
Declarative Description of Module Dependencies
in Logic Programming

Jozef Šǐska

KAI FMFI UK, Mlynská dolina, 842 48 Bratislava?

siska@ii.fmph.uniba.sk

Abstract. Logic Programming and specifically Answer Set Program-
ming are formalisms for knowledge representation and reasoning based
on classical logic. They allow a clean and declarative characterization of
many KR based problems.

Modularity is a key aspect in all programming languages. Every language
allows authors to split a program into multiple modules, thus gaining
advantages such as code simplification or reusability.

We consider modules as a way of reducing the complexity of logic pro-
grams by allowing authors to declaratively describe which modules should
be used in which situations. Such information is represented directly in
the language of logic programs. Two main abilities of such a modulariza-
tion system are considered: the ability to express dependencies between
modules and to define conditions when a particular module should be
automatically included. We focus on the problem of selecting which mod-
ules to use in computations without making assumptions on internal
structure or interaction of modules.

1 Introduction

Modularization is an interesting concept in logic programming. In the simplest
way modules represented by different logic programs are just joined together to
form one big logic program. Theoretical research has been done in different di-
rections regarding modularization, whether to resolve conflicts between modules
or to define certain interfaces for modules to improve communication between
modules [GS89,BLM94,EGV97,BMPT94,JOTW07].

Our aim is to create a system that, given a set of modules that could be com-
bined together into an ASP application, allows authors to declaratively specify
which of the modules should be really used in the computation depending on
the module dependencies or the data that is processed.

Two main abilities of such a modularization system are considered:

– express dependencies between modules,

? We acknowledge support from VEGA project of Slovak Ministry of Education
and Slovak Academy of Sciences no. 1/0688/10 and Comenius University grant no.
UK/486/2010.

– define conditions when a particular module should be automatically in-
cluded.

The dependency requirement covers cases when a module requires another mod-
ule to be present (possibly only when some conditions are met) to work correctly.
This is similar to import or require statements in most languages. On the other
hand the condition based inclusion of modules can be used to automatically load
a module when certain data are present.

Two approaches are considered here: a declarative (stable model-like) ap-
proach and a simple two-level approach. Both approaches are based on the in-
troduction of a special predicate, say load module/1, whose presence in a stable
model of a program states that a specific module should be loaded.

In the first approach we choose a subset of the modules, compute its stable
models and select the ones which (through the added predicate) select exactly
this subset of modules. A modification of this approach is also considered, where
certain modules (initial modules) have to be always included in the program.

In the second approach we split the modules into two parts: an activator and
a main part. First a program is formed from the activator parts of all modules
and its stable models are used to select which modules to include in the second,
main, program. Stable models of this second program are then the stable models
of the whole modular program.

As mentioned earlier our focus is on the selection of the modules that should
be used in the computation. We do not assume any specific way of combining
modules (logic programs) and obtaining the stable models of the modular pro-
gram. Throughout the examples given here we use simple union of the programs,
but other approaches [OJ06] can be used too. We require only a way of deter-
mining the stable models of an arbitrary (sub-)set of modules. All presented
approaches are based on this assumption.

2 Logic Programming

In this paper we consider Normal Logic Programs[GL88]. LetA be a set a disjoint
set of constants, predicate, function and variable symbols, where both predicate
and function symbols have an associated arity.

A term over A is inductively defined as: (i) a variable from A, (ii) a constant
from A, (iii) an expression of the form f(t1, . . . , tn), where f is a function symbol
from A with arity n and ti’s are terms over A. A term is called ground if it does
not contain any variables. The set of all ground terms over A is called the
Herbrand universe of A.

An atom over A is an expression of the form p(t1, . . . , tn), where p is an
predicate symbol of A with arity n and ti’s are terms over A. An atom is called
ground if all terms ti are ground. The set of all ground atoms over A is called
Herbrand base of A (HB(A)).

An objective literal is an atom A. A default literal is an objective literal
preceded with the default negation i.e. not A. We denote L the set of both

objective and default literals. We call L and not L conflicting literals. For a set
of literals M ⊆ L we denote M+ the set of all objective literals and M− the set
of all default literals from M . A set of literals M is called consistent if it does
not contain two conflicting literals, otherwise it is inconsistent.

