A GMP-FC++ implementation of a calculator
for exact real number computation based on

LRT

J. Raymundo Marcial-Romero, Alejandra Y. Lucatero, and J. A. Herndndez

Universidad Auténoma del Estado de México (UAEM)
Facultad de Ingenieria
Toluca, México
rmarcial,alejandra,xosehernandez@fi.uaemex.mx

Abstract. In the last decade, there have been several implementations
of exact real number computation. All of them try to establish an stan-
dard to use in different programming languages. However, none of them
has succeeded on that goal. In this paper, we present another imple-
mentation of a calculator for exact real number computation based on
the sound and complete theoretical programming language LRT. The
calculator is programmed in FC++ and GMP. FC++ has the elegance
of functional programming while GMP allows to compute faster to the
required number of digits. We present the logistic map implementation,
to show preliminary efficiency results compared to other functional pro-
gramming implementations.

Key words: Exact real-number computation; Sequential Computation; PCF;
Semantics of programming languages.

1 Introduction

The exact real number computation paradigm avoids the rounding off errors
that occurs in floating point arithmetic. The main reason is that the reals are a
field while the floating point numbers are not. Exact real number computation
allows to calculate with real numbers to the required precision without carry
on rounding errors. There have been several theoretical proposals to exact real
number computations [17,5, 10]. Most of them have succeeded to prove that the
theory is sound and complete. However, when they have been implemented, none
of them has achieved to be efficient and straightforward to translate from the
theory to the practice.

On the other hand, implementations such as IRRAM [14], MPFR [6] and Re-
alLib [8] have been developed in C and C++, however, in order to run faster, they
have lost the elegancy of functional programming and also, they have slightly
deviated from the theory. Although we consider that faster implementations is
what is required in practice, we believe that there is increased confidence in the
correctness of an implementation the closer it is to the original theory. A pair of

71

implementations which have a close harmony between theory and practice are
Era [2] and a corecursive sign digit representation [3], implemented in Objec-
tive Caml and Coq respectively. However, Era, as said by the authors, is slower
than IRRAM since C++ generally compiles to more efficient code than Objetive
Caml. Respect to the corecursive implementation, although an excellent theory
is presented, the efficiency is never mentioned.

A further well established theory for exact real number computation is LRT
(Language for Redundant Test) [10]. It has been proved that any computable
first order function can be defined in LRT [12]. Moreover, an implementation of
LRT in Haskell has been presented on Marcial et. al [11]. However, its efficiency
compared to a sign digit representation [16] was very poor. In this paper, we
present an implementation of LRT on the programming language FC++. FC++
is an extension of C++ which allows to translate functional programs in almost
an straightforward way, meaning that the elegancy of functional programs is
there. Since the types of FC++ are the standard of C++ (which implies that
numbers are truncated or rounded), we use instead the types of GMP. GMP is
a well known library which computes arithmetic operations faster than many
other implementations. Additionally, GMP allows to compute to any required
precision.

The paper is divided as follows, in section 2, the language LRT is defined.
In section 3 a brief explanation of the implementation is discussed followed by
a comparison of efficiency of an important function presented in the literature.
Finally the conclusions and further work is discussed.

2 The LRT Language

We introduce the LRT language, which amounts to the language considered
by Escardé [5] with the parallel conditional removed and a constant rtest;,
added. This is a call-by-name language.

2.1 Syntax

The language LRT is an extension of PCF (Programming Computable Func-
tions) with a ground type for real numbers and suitable primitive functions for
real-number computation. Its raw syntax is given by

x € Variable,

t::=nat |bool |I|t—t,

P:=z|n|true|false | (+1)(P) | (-1)(P) |
(=0)(P) | if Pthen Pelse P | cons|yq)(P) |
tailjyq(P) | rtesty,(P) [Az :t.P | PP |YP,

where Variable is a set of variables, ¢ represents a set of types, in this case the
language has three ground types, the natural numbers type (represented by nat),

