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Abstract. Universal Grammar assumes that all human languages share a com-
mon structure with respect to their linguistic well-formedness conditions. In the
linguistic theory called Optimality Theory (OT), this structure is represented by
a set of linguistic candidate forms, a set of constraints and the definition of being
optimal. From a nativist approach of OT is assumed that such structure is encoded
in a Language Acquisition Device (LAD) that is provided to the learner of a lan-
guage genetically. While OT is in a symbolic level, the LAD is in a biological
one. These two levels have already been complemented with a connectionist in-
termediate level. In this paper our aim is to propose a complementary connection
between the symbolic and the connectionist levels using penalty logic. We pro-
pose a translation from connectionism to logic expressed in the penalty knowl-
edge base cv. This last translation try to simplify the encoding of the common
structure 4 suggested by C'Vpet.

Keywords: Non monotonic reasoning, Penalty logic, Universal Grammar, Opti-
mality Theory, connectionism.

1 Introduction

In 1990 a new framework for generating linguistic theories arose, it was called “Op-
timality Theory” (OT). This Universal Grammar (UG) framework states —as every
UG— that among human languages there are a set of universals, that is, there is a com-
mon structure that they share that constitutes the conditions of well-formedness of a
language. Despite this heritage, OT differs of others traditional generative frameworks
in the sense that it does not requiere inviolability in order to state universality. This OT
aspect is quite interesting because the best candidate form will not be the perfect one
(zero constraint violations) but the best one or optimal, i.e., that one whose violations
of the constraints have the minimal cost. Besides in OT is assumed that the set of con-
straints is in principle inconsistent, so, every candidate of a linguistic form will violate
at least one constraint. Which constraint or constraints are not fulfilled by a candidate
form is important with respect to the position of those constraints in a hierarchy H that
constitutes a specific language.'

OT was born in a context in which generative grammar was the main framework for
researching works in linguistics. We can mention the name of “Chomsky” as an icon

! For an introduction to optimality theory Cfi:, [2].
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of this framework. OT differs from generative grammar in many aspects, some of them
are: (Cfr.[3])

1. In OT constraints a higher position in the hierarchy has more value, their violation
has a bigger penalty or cost. But in order to select the best candidate, it is not
enough to consider the position of its violated constraints. For selecting the optimal
form it must be considered which constraints others competitors have violated. In
other words, a grammatical or optimal form in OT depends always on other forms.
This is a difference between OT and generative grammar, being the forms in the
last one, singly evaluated with respect to certain rules.

2. In OT environment, constraints are universal and violable, in generative grammar
they are universal but inviolable.

3. In OT markedness plays an important role in a grammar while in generative gram-
mar is failthfulness the element that plays the central role.

4. OT does not conceive outputs in terms of duality, so, neither violability means
inactivity nor satisfaction means activation. This dual way of thinking belongs to
generative grammar.

5. For explaining language variation OT uses the re-ranking of constraints, each lan-
guage has a special constraints ranking. Generative grammar explains language
variation with elements like rules/parameters and the lexicon.

It is important to point out that in OT there are two kind of constraints: violable
and inviolable constraints. In the CV Syllable Theory as is formulated in [8] the in-
violable constraints are the Gen and the Structural constraints, these constraints are
beyond any hierarchy, they have the highest cost of all constraints and are fulfilled in
every candidate competition. The violable constraints are the Con constraints. For the
examples presented here, we are going to consider only the set Con, i.e., the set of
well-formedness conditions as is defined in [8, 972].

In The Harmonic Mind: From Neural Computation to Optimality-Theoretic Gram-
mar, Paul Smolensky and Géraldine Legendre propose a connectionist model of OT
called C'V,,¢;. This localist symmetric network assumes a nativist point of view of OT.
CV,,et 1s thought as the Language Acquisition Device(LAD) that encodes 4, the com-
mon structure for all posible human languages. We are going to start from that work in
order to give our translation of C'V,,¢; into a default logic system called penalty logic.
The translation presented here enriches the C'V,.; proposal and simplifies it, besides it
makes possible a link between OT and logic.

2 The Basic CV Syllable Theory

In this section we will introduce one of the most important issues in OT, the Basic CV
Syllable Theory. The translation into connectionism and then, the translation into logic
will be based on the CV Syllable Theory.

In the definition of the nativist hypothesis of OT introduced in [8], OT is integrated
by a set of linguistic candidate forms S, a set of constraints Con and the definition of
being optimal. In that definition Gen and Structural constraints are not mentioned, given



their necessity they are assumed fulfilled for every candidate competition. We are going
to take that assumption and to work only with the violable constraints, the set of Con
constraints.

