
RDFa as a lightweight metadata interoperability

layer between repository software and LOCKSS

Felix Ostrowski

Humboldt-Universität zu Berlin
Institut für Bibliotheks- und Informationswissenschaft

Unter den Linden 6, 10099 Berlin, Germany
felix.ostrowski@hu-berlin.de

http://www.ibi.hu-berlin.de/

Abstract. Semantic Web and Linked Data standards have recently been
gaining momentum in the library domain. It seems more likely than not
that future systems used in library environments will make increasing
use of these standards. This paper outlines possible usage scenarios of
semantic metadata in the LOCKSS digital preservation software gener-
ally, and the possibilities for metadata interoperability between repos-
itory software and the LOCKSS system based on the RDFa standard
specifically.

Keywords: digital preservation, repository software, LOCKSS, Seman-
tic Web, metadata, RDFa, interoperability

1 Introduction

Digital libraries and digital archives are closely related. In fact, it is a common
misunderstanding that digital library software such as repositories are digital
archives. If a document is ingested into a repository, it is often thought to be
archived. That is not true; it might even be considered a dangerous misconcep-
tion. At the very bottom of an archival system lies the long-term preservation of
bitstreams. Repository software on the other hand are designed for ingest and
medium-term access. Of course repositories store bitstreams, too, but this stor-
age usually lives in a typical web server environment. While that environment is
hopefully integrated into some sort of backup routine, the storage layer of any
common repository software can not be considered to fulfil long term archiving
needs in any way.

Commercial long-term preservation systems are built as a whole from the
ground up1 and thus consist of an ingest mechanism that closely resembles that
of a repository system and a management layer to control the archive and per-
form tasks such as format migration. Most interestingly, bitstream preservation
is considered a solved problem[12] and is not addressed with the appropriate

1 Ex Libris’ Rosetta[2] and kopal[1] for example focus heavily on ingest, access and
management tasks such as format migration.

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

150



attention in these systems. Considering the facts that (1) an open source solu-
tion for bitstream preservation exists in form of LOCKSS[9], (2) high quality
open source repository software to publish documents to the web is available
and (3) bitstreams get into a LOCKSS-Network by means of web harvesting,
the only missing part to build an OAIS compliant archival system out of these
components is a management component2.

This paper will first briefly discuss the advantages of using semantic meta-
data in shape of RDF in a LOCKSS environment and then sketch out a possible
interoperability of repository software and LOCKSS based on RDFa. It should
thus be considered a rather theoretical outline of an archival solution that is
based on the loose coupling of existing software solutions by means of seman-
tic metadata. The availability of this data can smooth the way how to add a
management component to the environment by facilitating data exchange and
integration.

2 LOCKSS and semantic metadata

There are at least three different aspects of how semantic metadata can be
of advantage in a LOCKSS environment. Among them are the data manage-
ment within individual LOCKSS nodes, the integration of metadata present in
a LOCKSS network and the interaction of publication platforms such as repos-
itories and the LOCKSS crawler. These three perspectives are briefly discussed
next, followed by a more in-depth view on the latter.

Firstly, a generic data model such as RDF allows for a generic database in
LOCKSS nodes that can store arbitrary metadata. LOCKSS is at its core a web
crawling system that consists of several independent gathering nodes that com-
municate in order to ensure the integrity of the harvested content. With regards
to metadata of any kind, LOCKSS natively used to consider only information at
HTTP level, such as content-type and length. It has been extended to support
additional metadata by making use of a metadata extraction framework, though.
This framework is capable of extracting metadata by analyzing the crawled con-
tent and extracting metadata from there. The data is then available within the
system and can be further processed. The current version of LOCKSS only in-
cludes a relational database with a fixed schema to store descriptive metadata.
In context of the LuKII project[5], the need to add a database for technical meta-
data arose. While the modular architecture of LOCKSS allowed for a relatively
easy implementation of an additional metadata manager for technical metadata,
it is still tedious to implement such a component for each future data model.

Second off, the integration of metadata accross an entire LOCKSS network or
even between LOCKSS nodes and additional services is facilitated. The meta-
data that is currently being dealt with in the LuKII project[14, p. 4-7], for

2 The dispute regarding sense and nonsense of prophylactic format migration[13], and
other tasks a management component should perform, implies that such a component
should not be tied to the other layers too tightly. Discussion of this layer is beyond
the scope of this paper.