A normal logic program P is a countable set of rules of the form A ←
L1, L2, . . . , Ln, where L is an objective literal and each of Li are literals. When
all literals are objective, P is called a definite logic program.

For a rule r of the form L ← L1, L2, . . . , Ln we call L the head of r and
denote by head(r). Similarly by body(r) we denote the set {L1, L2, . . . , Ln} and
call it the body of r. If body(r) = ∅ then r is called a fact.

An interpretation is any consistent set of ground literals I. I is called a total
interpretation if for each A ∈ HB(A) either A ∈ I or not A ∈ I. A literal L
is satisfied in an interpretation I (I |= L) if L ∈ I. A set of literals S ⊂ L is
satisfied in I (I |= S) if each literal L ∈ S is satisfied in I. A rule r is satisfied in
I (I |= r) if I |= body(r) implies I |= head(r). A total interpretation M is called
a model of logic program P if for each rule r ∈ P M |= r. We also say that M
models P and write M |= P .

Let P be a normal logic program and I an interpretation. The Gelfond-
Lifschitz reduct of P w.r.t. I is the program P I obtained from P by:

1. removing from P all rules containing a default literal not A such that A ∈ I.

2. removing all default literals from remaining rules.

Since the resulting program P I is a definite program, it has a unique least model.
We denote it by least

(
P I
)
. A model M of a normal logic program P is a stable

model of P iff M = least
(
P I
)
.

3 Modularization

We start with the common definitions used in both approaches, which allow us to
define what is the semantics of a set of modules. We will not restrict ourselves to
a fixed definition of a module or of the semantics of a modular program. Instead
we will just assume a mapping that produces a set of stable models for a given
set of modules. Our goal will then be to find an expressive, yet practical way to
define which modules should be used to form the final program in a particular
computation.

Definition 1. (Modular program) Let Names be the set of all possible module
names. Let LMod be the language of logic programs L extended with the special
predicate load module and constants from Names.

A modular program is a set of named LP modules

P = {Pname | name ∈ N}

such that N ⊆ Names.

We consider a modular program to be just a collection of named modules.
A module can take any form, as long as we have the means to determine stable
models of arbitrary sets of modules:

Definition 2. Given a set of LP modules P, we denote the set of its stable
models by

Sem (tP)

Because we want to use the logic programs themselves to encode which mod-
ules should be ”active” we will usually extract this information from stable
models or interpretations. For this we use the special predicate load module/1.

If the predicate load module(modname) holds in an interpretation we are
interested in, we take this to mean, that the module named modname should be
selected when we form the desired modular program.. We therefore introduce the
notion of a subprogram selected by an interpretation. Note that in our definition,
a subprogram is also a modular program and thus we can compute its stable
models.

Definition 3. Let P be a modular program and I an interpretation. We define
the sets of module names selected(skipped) by I as

Sel(I) = {name | name ∈ Names ∧ I |= load module(name)}
Skip(I) = {name | name ∈ Names ∧ I 6|= load module(name)}

Further we define the sub-program of P selected by I as

PI = {Pname | name ∈ Sel(I)}

The definition leaves the opportunity to use more advanced approaches to
modularization, such as preferences or input/output specifications for modules.
We will however consider only very simple method of modularization throughout
our examples and intuitions. We will assume modules to be logic programs and
Sem(t{Pi}) to be defined as the standard stable model semantics of the union
of the modules:

Sem(t{Pi}) = Sem(
⋃
{Pi})

4 Declarative Semantics

In the first approach we provide a declarative definition of the stable models of
a modularized program. This definition is very similar to the usual definition of
stable models: we assume a certain subset of the modules and if, by using these
modules, we can derive exactly this selection of modules then we have found a
stable model.

Given an interpretation, we select the relevant modules denoted by a special
predicate according to definition 3. We then determine the sub-program selected
by this interpretation, compute its stable models and check for our interpreta-
tion.