72

the booleans (represented by bool) and the unit real number type (represented
by I which denotes the set of intervals in [—1, 1], as it was shown in [9] the com-
plete computable real line can be easily represented in this language, even more
the implementation presented here considers the complete real line). The type
t — t denotes higher order types. The constructs of the language (represented
by P) are the variables (represented by), the constants for natural numbers
and booleans (represented by n, true and false), the succesor, predecesor and
equal test for zero operations for naturals numbers ((+1), (-1) and (=0)), the
classical if operator of almost any programming language; three operation for
exact real number computation (cons, tail and rtest) where the subscripts
of the constructs cons and tail are rational intervals (sometime written as a
or [a,a]) and those of rtest are rational numbers. The last three constructors
of the languages are those of the lambda calculus (Az : t.P, PP and YP) where
the first denotes abstraction, the second application and the third recursion.
Because the intention of this paper is not to present the denotational se-
mantics of the language which is based on powerdomains [10], we just present
the mathematical objects which describe the cons, tail and rtest constructors.
The others are the well known PCF constructors and can be consulted at [7,15]

Let D C [—1,1], the function cons,: D — D is the unique increasing affine
map with image the interval a, i.e.,

_ a—a at+a a—a_ a+a
cons, g)([z, 7]) = 3 x+ 5 5 T+ 5

That is, rescale and translate the interval [—1,1] so that it becomes [a,d],
and define cons|,7/([z,7]) to be the interval which results from applying the
same rescaling and translation to [z, Z]. In order to keep the notation simple,
when the context permits we use x to represent [z,Z], meaning that the same
operation is applied to both end points of the interval obtained, for example the
cons function can be written as:

consy g)(z) = a;Qx—l- a;rg (1)

The function tailj,g)(z): D — D is a left inverse, i.c.

tail,(cons,(x)) = .
More precisely, the following left inverse is taken, where x, is a—a and 7, is a+a:
tailfyq)(7) = max(—1, min((2z — 74)/Kq, 1)).

This definition guarantees that the range of the tail function is in the in-
terval [-1,1]. The details of why this is a convenient definition can be consulted
in [5]. It is worthy to mention that an infinite shrinking sequence of cons in-
tervals represent a real number in the interval [—1, 1], the operational semantics
defined below gives a rule for constructing a real number.

73

The definition of the function rtest;, : D — {true,false}, where [< r are
rational numbers, can be formulated as

true, if x C (—o0,],
rtest; . (z) = < true or false, ifz C (I,7), (2)
false, if z C[r,00).

The function rtest; . is operationally computable because, for any argument x
given intensionally as a shrinking sequence of cons intervals, the computational
rules systematically establish one of the semidecidable conditions [< Z and
x < r where [,r are rational numbers.

2.2 Operational Semantics

We consider a small-step style operational semantics for our language. We
define the one-step reduction relation — to be the least relation containing the
one-step reduction rules for evaluation of PCF [15] together with those given
below.

We first need some preliminaries. For intervals a and b in [—1, 1], we define

ab = cons,(b),

where cons is the function defined previously. This operation is associative, and
has the interval [—1,1] (denoted by L) as its neutral element [5]:

(ab)e = a(be), al =_la=a.
In the interval domain literature [1], a C b iff b C a. Moreover,
aCb < dce D.ac=0b,
and this ¢ is unique if a has non-zero length. In this case we denote ¢ by
b\ a.
For intervals a and b, we define
a<b << a<d

and
aTh < dc.a<candb<ec.

With this notation, the rules for Real PCF as defined in [5] are:

74

(1) cons,(consy M) — consg, M

(2) cons, M — cons, M’

(3) taily(consy M) — Ycons|_q g if b < a

(4) tail,(consyM) — Yconsj) ifb>a

(5) tail,(consy M) — consy\ M if a Cbanda#b
(6) tail, (M) — tail, (M)

(7) if true M N - M

(8) if false M N — N

(9) if M Ny Ny — if M’ N; N

For our language LRT, we add:

(10) rtest; .(cons, M) — trueif a <r
(11) rtest; .(cons, M) — false if [< a
(12) rtest;, M — rtest;, M if M — M.

