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Abstract. We discuss how a path planning problem for a robotic plat-
form was solved modeling it with the axioms of the action language AL
and described in Answer Set Programming, ASP. The environment of the
autonomous vehicle is static. A set of dynamic, static and inertial laws
are used to describe the vehicle domain. The optimum solution is chosen
using two criteria: minimum distance and minimum obstacles dodged
required to arrive to the goal. One advantage in using ASP for plan-
ning problems is related with its complexity. In case of classical planning
problems it is known they are PSPACE-complete for finite domains and
undecidable in the general case. By fixing the plan length, the planning
problem is reduced to NP-complete. Since Answer Set Programming is
a totally declarative language, the problem solution relies in the ASP’s
solver, which is NP-space, as it has been already proved elsewhere. Con-
sequently, for solvable problems, the solutions are always found.
Keywords: Planning, Answer Set Programming, Action Languages.

1 Introduction

There is a wide spectrum of applications where domestic and service robots are
required, like medical and manufacturing applications [14], [5]. In contrast to
popular idea of humanoid robots, promoted by media, real-world applications
happen in closed spaces and generally use fixed robots or robots mounted on a
platform.

A fundamental problem of a mobile robot is to find a collision-free path to
its target, while minimizing the total cost. Approaches to robot motion plan-
ning can be roughly divided into two categories: the classical motion planning
or model-based motion planning, and sensor-based planning. These categories
also reflect whether the path planning is global (model-based motion planning)
or local (sensor-based planning). The first approach assumes that the robot sys-
tem has an explicit representation of the environment. On the other hand, in
the second approach, the environment is unknown and the robot is driven di-
rectly by the sensors input without building an internal representation of the
environment. Examples of global path planning methods are genetic algorithms
and neural networks based methods, [4] and [5]. However, most of popular local
path planning approaches are potential field and bug algorithms [6].
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Typically, a path planning problem is modeled taking into account the config-
uration space (C) formed from the free configuration space (F) and the Obstacle
Space (O). F is the subset of C in which the robot does not intersect any obsta-
cle. The dimension of C depends on the degrees of freedom (dof) of the robot. A
robot working in 3D environments has at least 6 degrees of freedom. Three are
used to represent the robot’s position and the other 3 are used for the robot’s ori-
entation. For robots with high dofs there are no algorithms capable of compute
an exact solution to the problem and approximate solutions are used instead. For
this reason, a large family of model-based planners has been developed through
the years, [8].

Main issues to be considered for robot path planning are related to the com-
putational complexity, local optimum and low adaptability to the environment.
Besides, there are other aspects that must be taken into account such as the
robot physical characteristics, the application type and the robot’s environment
in order to choose the best methodology to model and solve the planning prob-
lem.

In spite of our path planning problem is situated in a static environment,
our next research stage will deal with a dynamic environment and our robot will
have sensing capability to adjust the plan every time will be needed according to
new sensing information arrives. Based on this considerations, it was evident we
should select an appropriate formalism capable of reasoning about action effects
and world changing.

The axiomatization of domains through action theories add expressiveness
and elegance to the problem description. More importantly, building the plan-
ner on formal validation methods let us be confident that the encoding of any
domain will yield correct results. In the last years, several formalisms oriented
to dynamic worlds have been designed [13]. Action Languages [7] are considered
one of the more promising formalisms and, in particular, the action language
AL shows important advantages over other action languages, basically because
it axiomatizes the frame and qualification problems [15].

At the initial research stage of our work, we have only considered the model-
based motion planning problem. The focus of this research is to solve the path
planning problem for a robotic platform working in a static environment. The
problem is modeled using the formalism of the action language AL and coding
in Answer Set Programming. The answer sets or solutions are found by Clingo,
which is the most efficient solver nowadays as the results of the last ASP solvers’
competition reported [16].