Definition 4. An interpretation I is a stable model of a modular logic program
P iff

I ∈ Sem(tPI).

Corollary 1. Let P be a modularized logic program. Then the empty model
M = ∅ is a stable model of P.

One drawback of this approach is that modularized logic programs always
have a trivial stable model M = ∅. A possible approach to avoid this is to
require certain initial modules to be always included in Mod(I,P). We do this
by defining the semantics of a modular logic program with an initial set of
modules and force these modules to be present in each model.

Definition 5. An interpretation I is a stable model of a modular logic program
P with initial modules I ⊆ P iff

I ∈ Sem
(
tPI∪{load module(name)|Pname∈I}

)
∧ I ⊆ Sel(I).

The initial modules are always taken into account and they can require other
modules to be present in the computation when conditions are met. Modules can
also support themselves, thus enabling them to be included in the computation,
this however creates dual models where the modules may or may not be included
if no external requirements are present.

Example 1. Consider the following modular program

P = {Pdata, Pbase, Phome, Pschool}

Pdata =

{
at(home). task(homework). load module(data).

location(home). location(school).

}

Pbase =

{
load module(x)← at(x), location(x).

load module(base).

}
Phome =

{
do(X)← task(X)

}
Pschool =

 load module(school)← task(X), school related(X).
done(X)← do(X), school related(X).

school related(homework).


The first module contains data (e.g. a game or application state). The second

module servers as an initial module that decides which modules should be used in
which situations. The home module describes what to do in a certain situation.
The last module tries to additionally force itself to be considered when it is
needed.

There are five stable models of P:

M1 = {}

M2 = {load module(base).}

M3 =

 load module(data).
at(home). task(homework).

location(home). location(school).


M4 = M2 ∪M3 ∪

{
load module(home).

do(homework).

}

M5 = M4 ∪
{

load module(school).
school related(homework).done(homework).

}
There are two stale models of P with initial modules data and home: M4

and M5.

If we assume modules to be logic programs and the semantics of a modular
program to be the stable model semantics of the set-join of the modules, we can
transform a modular logic program into an equivalent normal logic program.

Definition 6. Let P = {Pn | n ∈ Names} be a modular logic program, where
each Pi is a normal logic program that does not contain the predicate skipped(X).
Let Tr(Pn) be a logic program that consists of all the rules from Pn with not skipped(n)
appended to the body. Let Choose(P) be a program containing the rules

skipped(n)← not load module(n).

And finally let the program Tr(P) be defined as

Tr(P) = Choose(P) ∪
⋃

n∈Names

Tr(Pn)

Theorem 1. Let P = {Pn | n ∈ Names} be a modular logic program, where
each Pi is a normal logic program. Then M is a stable model of P (i.e. it is
a stable model of the normal logic program

⋃
(PM)) iff M ′ is stable model of

Tr(P), where M ′ = M ∪ {skipped(n) | n ∈ Skip(M)}.

Proof. Let I be an interpretation such that I 6|= load module(n) → I |=
skipped(n) for each n ∈ Names. The GL reducts of the joined sub-program
(
⋃

(PI))I and the transformed modules (without Choose(P))⋃
Tr(Pn))I are equivalent because:

– Rules from modules not present in the subprogram PI , i.e. the ones for
which I 6|= load modules(n), are excluded from GL reducts of the trans-
formed modules because they contain not skipped(n) in their bodies and
I |= skipped(n).

– For other rules the literal not skipped(n) is removed from the transformed
rules reverting them to their original form.

The GL reduct of Choose(P)I
′

= Choose(P)I is {skipped(n). | n ∈ Skip(I)}.
Furthermore let I and I ′ be interpretations such that I ′ = I ∪ {skipped(n) |
n ∈ Skip(I)}. Then (

⋃
(PI))I = (

⋃
(PI′

))I
′

are identical because none of the
Pn contain skipped(n), and Skip(I) = Skip(I ′)as well as Sel(I) = Sel(I ′).
Therefore I ′ = least(

⋃
(Tr(Pn)I

′
) ∪ Choose(P)I

′
) iff I = least(

⋃
(Tr(Pn)I

′
)).