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

151



example, is XML-based, because of which an embedded eXist XML-database
has been prototypically added to the LOCKSS daemon and is currently being
evaluated. This solves the problem of hard-coded database schemas. Since one
goal of the project is testing prophylactic format migration in a LOCKSS net-
work, the metadata from all nodes in the network will have to be integrated at
some point to be evaluated by a central preservation management tool. While
out of scope of the LuKII project, evaluating the use of a data model that makes
it easier to integrate data from multiple sources seems promising for the future.
In a distributed environment such as a LOCKSS network, a distributed data
model such as RDF appears to be a natural match. On top of that, the manage-
ment component could apply preservation policies formally expressed in OWL
ontologies to identify objects for which actions such as format migration should
be taken. Figure 1 outlines this scenario.

Fig. 1. SPARQL-based aggregation of metadata from LOCKSS nodes

In the third place, the possibilities of semantic metadata are also interesting
from the crawling component’s point of view. There is an obvious need for a
crawler to know what comprises a complex object that should be archived in
order to know which links to follow in the potentially infinte web environment.
LOCKSS plugins allow to define these rules for different publication platforms.
Currently these specific crawling rules of the LOCKSS crawler are defined on

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

152



the server side. Vocabularies such as OAI-ORE[6] can be used to more explicitly
express these bounds of a complex object (an “article” in the LOCKSS termi-
nology) on the client side, and thus allow for more generic crawling rules in
the server side plugin. This would reduce the need for new plugins on the one
hand, and allow the specification of an object’s bounds at the authorative place
- the publication platform - on the other hand. The remainder of this paper
will investigate this third usage-scenario for semantic metadata in a LOCKSS
environment. Of course, the usage of semantic metadata for interoperability of
LOCKSS and repositories is not limited to a single vocabulary. Ontologies such
as [4] can be used, for example, to pass legal metadata from the repository to
LOCKSS, thereby enabling a more fine-grained notion of rights-management
compared to the generic permission statement[10] mechanism currently used by
LOCKSS.

3 Exposing semantic metadata from repositories using

RDFa

Besides providing the means to ingest and access documents, common repository
software at its core also includes possibilities to expose metadata. The metadata
capabilities usually consist of a description page that focuses primarily on human
readability on the one hand, and machine-readable interfaces such as OAI-PMH
on the other hand. With regards to passing content from a repository to a long
term preservation system, two problems arise: The lowest common denominator
of expressiveness in OAI-PMH is Dublin Core. This does not include structural
information of any kind and thus is not detailed enough with regards to long-
term archiving needs. Unfortunately, adding support for additional metadata
schemes usually entails non-trivial extensions to the software that need to query
the database and implement an additional query interface. Besides that, the
machine-readable version of the metadata is exposed at a different URL than
the human-readable version. This makes the configuration of a web crawler such
as the one in LOCKSS more complicated than necessary.

A lightweight solution for both of those problems can be found in RDF in
attributes (RDFa)[11]. The essentials in brief are that this Semantic Web stan-
dard enables human-readable versions of websites to be enriched in such a way
that they can also be interpreted by machines. This means that it is possible
to add machine-readable metadata at the template level of repository software.
Boulal et al. conclude that the OAI-ORE vocabulary already mentioned above is
qualified “as an interoperability layer because it allows describing scholarly work
items in a way that is compatible to the web architecture”[3, p. 9]. Providing
the necessary resource maps using RDFa is most likely the easiest way to enable
existing repository software to expose complex objects in a machine-readable
manner, since human-readable splash pages that describe an object already ex-
ist in all common repository software. [7] gives an impression of the necessary
modifications. A further advantage of using RDFa is that the machine-readable

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

153



metadata is available at the same URL as the human-readable version, naturally
making it available along with the archived ressource.

4 Processing RDFa in LOCKSS

As mentioned above, LOCKSS is already capable of extracting metadata from
the harvested content. The usual extraction procedure is based on extracting
the metadata from the human-readable description, which can be error prone.
A change in the structure of the page for example can easily result in changes
becoming necessary on the plugin-level, even more so changes in the data model
that is being used. This is where the advantage of RDFa-enriched HTML-pages
becomes evident: the underlying RDF-model stays the same, even when elements
are moved around etc., and RDF can be extracted no matter which vocabularies
are being used.

With regards to storing metadata extracted from RDFa-enriched web pages, there

are several options:

– mapping the metadata to a relational database,
– writing RDF/XML to an XML-database and
– using a triplestore.