Remarks:

1. Rule (1) plays a crucial role and amounts to the associativity law. The idea
is that both a and b give partial information about a real number, and ab is
the result of gluing the partial information together in an incremental way.
See [5] for a further discussion including a geometrical interpretation.

2. Rules (2), (6), (9) and (12) are applied whenever any of the other rules are
matched.

3. Rule (3) represents the fact that we already know that the rest of the real
number we are looking for is an infinite sequence of the interval [—1,0], i.e.

Ycons|_; o) = cons|_; gj(cons|_j g(...))

4. Rule (4) is similar to rule (3).

5. Rule (5) is applied when the partial information accumulated at some point
contains the interval of the next input.

6. Rules (7) and (8) are the classical conditional rules.

7. Notice that if the interval a is contained in the interval [[, r], rules (10) and
(11) can be applied.

8. Rules (10)-(12) cannot be made deterministic given the particular computa-
tional adequacy formulation which is proved in [10].

9. In practice, one would like to avoid divergent computations by considering
a strategy for application of the rules. In [10] total correctness of basic algo-
rithms and in [13] total correctness of first order functions are shown, hence
any implementation of any strategy will be correct.

For a deeper discussion of the relation between the operational and denota-
tional semantics of LRT, the reader is referred to [10, 13].

75

3 The Implementation

Due to the lack of space, in this section we only present and explain a pair
of GMP-FC++ implementations of the operational semantics described in the
previous section. The idea is to illustrate the straightforward translation of the
algorithms presented in [10] to our framework and present an implementation of
the logistic map comparing its efficiency with previous functional programming
implementations [16, 11].

We represent in FC++ the real numbers by the datatype RExpMan which
consists of a pair of the form (mantissa, exponent) where the mantissa is an
infinite list of rational intervals in [-1,1] and the ezponent is an integer. This
exponent allows to represent real numbers outside the unit interval. For example
3.17 can be represented by 0.79 x 4, which in our notation is represented by
(0.79,4), and 0.79 is represented by an infinite list. The datatype is defined in
FC++ in the following way:

typedef struct{
mpf_t upper;
mpf_t lower;

}Interval;

typedef struct{

List< Intervalo > listaRExpMan;
int exponent;

}RExpMan;

An Interval is a pair of GMP numbers of the form (lower, upper). A real
number is represented by an infinite list of intervals and an exponent. Notice
that we have not restricted the GMP intervals to be in the interval [—1,1],
however their use in the implementation do.

Example 1. An easy example is the representation of the real number 1 which
can be coded as follows:

struct InfiniteListOne :
public CFunType<List<Intervalo>> {
List<Intervalo> const {
Interval il;
mpf_init_set_ui(il.lower,0);
mpf_init_set_ui(il.upper,1);
return cons(il, curry(InfiniteListOne()));

}

} listainfinita;

The intuition behind this program is the following. An unfolding of the pro-
gram gives the interval cons(0,1). Since the procedure calls itself, a second
unfolding gives the intervals cons(0, 1)cons(0, 1). This procedure does not have

76

a basic case, so a potential infinite list of intervals of the form cons(0,1) is
generated. Since FC++ can be used as a call-by-need language, a call to the
procedure InfiniteListOne returns the number of intervals according to what is
required.

The cons operation presented in equation 1 is implemented as follows:

struct Conz :
public CFunType< Interval, Interval, Interval >{
Interval operator() (Interval a, Interval x) const {
mpf_t aux;
mpf_init2(aux, Prec);
mpf_init2(iC.lower, Prec);
mpf_init2(iC.upper, Prec);

// (aUp - alow) / 2 -->A
mpf_sub(aux, a.upper, a.lower);
mpf_div_ui(aux, aux, 2);

// (A) *x -—>B
mpf_mul (iC.upper, aux, x.upper);
mpf_mul(iC.lower, aux, x.lower);

// (aUp + aLow) / 2
mpf_add (aux, a.upper, a.lower);
mpf_div_ui(aux, aux, 2);

mpf_add(iC.lower, iC.lower, aux);
mpf_add (iC.upper, iC.upper, aux);
mpf_clear (aux) ;

return iC;

!