Let M be a stable model of P and M ′ = M∪{skipped(n) | n ∈ Skip(M)}. M ′
is therefore a stable model of Tr(P) = Choose(P) ∪

⋃
n∈Names Tr(Pn) because

least
(
Tr(P)M

′
)

=

= least
(⋃

Tr(Pn))M
′
∪ {skipped(n). | n ∈ Skip(M ′)}

)
=

= least(
⋃

Tr(Pn))M
′
) ∪ least({skipped(n). | n ∈ Skip(M ′)}) =

= M ∪ {skipped(n) | n ∈ Skip(M ′)} = M ′.

Conversely let M ′ be a stable model of Tr(P). Then there is M such that
M ′ = M ∪ {skipped(n) | n ∈ Skip(M)}. Then least((

⋃
(PM))M) =

= least((
⋃

(PM ′
))M

′
) = least(Tr(Pn)M

′
) which is M .

5 Two Step Semantics

The declarative approach is not very suited for practical applications. We there-
fore present a second approach where a module consists of two programs: a main
program and an activator program as shown in fig. 1. First the activator pro-
grams from all modules are put together and executed. The stable models are
used to decide which modules should be loaded. In the second step the main
programs of selected modules are added together and the query is executed as
shown in fig. 2.

activator_program_1

program_1

Module 1

activator_program_2

program_2

Module 2

Activator

Program activator_program_N

program_N

Module N

...

Fig. 1. Modules

Activator Program ASP ASP
Programs from

 selected modules

load_module("...")

Fig. 2. Modules Processing

We start with the definition of a split module that consists of two LP modules:
an activator module and a main module. A split modular program is then a set of
named split modules. For a split modular program we also define the sets of all
activator and main programs, which are in fact modular programs of definition 1

Definition 7. (Split module) A split module is an ordered pair
Mname = (Aname, Pname), where name ∈ Names is an unique identifier of
the module and Aname and Pname are modules. Aname and Pname are called
activator and main program respectively.

Definition 8. (Split modular program) Let N ⊆ Names. A split modular pro-
gram is a set of split modules

D = {(Aname, Pname) | name ∈ N}.

We denote Act(D) (Main(D)) the modular program consisting of all activator
(main) modules and call it the activator (main) program respectively:

Act(D) = {Aname | (Aname, Pname) ∈ D}
Main(D) = {Pname | (Aname, Pname) ∈ D}

.

To define the semantics of split modular programs we start by computing the
stable models of the activator program Act(D). For a model I ∈ Sem(tAct(D))
we select only relevant sub-programs of the main program: Main(D)I . In the
second step we compute the stable models of this sub-program and pronounce
them to be the stable models of the split modular program.

Definition 9. Let D be a split modular program and I an interpretation. We
define the active program of D w.r.t. I as

DI = Main(D)I .

Definition 10. Let I and M be interpretations and D a split modular program.
We say that (I,M) is a split stable model of D iff

i) I is a stable model of Act(D) (I ∈ Sem(tAct(D)))
ii) M is a stable model of DI (M ∈ Sem(tDI)

We say that M is a stable model of D if there is an interpretation I such
that (I,M) is a split stable model of D.

An important difference to the declarative approach is that the activator
modules of all split modules are always considered. This means that a module
can force itself to be included in the active program, either unconditionally or
when certain facts are present. The main intuition is that activator programs
should be simpler so that the decision which main modules to include can be
made quickly.

Example 2. Consider a split modular program consisting of the following split
modules:

Pdata =
{

at(home). homework done.
}

Adata = Pdata ∪ { load module(data). }

Phome =
{

{go cycling ← homework done.}
}

Ahome =

{
load module(home)← at(home).

load module(school)← not homework done.

}
Pschool =

{
. . .

}
Aschool =

{
load module(school)← at(school).

}
The data module is always active, and thus Pdata will always be considered.

We include the data in both activator and main module so then the other acti-
vator programs can use it to make decisions. The activator program of the home
module creates a conditional dependency on another module and also automat-
ically loads itself when certain facts are present.