While the first possibility enables reuse of the relational database already
available in LOCKSS, it would imply unacceptable constraints on the flexibility
of the system. Changes in the ontologies used to describe the content in the
repository would necessarily imply changes to the database schema. Using an
XML-store would be a solution for this, but limits the query possibilities to
languages focusing on syntax rather than semantics, such as XPath or XQuery.
The usage of a triplestore, ideally with an enabled reasoning component, is the
most natural solution for RDF data and provides a powerful SPARQL interface.

The components that have been identified as necessary to enable the storage of

RDFa metadata exposed by repository software in LOCKSS using a triplestore

are:

– RDFa-enabled repository software that includes semantic markup for struc-
tural information,

– a LOCKSS plugin that is able to crawl according to the resource maps
exposed by the repository,

– an article iterator that is able to make complex objects internally available,
– an article metadata extractor to extract RDF data about the complex object

from the RDFa in the resource map,
– a file metadata extractor to extract and merge RDF data about individ-

ual bitstreams from the RDFa in the resource map and optionally in the
individual files of an article,

– a metadata manager to add, update and delete RDF data from an embedded
triplestore and

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

154



– a SPARQL endpoint to expose the metadata.

Figure 2 shows how these elements interact within a LOCKSS node and inbe-
tween the node and a repository that provides the content that is to be archived.
For more information on the concepts of plugins, article iterators, metadata ex-
tractors and metadata managers in LOCKSS components see [8]. While the work
on a MetadataManager for RDF data has already begun as a side project of the
author, the other parts are still missing. Once they are in place, the system will
need to undergo extensive testing, especially with regards to the performance of
the triplestore in a real-word environment.

Fig. 2. Interaction of components necessary to store RDF data extracted from RDFa-
enriched HTML-pages

5 Conclusion

This has been a rough and purely technical view on a modular digital preser-
vation system that makes use of Semantic Web standards. Question such as
“Which metadata belongs into a digital archive?”, “Which part of the system
is responsible to generate technical metadata?” and “Does descriptive metadata
belong into the preservation layer?” remain open. The model sketched out above
theoretically makes it possible to add – along with the content it describes – arbi-
trary, but highly expressive metadata to a modular long-term archiving system.

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

155



The possibility to access that metadata through an HTTP-SPARQL-interface
provides the means to add a management layer to the system without tying it
in too tightly. With the advent of Semantic Web technologies and standards in
the library domain, further investigations in this direction seem promising.

References

1. About kopal, http://kopal.langzeitarchivierung.de/index.php.en
2. A New Way of Preserving Cultural Heritage and Cumulative Knowledge, http:

//www.exlibrisgroup.com/category/RosettaOverview

3. Boulal, Anouar et al.: Report on Enhancing Interoperability between existing
Open Access Publication Infrastructures. Draft available at http://www.eco4r.

org/downloads/eco4r_report_compoundobjects_draft.pdf (2010)
4. CASPAR Rights Ontology, http://www.casparpreserves.eu/publications/

ontologies/RightsOntology.html

5. DFG-Projekt: LuKII (LOCKSS und KOPAL Infrastruktur und Interoperabilität),
http://www.lukii.hu-berlin.de/

6. Lagoze, Carl et al.: ORE User Guide - Primer, http://www.openarchives.org/
ore/1.0/primer (2008)

7. Lagoze, Carl et al.: ORE User Guide - Resource Map Implementation in RDFa,
http://www.openarchives.org/ore/1.0/rdfa (2008)

8. LOCKSS API documentation, http://www.lockss.org/lockssdoc/gamma/

daemon/index.html

9. Lots of Copies Keep Stuff Safe), http://lockss.stanford.edu/lockss/Home
10. Making Your Titles LOCKSS Compliant, http://www.lockss.org/lockss/

Making_Your_Titles_LOCKSS_Compliant#Permission_to_the_LOCKSS_Software

11. RDFa Primer. Bridging the Human and Data Webs, http://www.w3.org/TR/

xhtml-rdfa-primer/ (2008)
12. Rosenthal, David S.H.: Bit Preservation: A Solved Problem? In: International

Journal of Digital Curation, vol. 1, no.5. http://www.ijdc.net/index.php/ijdc/
article/viewFile/151/224 (2010)

13. Rosenthal, David S.H.: The Half-Life of Digital Formats, http://blog.dshr.org/
2010/11/half-life-of-digital-formats.html (2010)

14. Steinke, Tobias: Universal Object Format. An archiving and exchange format
for digital objects, http://kopal.langzeitarchivierung.de/downloads/kopal_

Universal_Object_Format.pdf (2006)

Proceedings of the 1st International Workshop on Semantic Digital Archives (SDA 2011)

156




