predictive model and notifies the provider that some rel-
evant model inputs are missing. Those inputs, however, can be easily acquired
by interviewing the patient and provided to the system filling a questionnaire.
Once the questionnaire is complete, the model will be evaluated: depending on
the actual answers, the estimated risk value might be above the threshold set by
the provider. If this is the case, the system will generate two alert messages: one
for the provider and one for the patient. The messages are accessible through a
“universal inbox”, a web-based frontend which displays messages in a fashion in-
spired by traditional email clients. The body of the messages, however, contains
dynamic content, including an interactive form that is used by the recipient to
acknowledge the message after it has been read. If the message is not acknowl-
edged within a given deadline, a second message - in the form of an SMS - is
delivered as a reminder.

Use Case Implementation. This use case leverages most of the components in
the architecture. The presentation services, interacting with the GUI, use three
of the decision support agent “services”: getRiskModelDetails, getForm and
setForm. The first is used to request the deployment (if not already available)
of a specific PMML model in a patient’s session and it subsequent evaluation,
returning the estimated percentage and any correlated information (e.g. the
confidence interval)9. The second is used to get any interaction questionnaire
metadata (generating it if necessary), which allows the GUI to render a web form
to collect the answers from the user. In combination with getRiskModelDetails,
it returns the questionnaire associated to a predictive model instance. The third,
instead, delivers the answers to specific questions and returns the result of any
validation check, if present.

When the risk threshold is exceeded, a message generation and management
process is started internally. The agent has been configured to generate the ap-

8 http://www.jboss.org/tohu
9 In the application demo, we use a few mock models



7

propriate alert messages and deliver them to the appropriate recipients using the
appropriate channels. It collects data from the current context (patient, provider,
disease, risk level, . . . ) and uses them to instantiate one or more message tem-
plates. (The actual delivery of the messages is not done directly, but delegated
to another dedicated agent, which is out of scope for the purpose of this paper).
Each message will also contain the reference to an interaction form, prepared to
collect the acknowledgments from the recipient. When the inbox client renders
the message content, in fact, the GUI will again invoke the getForm and setForm

services to let the user and the agent interact.

4 Conclusions

This paper shows some aspects of the current state in the development of the
KMR-II clinical decision support system infrastructure. The system allows to
integrate di↵erent types of knowledge (semantic, predictive, operational, . . . )
regarding a patient and the best way to provide healthcare for them. The system
then applies this knowledge to the data definining a patient’s clinical history,
automating some management actions and acting as a (clinical) decision support
system for the patient’s provider and their organization.

The knowledge-based core of the application is deployed in a broader service
and event oriented architecture, integrating various data sources and services.
The application, moreover, provides a unified web-based interface for both pa-
tients and providers, allowing them to interact with the system and between
each other in a seamless way.

Acknowledgments

The KMR project is supported by Award Number: W81XWH-11-2-0062, ad-
ministered through the U.S. Army Medical Research Acquisition Activity, 820
Chandler Street, Fort Detrick, MD 21702-5014.

The opinions of the authors do not necessarily state or reflect those of their
respective employers, including the Department of Navy, the Department of
Defense, and the United States Government, and shall not be used for advertising
or product endorsement purposes.

The whole platform will be released under a BSD-like open source license in
early 2012.

References

1. Bragaglia, S., Chesani, F., Fry, E., , Mello, P., Montali, M., Sottara, D.: Event
condition expectation (ece-) rules for monitoring observable systems (2011)

2. Bragaglia, S., Chesani, F., Mello, P., Sottara, D.: A Rule-Based Implementation of
Fuzzy Tableau Reasoning. In: RuleML. pp. 35–49 (2010)



8

3. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2003)

4. Luckham, D.: SOA, EDA, BPM and CEP are all Complementary
5. Meditskos, G., Bassiliades, N.: Clips-owl: A framework for providing object-oriented

extensional ontology queries in a production rule engine. Data Knowl. Eng. 70(7),
661–681 (2011)

6. Sottara, D., Mello, P., Proctor, M.: Adding uncertainty to a rete-OO inference
engine. Rule Representation, Interchange and Reasoning on the Web pp. 104–118
(2008)

7. Sottara, D., Mello, P., Sartori, C., Fry, E.: Enhancing a production rule engine with
predictive models using pmml. In: Proceedings of the 2011 workshop on Predictive
markup language modeling. pp. 39–47. PMML ’11 (2011)

8. Stevenson, G., Dobson, S.: Sapphire: Generating java runtime artefacts from owl
ontologies. In: CAiSE Workshops. pp. 425–436 (2011)