Note that it is often desired for the A to be also included in P . We could
incorporate this directly to the semantics modifying the Main(D) to use both
modules (Main(D) = {Pname, Aname | (Aname, Pname) ∈ D}), especially when
A is supposed to be simple. On the other hand, this is something that can be
easily handled by an implementation, giving the user an option to specify the
behaviour either globally or separately for each module.

Also our definition does not give the main program any information about
which modules are really loaded. This can of course be easily circumvented by
including a dedicated fact in each main module, e.g. loaded(name).

As in the case of declarative semantics we can easily create a transformation
into normal logic programs if we consider logic modules to be normal logic pro-
grams and Sem(t{Pi}) = Sem(

⋃
{Pi}). To do this we take a new predicate not

used in any program, say act and for every rule in an activator program of the
form

L0 ← L1, . . . , Ln,not Ln+1, . . . ,not Lm.

we create a rule

act(L0)← act(L1), . . . , act(Ln),not act(Ln+1), . . . ,not act(LM).

Then we create a new rule for each rule of the main programs by adding
act(load module(name)) to the body of the rule, where name is the name of
the respective module the rule comes from.

6 Comparison

We allow modules to be of any form and the semantics of Sem(t{Pn}) to be
completely arbitrary. Therefore we cannot describe any non-trivial relationship
between stable models of modular and split modular programs. We have however
already shown transformations to normal logic programs in the case when mod-
ules are normal logic programs and Sem(t{Pn}) is the stable model semantics
of normal logic program

⋃
Pn.

We can still construct a transformation from split modular programs into
modular programs if we slightly restrict the behavior of Sem(t{Pn}). The re-
quirement we need is that two sets of modules with disjoint literals do not
interact with each other and that the joint models can be constructed from the
respective singular models of the sets.

Definition 11. Let {Pn | n ∈ Names} be a set of LP modules. Then Lit({Pn})
is the set of all literals used in the modules Pn.

Definition 12. Given a set of LP modules P = {Pn | n ∈ Names}, we denote
the set of its stable models by

DSem(tP)

if the following condition holds: Let P and T be two sets of LP modules such
that Lit(P) ∩ Lit(T) = ∅. Then

M1 ∪M2 ∈ DSem(t(P ∪ T)) ⇐⇒ M1 ∈ DSem(t(P) ∧M2 ∈ DSem(t(T))

We just need to ensure that activator and main programs of a split module
do not share literals, that they have unique names and that the main programs
do not include the special predicate load module.

Definition 13. Let D = {(n,An, Pn)} be a split modular program such that
Lit(Act(D)) ∩ Lit(Main(D)) = ∅ and Lit(Main(D)) ∩ {load module(n) | n ∈
Names} = ∅. We also assume that there is no module named act n for any
module named n. We define Rename(Act(D)) as

Rename(Act(D)) = {Aact n | Aact n = An ∈ Act(D)

Then the modular program Tr(D) can be defined as

Tr(D) = Rename(Act(D)) ∪Main(D).

We can now ask for the stable models Tr(D). Because of our assumption on the
semantics we can split these modules into two parts: the one computed by the
activator programs that actually selects which main modules should be loaded
and the one computed by the selected main programs. We just need to ensure
that all activator programs will be considered. We will do this by computing
the stable models of the modular logic program Tr(D) with the set of initial
modules Rename(Act(D)).

Theorem 2. Let D be a split modular program as specified in definition 13,
Let I and M be interpretations such that I ∩M = ∅, I ⊆ Lit(Act(D)), M ⊆
Lit(Main(D)). Then (I,M) is a split stable model of D iff I ∪M is a stable
model of Tr(D) with the initial set of modules {act n | An ∈ Act(D)}.

Proof. Let (I,M) be a split stable model of D. This means that I ∈
Sem(Act(D)) = Sem(Rename(Act(D)) and M ∈ Sem(Main(D)I . Because Lit(D)∩
Lit(D) = ∅ we have Sel(I) = Sel(I ∪M) and therefore

Rename(Act(D)) ∪Main(D)I = (Rename(Act(D)) ∪Main(D))
J

J = I ∪M ∪ {load module(n) | n ∈ Rename(Act(D))}.