In the Basic CV Syllable Theory, Y is constituted —in parallelism with OT— by
a set of candidate forms S, constraints and a definition of being optimal. In particular,
in the CV Theory the universe Ug of structural descriptions is formed by strings of
consonants and vowels, i.e., C’s and V’s. Interpretations are strings of C’s and V’s that
are not parsed into syllables like /VCVC/, /CVCVC/ while expressions are strings of C’s
and V’s parsed into syllables. The parsing is indicated by a period. For example, from
the interpretation /VCVC/ = /V!C2V3C?*/ the following candidates could be generated:?

. OVL.C2v3.(C)
. (V).C2V3.(C)
S (Vv).c2vi. el
. vi.c2vics,

FENOS I

From these candidates one could be selected as the optimal, but in order to do that
selection we need a hierarchy of constraints and a definition of being optimal. Here we
introduce the definition:

Definition 1. A candidate w is considered to be optimal iff for each competitor w’, the
constraints that are violated by w must be ranked lower than at least one constraint
violated by w’. [1, 20]

The set of constraints Con for the CV Theory is formed by: [8],[5]

— Onset. Every syllable nucleus has a preceding onset.

— NoCoda. Codas are not permitted.

— Parse. For every element in the input there is a corresponding element in the output.
— Fill” . Every syllable nucleus in the output has a corresponding element in the input.
- Fill®. Every syllable onset or coda has a corresponding C in the input.

In OT a candidate competition is usually showed in a table where the candidate
competitors are shown under a certain hierarchy H over the constraints of the set Con.
Suppose that Con constraints are under the following hierarchy: Fill®» Parse » FillV»
NoCoda » Onset and for the input /V!C2V3C?/ the same candidates expressions men-
tioned above are generated as outputs. The OT table would look like:

Asterisks indicate violations on constraints. Candidate ¢, for example, has two vio-
lations on Parse constraint while candidate ¢4 one violation over NoCoda and one over
Onset. Observe that all the candidates have at least one constraint violation. The opfi-
mal is ¢y because for each competitor ¢’ the constraints that are violated by cy4, i.e., No
Coda and Onset are ranked lower than at least one constraint violated by any c’.

It is important to point out that under another hierarchy, the optimal output could
not be the same. For example, if we consider the hierarchy H” where the constraints are
ordered as follows: Onset » No Coda » FillV » Parse » Fill€, the optimal candidate is
Ci.

% The symbol ‘01’ indicates that an onset, nucleus or coda is empty; <x> is read as ‘the element
X’ is unparsed
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Fig. 1. Candidate comparison in OT

3 A connectionist model of OT

In this section we are going to introduce CV,,;, the model proposed by Paul Smolen-
sky and Géraldine Legendre in [8]. In order to prevent confusions we will distiguish
between two kind of constraints: constraints at the OT level and at the connectionist
level. The first set of constraints we will call them OT-constraints, the second one, net-
constraints.

As we consider the OT level, constraints are universal as they belong to the struc-
ture 41 while constraints in the connectionist level are considered universal when their
weights are identical or bounded. For OT-constraints we have the distinction between
violable and inviolable constraints, this distinction is introduced in the connectionist
level as constraints with variable weights —net-Con constraints— and constraints with
fixed weights —ner-Gen and net-Structural constraints.

CV,,¢¢ is a localist symmetric network that represent the mapping given in CV Syl-
lable Theory from underlying strings of C’s and V’s to surface forms of C’s and V’s,
in other words, CV,,.; represents interpretations and expressions. In order to do that,
this net has three layers: an input, an output and a corresponding layer. In the first one
we will find the activation of an interpretation,® for example, the activation of the string
/VIC2V3C?/. In the output layer we could find activated, one of the four candidate we
have introduced above. The corresponding layer introduce the link between the input
and the output.

CV ¢ has three kinds of units: vowels, consonants and coda consonants represented
by an inverted triangle, a circle and a crescent respectively. In the input and the corre-
sponding layer there is no distinction between onset or coda consonants, in these layers,
the circle is interpreted only as a consonant. In the output layer the circle represents an
onset consonant while a crescent is in place of a coda consonant. In figure 2 is showed
the activation of candidate ¢4 where the input is the interpretation /V!C?V3C*/ and the
expression generated in the output is V!.C?>V3C*. In this net input layer goes from the
cell ap2 to the cell a;5; output layer from ao; to agy A

In CV,,; each constraint has assigned a bias and a connection coefficient. net-Onset
has a negative bias —1 on every vowel unit in the output and a connection coefficient +1