} conz;

According to equation 1 cons is a lineal function which takes two intervals
as inputs an returns a single interval as output stated in the code by < Interval,
Interval, Interval >. The initialization of variables in GMP is done by the func-
tion mpf_init2. This function takes two arguments, the variable to be initialized
and its precision in terms of bits. In this case an auxiliary temporal variable and
a global interval variable, in which the result is returned, are initialized. Basic
operations like addition, subtraction, etc. are computed in GMP with especial
procedures. These operations begin with the word mpf . The comments included
in the code, indicate which operation is performed. The reader can compare the
operations against equation 1. Finally, the procedure mpf clear, free dynamic
memory allocation used by GMP, in this procedure the unique local variable is
aux. A similar implementation is coded for the tail function.

77

To approximate a real number, the first rule of the operational semantics is
applied to the elements on the mantissa as many times as precision is required.
If the first rule is not applied, a further evaluation of the input list should be
done. We present the first two rules of the operational semantics. The others are
coded similarly.

struct Evaluation :
public CFunType< List< Interval >, List< Interval > >{
List< Interval > operator()(List< Interval > eI) const {
Interval consl, cons2;
consl = head(el);
el = tail(el);
cons2 = head(el);
// cons_a(cons_b(M)) — cons_ab(M)
if(consl.type == O && cons2.type == 0){
el = tail(el);
return cons(conz(consl, cons2) , el);
// cons.aM — cons_aM’
telse if(consl.type == 0)
return Evaluation() (cons(consl, Evaluation() (eI)));

Ezample 2. Considering Example 1, a call to take I (Fvaluation(InfiniteListOne))
returns the interval cons(1/2,1). The reason is that a call by-need determines

that two members of the infinite list InfiniteListOne are needed in order to ob-

tain an element of the call. A take 2 call returns the interval cons(3/4,1). Thus,

Fvaluation(InfiniteListOne) produces a shrinking sequence of intervals converg-

ing to 1.

It is worth to note that this implementation of the operational semantics only
works with real numbers in the interval [—1,1]. The final result to the desired
precision is calculated multiplying both interval end points at the head of the
mantissa by 2 to the power of the exponent.

A last operational semantics rule presented in this paper is the non-deterministic
rtest operator. This operator can be programmed in two ways as pointed out
in the previous section. One of them is the following;:

struct RTest : public CFunType< mpf_t, mpf_t, List< Intervalo >, RTestDev >{
RTestDev operator() (double 1, double r, List< Intervalo > i) const {
Intervalo aux = head(i);
RTestDev rtestdev;
/] T <=7
if (mpf_cmp_d(aux.upper, r) <= 0){
rtestdev.b = true;
rtestdev.listaRTest = i;
return rtestdev;

78

/] x >=1
telse if (mpf_cmp_d(aux.lower,1) >= 0){
rtestdev.b = false;
rtestdev.listaRTest = i;
return rtestdev
// neither T <=7 nor £ >= |
}else{
return RTest() (1, r, curry(evaluation, i));

}
}

} rtest;

We hope that the discussion of the previous codes, together with equation 2
allows the reader to understand the implementation of rtest.