2 Issues on the Robot Platform Motion Planning

Robotic systems of this type normally include a hierarchy of behaviors. A generic
two-layer hybrid architecture was chosen for our robot platform. Top layer deals
with highest cognitive processes for world modeling and planning. The bottom
layer integrates a set of device drivers to control the robot sensors and actuators.
Low level device drivers were developed in the C language.
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The focus of the current research was on the top layer without interacting
with the bottom software layer or hardware. Currently we are working on the
integration of both layers. Once this integration be realized, the planner will be
capable of solving the planning problem interacting concurrently with the bot-
tom layer doing the plan execution and the planner must be capable of adapting
the original plan whenever is needed, based on the perception system readings.

3 Action Theories and Planning Languages for Complex
Environments

While studying changing world dynamics, AI research has developed a number of
techniques ranging from simple ones like space search, to procedural, probabilis-
tic and deductive ones. Automating reasoning about common sense knowledge
implies, among other things, reasoning about actions and environmental changes.

Attempts in solving challenges like the knowledge-action relationship has had
a deep influence on current directions taken by the AI community. There exists,
nowadays, a number of formalisms to reason about knowledge which allow an
agent to adapt its beliefs based on the environment changes he observe. However,
these models do not involve reasoning about action properties causing these
changes. For dynamic environments it is necessary to have a set of action theories
which take into account the environment state and its change, besides a notion of
causality of potential action side effects, action preconditions, and relationships
between fluents and side effects of actions. Therefore, it is extremely important
to find a formal frame gathering together action theories in order to model real
world applications requiring knowledge acquisition, its storage in a knowledge
base and that could realize actions in real-time [2].

In the reasoning about action and change arena (RAC), there exist signifi-
cant advances and powerful theories that have been designed to express formally
knowledge and changes caused by actions. Among most relevant models axioma-
tizing the RAC problem we find STRIPS, Situational Calculus, Fluent Calculus,
Event Calculus [10] and Action Languages. Extensions of these models have de-
veloped several planning languages like Golog derived from Situational Calculus,
Flux derived from Fluent Calculus, Language E derived from Event Calculus and
several action languages like A, B, C and more recently, AL [13].

These models and extensions differ from each other in several aspects, like
time management and concurrency, no determinism and uncertainty, action de-
rived knowledge, and others. Since world knowledge is not completely certain
and sometimes contradictory to previous knowledge, it is asked these models be
able to reason using beliefs instead of knowledge. Both Situational Calculus and
Fluent Calculus provide extensions which reasons using beliefs. However, these
extensions do not provide solutions to the similar frame problem in the context
of beliefs. Instead, the action language AL axiomatizes both the frame problem
and the branching problem.

In dynamic environments we have to consider not only the action effects
but also the relationship between fluents. For instance, in a robot path planning
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problem we could find the following relations between fluents: a) the robot cannot
be in A if it is in B, and b) the robot is close to C if it is in B. Moreover, the
static law (b) implies that it is true that the robot is close to C since it is an
indirect effect of moving the robot from A to B. This side effect is an instance
of the branching problem.

In spite of the solutions proposed for the branching problem and several
development frames, it is uncommon in practice to use static causal laws in
planning. The Planning Domain Description Language (PDDL) allows to imple-
ment static causal laws or axioms, but it is not common to use them in designing
a planner since PDDL axioms do not allow recursion, and this limits its use.

4 Answer Set Programming in a Nutshell

A problem can be encoded as a set of facts, rules and constraints that describes
the (candidate) solutions. An ASP-program is a collection of rules of the form

ao ⇐ a1, . . . , an not am, . . . , am+k (1)

where each ai is an atom. The left hand side and the right hand side of the
clause are called head and body, respectively. The head of a rule is a positive
literal and its body is composed of literals (a literal is an atom a or its negation,
denoted by not a). A rule without body is a fact. A rule without head is a
constraint. Also, the rules can be positive (n > 0); negative (m > 0) or both
(n > 0 and m > 0). The symbol not stands for default negation, also known as
negation as failure.

If P is a ground, positive program, a unique answer set is defined as the
smallest set of literals constructed from the atoms occurring in program P. The
last definition can be extended to any ground program P containing negation
by considering the reduct of P w.r.t. a set of atoms X obtained by the Gelfond-
Lifshitz’s operator [6].