3 In this paper we are working only with the speakert’s perspective for that reason we will find
as inputs only interpretations, and as outputs, expressions.
*Tn a cell a;j, i represents the row and j the column.
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Fig. 2. Network activity for c4 in CV et

between every vowel and onset consonant units in the output. The connection coefficient
will help to equilibrate the negative value of the bias. For net-No Coda a bias of —1 isin
every coda unit at the output, but instead of a positive connection coefficient a negative
coefficient —1 is introduced. The reason for this negative coefficient is that in the CV
Syllable Theory codas are not permitted.

net-Parse has a bias of —1 in each input unit. A bias of —3 is assigned to each unit
in the corresponding layer and +2 for all connections coefficients. For net-Fill" and
net-Fill®, in the corresponding layer, the bias will be —3 and connection coefficients
+2. Bias coefficient in the output will be — 1. Observe that in net-Parse there was values
with respect to the input and corresponding layers while in nez-Fill the values are in the
corresponding and output layers.

3.1 The energy function E of net-constraints

In OT the candidate with the less ranked violations in relation with other candidates
is the optimal. In the connectionist environment the optimal candidate will have the
minimal energy E with respect to the rest of candidates. In order to calculate the value
E in relation to different activation states, we will use the Ljapunov or energy function:

E(s) = —Zwijsisj i (D
i<j

In order to simplify the calculation of the energy function E, we will use microcon-
straints. It is possible to do this in CV ., because is a localist network. We identify the
minimal significance part of the network —that constitutes the microconstraints— and

then, we spread the result to a more complex net built with those elements.
For describing the states of the microconstraints networks, we use instead of s1, sa,
... S, the labels v for a vowel, co for an onset consonant, cc for coda consonants and
b for biases, this will help us for an easier understanding. Graphical representations of

3 For a graphical representation of Nez-constraints look at [8]; for microconstraints [3].
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microconstraints are given in a similar way as we have stated in CV ¢, we only add to
this representation one figure: a circle with a cross inside for representing biases. The
representation of the micro-Onset is also a symmetric network. As we have mentioned
above, in this microconstraint there is a bias —1 on every vowel, equilibrated by the
connection coefficient 1. This is showed in the figure below.®

O- -Y
D

b,

Fig. 3. Micro-Onset

Then, we calculate the energy function E for this system as: E(s) = —co;jv; +v;/bg.
The optimal scenarios for the micro-Onset are two, with —2 as value: when the onset
consonant and the vowel are both activated but the bias are not; or when consonant
and the vowel are both inactivated but the bias is activated. In analogous ways we can
get the calculation of the energy function E for the rest of constraints. The importance
of energy function here is that it will permit us to calculate the optimal candidate of a
network that represents a knowledge base. This function will be the link with the logical
model introduced in the next section.

4 A logic model of OT

Our model is based on [4] but it gives to that proposal a specific orientation. Here we are
going to expose only some elements of our model, those that can help you to understand
the translation of the next section.

Penalty logic is an extended version of propositional calculus, that helps for mod-
eling nonmonotonic reasoning, specifically cases with conflicting beliefs or inconsis-
tencies that arise when there are no reliable knowledge sources. As its name indicates
Penalty Logic associates a penality or cost to each formula of a knowledge base ¥. This
cost —expressed in a real positive number— will generate a ranking among the formu-
lae in the knowledge base. Our strong beliefs will have a high price and will be at the
top of the ranking, the penalty for losing these formulas will be more costly than our
weaker beliefs.

Definition 2. Let £ be the basic language of a standard propositional calculus. A
penalty knowledge base (PKB) V¥ is a finite set of pairs (S, k), being S a set of well

® Other microconstraints are represented taking into account the global representation of the
constraints. In order to have a graphical representations of the constraints Cfr.[8].
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Jormed formulae of £ and k the penalty function mapping from S to the set (0, c0). Ay
represents the set of propositional formulae of L that are in W.”

Example of a PKB. An interesting aspect of Penalty Logic is that can deal with in-
consistent knowledge bases. Penalties are used as a criterion for selecting the preferred
consistent subsets. Here we are going to introduce an example of a PKB but instead of
introducing the well known example of Tweety, the penguin, we have worked in a new
example with Fifo, the platypus as the main actor.

