
Formal language and reasoning for playing Go

Arturo Yee Rendón and Matías Alvarado

Department of Computing, Center of Research and Advanced Studies, Mexico D.F.

ayee@computacion.cs.cinvestav.mx matias@cs.cinvestav.mx

Abstract. In this paper, we introduce a formal grammar for playing Go that

fundaments an automated Go-player. Go-tactics such as eyes, ladders, mutual

life and nets are properly modeled and tested. As well as Go-strategies to

offensive or defensive purpose are introduced and their performance is tested

throughout Go matches against humans or previous well-known automated Go-

players like GNUGo. Results and a comparison analysis are reported and

discussed on the perspective of current state of the art on Go automation.

Keywords: Game Theory, Go finite state machine, strategic reasoning.

1 Introduction

Originated more than 2,000 years ago, Go is a two-person perfect information game,

and is one of the most complex board games. Writing computer programs to play Go

is one of the grand challenges of Computational Intelligence nowadays. Each player’s

goal of the game is to control a larger area than the opponent’s one on the board; the

challenge for Go game automation is due to the simplicity of the pieces and rules to

play it, hence the way to achieve the most board area control is a very open

procedure, and the combinations for doing it have an exponential growth. Actually,

the Go’s search space of solutions is huger –very much– than the one of Chess [2].

The Go game is played on a board shaped with 19 horizontal and vertical lines

commonly, see Figure 1, where alternating, each player places a stone of his own

color on an empty intersection on the board, with black playing first [1]; black player

takes the white stones and conversely. By following the each player’s goal to control

a larger board area than the opponent, one of the difficulties for both human and

computer Go players is to determine when a group of adversarial stones is possible to

capture, even the opponent makes any movement to save them. This situation is called

unconditional life, and its determination is crucial for intelligent play 1.

125

In [3] the authors focu

with the task of estimatin

more difficult than determ

programming the Go gam

which goal is to present t

related domains: evaluati

knowledge generation, ma

Bounzy [8] build a co

aims to play full Go gam

eyes and nets, see Figure

do, with mathematical mo

GNUGo is a free Go pr

5x5 to 19x19 [6]. GN

communication interface

(SGF) was proposed in [6

player. SGF was originall

and not for spreading co

game history of plays in S

Description of the pape

Go, in Section 2; we ma

experimental stage, in Se

future work.

2 Go game Descri

A Go game can be represe

board position. The root

children of each node are

indicates how the player r

even on the 9x9 board, w

the rules of Go, however,

19 x 19 board, there is ap

and, on average, on the or

Fig. 1. Go board

us on evaluating non-final positions. In particular they d

ng potential territory in non-final positions, which is mu

mining territory in final positions. Prospective methods

me will probably are of interest in other domains as well [

the links between existing studies on Computer Go and

on function, heuristic search, machine learning, automa

athematical morphology and cognitive science.

gnitive model of human Go player called INDIGO, wh

mes as well as possible. It reads low level concepts: ladde

1. INDIGO recognizes territories as well as human play

orphology tools.

rogram that is able to play the Go games from board sizes

NUGo is deterministic. In our study, we developed

to test GNUGo with our simulator. The Smart Game F

6]. This format is simple tree which it represents the plays

y designed for the exchange of Go records between huma

mputer oriented expert knowledge. Our simulator save

SGF.

er, it begins with a brief introduction to the formal rules

ake a description of Go game simulator, in Section 3;

ection 4 and conclusion; Ending with a discussion ab

ption

ented as a tree, with each node corresponding to a particu

node is the position at the beginning of the game. T

the positions reachable in one move. A strategy for a pla

responds to any board position. A complete strategy for G

would be astronomically large. The disarming simplicity

, conceals a formidable combinatorial complexity [7]. O

pproximately 319 x 19 = 10172.24 possible board configurat

rder of 200 - 300 possible moves at each step of the gam

deal

uch

s of

[5],

AI

atic

hich

ers,

yers

s of

d a

File

s of

ans

es a

s of

the

out

ular

The

ayer

Go,

y of

On a

tion

me,

126

compared with chess, chess has a much smaller branching factor, on the order of 35 –

40.