Once a program is described as an ASP-program P, its solutions, if any,
are represented by the answer set of P. One important difference between ASP
semantics and other semantics is that a logic program may have several answer
sets or may have no answer set at all.

Answer Set Programming is a totally declarative language. ASP programs
are not algorithms describing how to solve the problem; the program is just a
formal description of the problem. The solution is completely found by the solver.
An ASP solver requires grounded programs as input, and that is why before
searching the answer set or solutions, the program is grounded by a preprocessor.
Actually there are many ASP’s solvers.

5 The Path Planning Problem

The implementation of a planner for some dynamic domain starts with encoding
of fluents and actions about the domain as an action theory X of some action
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language. In the last years, numerous action languages have been developed.
Our robot’s domain was modeled like axioms in the action language AL, which
is basically an extension of the action language A. The AL language allows
reasoning about action and change, through axiomatizing the qualification and
ramification problems. The ramification problem basically consists in determine
the effects of indirect actions. For instance, if the robot is moved from node 2 to
node 8, at the end the robot is in node 8 [12].

The path planning problem was modeled based on the formalisms of the
action languageAL through a domain description containing the initial state and
a set of action laws, equivalently, it can be said that the domain is represented
by a transition diagram whose nodes are the possible states of the domain and
whose arcs are actions that take the domain from one state to another. Paths in
the diagram correspond directly to possible trajectories of the robot.

In this first approximation to the solution of the path planning problem, the
problem was simplified assuming a) that the robot will be situated in a static
environment and, b) the only goal of the planner is to take the robot from an
initial point to a goal point throughout a certain number of obstacles.

The work area is represented as a 2D space. Each obstacle is a closed polygon.
The polygon’s vertexes are numbered. This way, an obstacle is defined in a map
by its vertexes coordinates and the relations with the other obstacles.

Fig. 1. Workspace map used in the example

In calculating a path there are certain physical aspects that could be con-
sidered as a constraint problem. Two important restrictions that must be taken
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in account are the actual robot position and the possible move that the robot
can execute at the next step. These valid movements are directly related to the
current robot position (robot state or node) since at each step the robot can
only move to nodes directly linked to the one it currently is on.

Figure 1 shows the workspace a map used as an example.
Information about obstacles consists of their positions and connections be-

tween obstacles. The following code fragment shows how the initial state is rep-
resented in AL .

pt(0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;str;gol).

link(0,1;3;4).

%% node coordinates.

loc(node, x, y)

Fluents represent properties of objects that could change during the solution
evolution. In our example, fluents required are the robot position and coordinates
to which the robot can move.

fluent(on(r,X)) :- pt(X).

holds(on(r,str),0).

holds(neg(F),0):-fluent(F), not holds(F, 0).

In predicate on(r,X), r represents the robot and X represents the node where
the robot is currently positioned. The initial robot position is given by holds(on(r,
str), 0). The second holds rule says that if it is not possible to know whether a
fluent holds for an initial time 0, then the fluent must be negated, ergo, there
are not reasons to believe that fluent F holds at time zero.

In this domain just a single action is required: the motion from some point
to another. This action is defined by the rule

action(move(X,Y)) :- pt(X;Y), link(X,Y).

Static laws (or axioms) constitute an important part of every dynamic do-
main. Unlike an effect of an action, a static causal law represents a relationship
between fluents. For instance, the following rule stands that at time T the robot
cannot be at Y point if the robot is at Z or equivalently, at time T is false that
the robot is at Y if it is true that the robot is at Z.

holds(neg(on(r,Y)), T) :- time(T), pt(Y;Z), holds(on(r,Z), T),

Y != Z.

The valid moves are established using the enforce law described below

possible((move(X,Y)),T):-time(T),pt(X;Y),holds(on(r,X),T), not

hold(on(r,Y), T-1)
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This rule says that the robot can goes from point X to point Y at time T if
the robot is at point X at time T and the time immediately before T, (T-1), the
robot has not been at point Y, in other words, it is not allowed the robot chooses
a point previously visited. This rule avoids a robot left trapped in a cyclic path.