Suppose that we believe that none mammal is oviparous, that all platypus are mam-
mals and that they are oviparous; and the strength of our beliefs has the values 20, 5

and 10 respectively. Consider a set of propositional atoms M = {mg,my,...,my}
where m; stands for ‘/ is a mammal’. A set O = {0¢,01,...,0,} and a set P =
{po,p1,.-.,pn} also of propositional atoms, where o; and p; are in place of ‘i is an

oviparous’ and ‘i is a platypus’ respectively. Our PKB will be constituted by the fol-
lowing propositional formulae with their corresponding penalties to the right:

m; — T0; 20
pi — my 5
pPi — 0; 10

This PKB that we call example is inconsistent.® Suppose that the individual i is Fifo
and Fifo is a platypus. With this assumption plus the PKB we can infer from the first two
formulae that Fifo is not an oviparous, but from the third formula it follows that Fifo is
an oviparous. Then, Fifo is and is not an oviparous. In order to deal with inconsistencies
penalty logic works with scenarios, that is, consistent subsets formed from the PKB.

Definition 3. Let o be a formula of L. A scenario o in a PKB is a consistent subset A’
of Ay such that A’ U {} is consistent. The cost of a scenario A’ in a PKB W, written
Ky (4’), is the sum of the penalties of the formulae of ¥ that do not belong to A’. That

is,
Ke= Y k(o). 2)

5€(A\1/7A/)

where k(8) stands for the penalty or cost of an expression 4. [3, 54]

Example of scenarios
Take ¢ = p; and assume the PKB example, the following scenarios could be formed:’
Ay ={m; — —o;, pi — My}
Ay = {m; — —0;, p; — 0}
Az ={m; — —o;}

7 Here we have made a little change in the Pinkas definition of a well formed formula (wff) in
penalty logic. Instead of consider a wff as a set of pairs given by the union of a propositional
formula plus a positive real number, we have called that wff a knowledge base, a wff of a
penalty logic is for us, each pair formed by S and .

8 We will write A, in order to indicate the formulae that belong to this PKB.

% Many more escenarios can be formed from A, here we have only indicated as examples.
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Definition 4. The optimal scenarios of @ are those that have the minimal cost KC with
respect to a PKBW.

Examples. According to definition 3 the cost of the scenarios mentioned above will
be: Kez (A1) =10, Koy (A2) =5 and K. (As) = 15. According to definition 4, the
optimal scenario of p; will be As.

Definition 5. Let v* an interpretation function that maps the set S of well formed for-
mulae of L to the set {—1, 1}. The system energy of v is calculated by:

Ev= > k(). 3)
SeAw,||6]lv=1
The function v* maps well formed formulae to the set —1, 1. Where v(¢)= —1 is

interpreted as ¢ is unsatisfied and v(p)= 1 as ¢ is satisfied. The energy function E as
considered in C'V,,; introduce the values [1, 0, —1] for describing the different states of
the network. The mapping introduced from the connectionist environment to the logical
one, is parcial and bivalent. We take only the cases 1 and —1 from the energy function
E, excluding those that consider 0.

Example. This formula tells us that in order to calculate the energy system of an
interpretation v¥, we have to take into account those formulae that belong to the PKB
¥ but that they are not satisfied under that interpretation, that is, under v*. Suppose that
v* assigns the following valuation for the formulae of the PKB ¥: v(m; — —0;)= 1,
v(p; — my)=v(p; — 0;) = —1. Given that the last two formulae are not satisfied under
v¥, we should sum up the penalties of these formulae (5 + 10) according to definition 3.
The energy system for p; will be 15.

Definition 6. The models of a PKB W with the minimal energy £ are the preferred
models of U.

Example of preferred models. We are going to introduce analogous models to the
scenarios presented above. To the right of each model its energy is calculated according
to definition 5.

In My, v(m; — =0;)=v(p; — mi)= 1, v(p; — 0;) = —1. Ec,(v¥)= 10.
In Mo, v(m; — =0;)=v(p; — 0;) = 1, v(p; = m;)=—1. Ecx(v¥)=35.
In M3, v(m; — —0i)= 1, v(p; — mi)=v(p; — 0;) = —1. Ex(v¥)=15.

According to the definition 6, the preferred model of ¥ will be M, because its has
the minimal energy £. This result matches with the obtained for the scenarios above.
The matching is not by chance, equivalences between preferred models of penalty logic
and minimal energy has been proven in [4].

5 Translation of CV,,, into Penalty Logic

The PKB of the Basic Syllable Theory will be formed by all the constraints of OT. Here,
we will introduce only the logic representation of the Con constraints. The translation
is based on CV,,¢, so, the symmetric aspect of this network will be translated into
logic as biconditionals. First, we introduce the formulae used in PKB cv and then, the
symbolization of the Con constraints.
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5.1 Formulae

Let INPUT, OUTPUT AND CORRESPOND be the sets of input, output and corre-
sponding units respectively and let i, j be the indexes of the units that can be substituted
by any natural number. We have the following sets of propositional atoms:'®

{v°, v, ...v"} € INPUT with v standing for: “unit i is a vowel input unit’.