3.1 The logistic Map
The logistic map is a function f : [0,1] — [0, 1] defined by

/(@) = az(1 -)

for a given constant a. Devaney [4] stated that it was first considered as a model
of population growth by Pierre Verhulstby in 1845. For example, a value 0.5
may represent 50% of the maximum population of cattle in a given farm. The
problem consists on, given a real number z(, to compute the orbits

o, f (o), f(f(20)) .. ["(0), -,

which collect the population value of successive generations. The purpose is to
compute an initial segment of the orbit for a given initial population xo. It has
been identified that choosing a = 4 is a chaotic case. The main problem is that
its value is sensitive to small variations of its variables. The result of computing
orbits for the same initial value ¢y = 0.671875 | in simple and double precision
in the C programming language is shown in Table 1. Also, Table 1 shows the
exact result and the value obtained using our FC++ implementation. As it can
be noticed the tables are equal up to n = 7. From row 8th up to 39th the
double, exact and FC++ column report equal results. From row 40th the C
double implementations show a small deviation from the exact result and at
the last 63rd row this deviation is more evident. It is worth to mention that
every exact real number computation implementation must produce the correct
result as is the case in our implementation. The main drawback of the functional
languages implementations is the execution time taken to compute the orbits.
The implementation presented here improves the efficiency to compute the result
as can be seen in column five of table 1 compared to column six of the same
table. It is fair to say that implementations like iRRAM, programmed on C++,
run much faster than the one presented here, however we have not explore the
different mechanisms employed by iRRAM. In a further version of this paper
we will present another implementation considering mainly efficiency. In this
first version, we wanted to show that it is possible to go from the theory to the
practice in a smooth way.

79

n |[Simple |Double |[FC++ imple-|Exact FC++ Sign Digit
precision |precision jmentations Result |Time Time

0 |0.671875 |0.671875 |0.671875 0.671875 |0 0

1]0.881836 |0.881836 [0.881836 0.881836 |3 ms 20 ms

2 10.416805 |0.416805 |0.416805 0.416805 |5 ms 30 ms

3 10.972315 |0.972315 |0.972315 0.972315 (13 ms 80 ms

4 10.107676 |0.107676 |0.107676 0.107676 |22 ms 190 ms

5 0.384327 |0.384327 |0.384327 0.384327 (42 ms 550 ms

6 10.946479 [0.946479 |0.946479 0.946479 (61 ms 1.13 s

7 10.202625 [0.202625 [0.202625 0.202625 |103 ms 1.14 s

8 10.646272 |0.646273 |0.646273 0.646273 |138 ms 2.24 s

9 10.914417|0.914416 |0.914416 0.914416 {189 ms 4.77 s

10 0.313033 |0.313037 |0.313037 0.313037 |222 ms 10.69 s

11]0.860174 |0.860179 [0.860179 0.860179 (352 ms 24.7 s

12 10.481098 |0.481084 [0.481084 0.481084 |607 ms 53.16 s

1310.998570 |0.998569 [0.998569 0.998569 |850 ms 1.78 min

14 10.005708 |0.005716 |0.005716 0.005716 |854 ms 3.10 min

15 10.022702 |0.022735 [0.022735 0.022735 |870 ms 4.54 min

16 |0.088747 |0.088875 |0.088875 0.088875 1.13 s 9.80 min

1710.323485 |0.323907 |0.323907 0.323907 |1.42 s 20.43 min

18 10.875370 |0.875965 [0.875965 0.875965 |2.46 s 46.59 min

19 10.436386 |0.434601 |0.434601 0.434601 |2.47 s > 1 hour

20 |0.983813 |0.982892 |0.982892 0.982892 |2.53 s > 1 hour

25 10.652836 [0.757549 |0.757549 0.757549 |8.23 s > 1 hour

30 /0.934926 |0.481445 |0.481445 0.481445 (39.49 s > 2 hours

350.848152 |0.313159 |0.313159 0.313159 |2.25 min |> 2 hours

39 10.014638 |0.006038 |0.006038 0.006038 |5.66 min |> 3 hours

40 |10.057695 |0.024007 |0.024009 0.024009 |5.75 min |> 3 hours

50 /0.042173 |0.629401 |0.625028 0.625028 [10.83 min |> 4 hours

55/0.108415 |0.749775 |0.615752 0.615752 |112 min |> 5 hours

60 /0.934518 |0.757153 |0.315445 0.315445 [15.7 min |> 6 hours

63 |0.770667 |0.690457 |0.996571 0.996571 |18.38 min |> 6 hours

Table 1. Results of computing the logistic map for simple and double precision in the
C programming language, our implementation and the exact result. From values n = 8
and n = 40 the simple and double precision respectively deviate from the exact result.
Additionally, the two last columns show a time comparison result taken to compute

the values in our implementation and a sign digit representation.