Solutions with movements no considered by the possibility law are eliminated
using the following restriction

:- action(A1), time(T), occ(A1, T), not posible(A1,T).

Because the robot is situated in a dynamic environment, each time the robot
moves from one point to another, the world state changes. In action languages
like AL, these changes are defined by dynamic laws. These laws express the
effects of actions. Since only one action was defined in this problem, the unique
effect of this action is that the robot will be in a different place each time that
a movement occurs.

holds(on(r,X),T+1):-time(T),pt(X;Y),holds(on(r,Y),T),

link(Y,X), occ(move(Y,X),T).

The commonsense law of inertia stands that in absence of information, all
properties of the world can be assumed to remain as they were in the past. The
idea behind commonsense inertia is known as the frame problem. The inertial
law is defined by the following rule:

holds(on(r,X), T+1):-pt(X), time(T), holds(on(r,X), T),

not holds(neg(on(r,X)), T+1).

The interpretation of this law is if it is not known that the robot has not
moved from the point X at time T therefore, at time T+1 the robot must be at
point X.

Only one action is allowed each time and the time line must not be larger
than time n, defined by the user. This conditional rule is written as

1 {occ(A1,T) : action(A1) }1:- time(T), not holds(on(r,gol),T).

The plan is finished once the robot arrives to the goal state in the specified
time. And all solutions not satisfying the time criteria must be eliminated.

arrive :- holds(on(r,gol),T), time(T).

:- not arrive.

Additionally, since the planner’s goal is to find a path optimized for some
parameters, the most convenient solution is chosen among the set of solutions
using some optimization criteria.

In our case the optimization criteria are two: a) minimum distance and, b)
minimum steps required to go from the initial state to the goal state. Minimum
distance is calculated based on point coordinates. Both, minimum distance and
minimum steps are passed as the optimization criteria. Distance is prioritized
over minimum steps, but both are considered. The following code fragment de-
tails all of this:
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dis(T,DX,DY,DT):-at(on(r,P1),T), at(on(r,P2),T+1),

loc(P1,X1,Y1),loc(P2,X2,Y2),DX:=#abs(-(X1-X2)),

DY:=#abs(-(Y1-Y2)),DT:=DX+DY.

#minimize [ dis(T,DX,DY,DT) = DT @ 1].

#minimize [ at(on(r,gol),T) = T @ 2 ].

6 Conclusions

Results achieved until now have shown that the formalization of action lan-
guage AL and its representation with Answer Set Programming represent a
good methodology to solve planning problems for mobile robots. Our experi-
mental results found that for any start point and any goal point of the consid-
ered workspace, the time required to find the optimal path is in the order of
microseconds with a machine running Linux and a CPU of 2.33 Mhz and 1 Gb
of RAM. Obviously, different results will be achieved using a different compu-
tational platform. We are in the process of testing the planner in more complex
settings. Additionally, ASP and the action language AL showed to be superior
to probabilistic and heuristic methodologies used frequently to solve this type
of planning problems. Probabilistic methodologies have the disadvantage that
their solutions are not optimal, only near optimal. By another side, heuristic
methodologies can be lost in local minimum, and some times the solution found
is far from the optimal solution. The ASP solver is a complete algorithm and
consequently the algorithm finds all the solutions, if any.

Besides, because the declarative nature of the paradigm, modularizes a pro-
gram becomes straightforward. If the initial state description is separated from
the domain then whenever the robot is put to work in a different world, it is
not necessary to rewrite the program. In fact, the domain description remains
exactly the same, and just a new description of the initial state needs to be
added.

Finally, our intention is to incorporate robot capabilities to enable it operate
in dynamic environments like manufacturing. In fact, choosing the action lan-
guage AL was greatly motivated by this ultimate goal. Since the action language
AL has been precisely designed for situations where reasoning about actions and
change is needed, as in planning, we hope the AL language will simplify extend-
ing the program so the robot can react in the presence of unexpected events
by incorporating all the extra static, inertial and dynamic laws describing the
possible events the robot must face.
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