{c%, ¢!, ...c"} with ¢! standing for: ‘unit i is a consonant input unit’.

{vi;} € CORRESPOND where i>0, j>0 and {v;;} and stands for ‘unit i from j is a
corresponding vowel unit’.

{cij} € CORRESPOND where i>0, j>0 and {c;;} and stands for ‘unit i from j is a
corresponding consonant unit’.

{vo, v1, ... v} € OUTPUT with v; standing for: ‘unit j is a vowel output unit’.

{coo, co1, ...co,} € OUTPUT with co; standing for: ‘unit j is an onset consonant (out-
put) unit’.

{cco, cci, ...ccp,} € OUTPUT with cc; standing for: ‘unit j is a coda consonant (out-
put) unit’.

{bo, b1, ...b,} where b; stands for: ‘unit i is a bias on’.

5.2 Translation of C'V,,.;

In order to identify the OT constraints in the penalty logic environment, we will use
the prefix p for calling each constraint. For example, Onset constraint will be called
p-Onset. Below the formal representation of Con constraints.

p-Onset {j<j: coj < v;’}, {v;” < —bo }

p-NoCoda {cc; < —bo}

p-Parse {v' — v;;}, {vj < v}, {v' < =bo}, {vij < —bi}, {c" < ¢}, {coj < ¢},
{cej = cij} {c" < =ba}, {e; — —bs}.

p-Fill" {v' < v;;}, {vj < v}, {vij < —bo} {v; < —bi}.

p-Fill° {c¢' — c;;}, {co; < cij}, {cc; < cij} . {cij < —b2}, {coj < —bs},
{CCj — _|b4}.

These formulae represent the preferred models as it has shown in [3], then in a
network environment they have the minimal energy £.

Additional to the logical representation of constraints Con, we need to induce the
hierarchy among these constraints. This we can get it with exponential penalties as-
signed to each constraint. For example, we can take the decimal position system, then n
in (%)’C would be equal to 10, where n represents the number of violations that are pos-
sible under a single constraints;'! v is instead of the number of violations (or asterisks
in OT table) and ¥ is a natural number that grows as the hierarchy goes down, i.e. (%)1,
()2, ().

The learner of a language has to identify violations on the output candidates, for
this task he can help himself with a logical reasoning using the logical representation of

10 Remember that in C'V,,.¢ we had input, output and corresponding units, some of them repre-
sented vowels, coda or onset consonants and the bias.
! n might be infinite.
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constraints Con plus the inference mechanism of penalty logic. A second task that must
do is to select the optimal output, for this task the constraint hierarchy of a language
will support the selection in a inconsistent set of constraints.'?

In this paper it has been assumed a nativist reading of OT, but it important to clarify
that OT is not necessary linked to nativism. From the nativist approach, the structure
M integrated by a set of linguistic candidate forms, a set of well formedness conditions
Con and the definition of best satisfying a hierarchy of violable constraints (being opti-
mal) is encoded in the learner since his birth by a Language Acquisition Device (LAD).
In this route, we could think in the logical representation proposed above, as a logic
implementation of the human system. For example, if the system believes that v(bg)= 1
for p-NoCoda, that means that he believes that the bias associated to p-NoCoda is turn
on.!3 From this valuation, he could infer for example, — cc;, that is, there is no a unit j
that is a coda consonant. The truth of the statement that unit i is a bias on, will help to
the learner to infer that he should look for no codas.

6 Conclusions and Future Work

We have presented a translation of C'V,,.; network into Penalty Logic. The translation
has been done using a bivalent mapping. For further work we consider important to
extend it to a n-valent mapping in order to model situations in which we cannot assign
values consistently for calculating the energy function of the system.'*
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12 In the execution of the first task the learner could realize that even in an accepted syllabification
of a word, there are constraints violated. So, he could ask himself how should I select the
optimal output if there is no output without mistake? The ranking induced by the hierarchy
will help him to order candidates by priority. The set of constraint is inconsistent so, there is
no possibility that all of them were fulfilled or not violated.

13 The learner should believe that valuation as product of the neural encoding that he also has of
the constraints, in the connectionist level the net-Coda shows a connection coefficient negative.
In the symbolic environment, this value of the coefficient multiplied by the negative bias will
be positive. For that reason it is said that the valuation for the sentence by will be equal to 1.

14 We are thinking in scenarios like A = {p; — 0;}.
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