80

4 Conclusions

We have presented an implementation of LRT in the FC++ programming lan-
guage using the GMP library. Although C++ is an imperative language, FC++
is a functional C++ implementation, meaning that it allows a call by need eval-
uation and the definition of infinite lists. The algorithms presented in [11] were
straightforward translated to this setting and the time reported is considerably
improved compared to an implementation based on a pure functional program-
ming language. In order to show that this implementation is faster, we used the
logistic map which is caotic function. However, our implementation is still slower
than at least another C++ implementation called iRRAM. A first further work
is the implementation of trigonometric functions using Taylor series, e.g. the
limit function has to be defined. A second further work is the improvement of
the efficiency of the implementations in order to be as competitive as the C++
based.

References

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1-168. Clarendon Press, 1994.

2. A. Bauer and I. Kavkler. Implementing real numbers with rz. In Proceedings of
the Fourth International Conference on Computability and Complexity in Analysis,
CCA, pages 365-384. ENTCS, 2008.

3. A. Ciaffaglione and P. D. Gianantonio. A certified, corecursive implementation of
exact real numbers. Theoretical Computer Science, 351(1):39-51, 2006.

4. R. L. Devaney. An Introduction to Chaotical Dynamical Systems. Addison-Wesley,
California, 2do edition, 1989.

5. M. H. Escardé. PCF extended with real numbers. Theoretical Computer Science,
162(1):79-115, August 1996.

6. P. Pélissier G. Hanrot, V. Lefévre and P. Zimmermann. The MPFR library. INRIA.
http://mpfr.org.

7. C. A. Gunter. Semantics of Programming Languages. The MIT Press, 1992.

8. B. Lambov. The reallib project. BRICS, University of Aarhus.
http://brics.dk/barnie/RealLib.

9. J. R. Marcial-Romero. Semantics of a sequential language for exact real-number
computation. PhD thesis, University of Birmingham, December 2004.

10. J. R. Marcial-Romero and M. H. Escardé. Semantics of a sequential language for
exact real-number computation. Theoretical Computer Science, 379(1-2):120-141,
2007.

11. J. R. Marcial-Romero, J. A. Herndndez, and Héctor A. Montes-Venegas. Com-
paring implementations of a calculator for exact real number computation. In
Harald Ganzinger, editor, Proceedings of the Mexican International Conference on
Computer Science, ENC, pages 13-23. IEEE Computer Society Press, July 2009.

12. J. R. Marcial-Romero and A. Moshier. Sequential real number computation and
recursive relations. In Proceedings of the Fourth International Conference on Com-
putability and Complezity in Analysis, CCA, pages 171-189. ENTCS, 2008.

81

13

14.

15.

16.

17.

. J. R. Marcial-Romero and A. Moshier. Sequential real number computation and
recursive relations. Mathematical Logic Quarterly, 54(5):492-507, 2008.

N. M uller. iRRAM - exact arithmetic in C++. Universit at Trier.
http://www.informatik.uni-trier.de/iRRAM.

G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5(1):223-255, 1977.

Dave Plume. A calculator for exact real number computation. 4th Year Project
Report, Department of Computer Science and Artificial Intelligence, University of
Edinburgh, 1998.

P. J. Potts, A. Edalat, and M.H Escardé. Semantics of exact real arithmetic. In
In Proceedings of the Twelveth Annual IEEE Symposium on Logic In Computer
Science. IEEE Computer Society Press, 1997.

82