Because of the assumption on our semantics I ∪M is a stable model of Tr(D).
Conversely let M ′ be a stable model of Tr(D). According to the assump-

tion on our semantics there are interpretations I ⊆ Lit(Act(D)) and M ⊆
Lit(Main(D)) such that

I ∈ Sem(Rename(Act(D)) = Sem(Act(D))

M ∈ Sem(Main(D)M
′∪{load module(n)|n∈Rename(Act(D))} =

= Sem(Main(D)M
′
) = Sem(Main(D)I).

Thus (I,M) is a split stable model of D.
The requirement for activator and main modules to have completely disjoint

literals is problematic when evaluating queries. In such situations we usually
want activator and main programs to get the same input data. This can be of
course circumvented by renaming not only the programs themselves but also the
data so it uses new literal names.

It is however possible to relax the assumption by allowing the programs to
share certain literals when these literals have the nature of facts, i.e. they will
then be present in all stable models. Formally we would change the disjointness
requirement in definition 12 to Lit(P) ∪ Lit(T) = F and require then that
F ⊆M1 and F ⊆M2.

We also used the semantics of modular logic programs with an initial set of
modules. The plain semantics of definition 4 can be used too, we just need to

– Consider only models that select all the activator programs
– Make sure activator programs will be selected in some model. This can be

done by either adding a module or modify each activator program1.

7 Conclusion

We presented a simple modularization framework, that allows on-demand load-
ing of ASP modules. The language of logic programs is extended with a special

1 Because we do not make any assumptions on the modules, this may or may not be
achieved by just adding load modules(act n) as facts.

predicate that allows a direct description of dependencies between modules and
conditions specifying when the modules should be loaded directly in ASP pro-
grams. Two approaches were presented: a declarative approach and a two-step
approach more suitable for practical applications. Neither of the approaches as-
sumes any specific way of combining the modules or of obtaining the stable
models of the modular program. They can be thus used in conjunction with
other approaches to modularization or with other classes of logic programs than
normal logic programs.

References

[BLM94] Michele Bugliesi, Evelina Lamma, and Paola Mello, Modularity in logic pro-
gramming, Journal of Logic Programming. 19/20 (1994), 443–502.

[BMPT94] Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini, Mod-
ular logic programming, ACM Trans. Program. Lang. Syst. 16 (1994), no. 4,
1361–1398.

[EGV97] Thomas Eiter, Georg Gottlob, and Helmut Veith, Modular logic program-
ming and generalized quantifiers, LPNMR ’97: Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning
(London, UK), Springer-Verlag, 1997, pp. 290–309.

[GL88] Michael Gelfond and Vladimir Lifschitz, The stable model semantics for
logic programming, Proceedings of the Fifth International Conference on
Logic Programming, The MIT Press, 1988, pp. 1070–1080.

[GS89] H. Gaifman and E. Shapiro, Fully abstract compositional semantics for logic
programs, POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA),
ACM, 1989, pp. 134–142.

[JOTW07] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran,
Modularity aspects of disjunctive stable models, Logic Programming and
Nonmonotonic Reasoning, 9th International Conference on Logic Program-
ming and Nonmonotonic Reasoning LPNMR 2007, Tempe, AZ, USA, May
2007, Proceedings (Tempe, Arizona, USA) (Chitta Baral, Gerhard Brewka,
and John Schlipf, eds.), Lecture Notes in Artificial Intelligence, vol. 4483,
Springer-Verlag, May 2007, pp. 175–187.

[OJ06] Emilia Oikarinen and Tomi Janhunen, Modular equivalence for normal logic
programs, Proceedings of the 17th European Conference on Artificial Intel-
ligence (Riva del Garda, Italy) (Gerhard Brewka, Silvia Coradeschi, Anna
Perini, and Paolo Traverso, eds.), IOS Press, August 2006, pp. 412–416.