The player with the black stones is allowed to play first. It is only allowed to play

one stone at the time, which is placed on one of the empty intersections. A stone, once

played, is not to be moved unless if it is captured. If a stone or multiple stones of the

same color are surrounded by the other color, such that no direct adjacent intersection

is empty, and then the stone(s) is (are) captured. Adjacent empty intersections are also

referred to as liberties. A liberty is an empty point adjacent to a group of stone. Any

group that has no liberties is said to be dead and they have to be removed from board.

From the capturing rule for multiple stones it can be seen that stones are connected

which are positioned on directly neighboring intersections. Diagonal neighboring

intersections are not connected as there is no direct line between them. Stones which

are connected are also called a chain –a single stone is also a chain. The goal of the

game is to control as much territory as possible. The player who has the largest

territory at the end of the game is the winner.

The tactics in Go game are local conditions to deal with immediate fighting

between stones [9], some tactics are describing next:

• An Atari is simple move to reduce the number of liberties.

• A ladder is a sequence of Atari to force the opponent into zigzag pattern and

eventually the stones of enemy could be captured.

• A net is sequence moves that loosely surround some stones, preventing their

escape in all directions, taking their liberties of enemy stones directly capture

more easily on successive plays.

The strategies deal with global influence [9], calculating on the overall

composition of the board and division of territory, and taking into account the

influence of the stones on each intersection and given a tactical priority. Some

strategies are listing.

• Mutual life happens when no player can play to a particular point without allowing

the other player to play at another point to capture.

• Death is when stone(s) lacks living shape, meaning less than two eyes, and will

eventually be removed from the board as captured.

• Invasion occurs when put a new living group inside an area where the opponent

has greater influence.

• Reduction occurs when a player put a stone far enough into the opponent's area of

influence to reduce the amount of territory.

3 Go Formal Modeling

In the next diagram and table, we show how the simulator works. In Figure 2

describes the process flow in the algorithm and in Table 1 the algorithm steps.

127

Fig. 2. General diagram

Table 1. Steps of Go game

Steps of Go game

1. Initializes the board

2. Player makes a move

3. If the move is possible go to step 5, otherwise go to step 4

4. Pass go to step 7

5. Put stone

6. Change turn go to step 2

7. If both players pass go to step 8

8. Calculate the scores and end game

Go Formal grammar. For the Go game, we proposed a simple formal grammar to

help us to develop a Go game simulator and it is the following:

• V is the alphabet (terminals and non-terminals symbols).

• ∑ ⊆ V is the set of terminals.

• B ∈V - ∑ is the initial symbol.

• V - ∑, the set of non-terminal elements.

• R ⊆ (V - ∑) × V
*
 is the set of rules.

Terminal symbols:

∑ = {play (player, x, y, t)}, where

• player є {black, white}, x є {0… 18}, y є {0…18}

• t is the tactics/strategies to apply.

• end is the end of game.

Non-terminal symbols:

• G is the initial symbol.

128

• J is the play.

• T is the position played.

• Pass-black is when a player black pass.

• Pass-white is when a player white pass.

The set of rules:

• G → J.

• J → T | Pass-black Pass-white end | Pass-white Pass-black end | Pass-black T |

Pass-white T.

• T→ play (player, x, y, t).

The Go game simulator is in Java and uses a graphic interfaces human – computer.

Simulator is a heuristic method based on a formal grammar having a degree of

variability by execution, sometimes giving an optimal result.

4 Experimental Results

In this section, we present some experiments of simulator, when each player plays

with others; the experiments are the following: 1) random player (RP) vs. RP, 2) RP

vs. smart player (SP), 3) RP vs. GnuGo player (GP), 4) SP vs. SP and 5) SP vs. GP.

Nowadays thirty tests per experiment were made hence certain confidence was

got. Additional more exhaustive tests will be made.

This paper has explored the diversity of tactics and strategies in the game of Go.

We developed a simulator which is capable of playing competitive with the most

traditional and powerful simulator of Go. From results is showed that when RP played

with RP, both won at the same percentage, see Table 2; when RP played with SP,

there was a clearly advantage to favor of SP, see Table 3; when RP played with GP,

the first won more times than GP, see Table 4; when SP played with SP, both won at

the same percentage, see Table 5; when SP played with GP, the SP won more times

than GP did, see Table 6. We tested our simulator with GP and obtained a huge

advantage to our simulator.

Table 2. Result of thirty runs RP vs. RP

 Random

player

(black)

Random

player

(white)

1 55 44

2 46 74

3 48 55

. . .

28 44 68

29 38 50

30 47 73

Random (black) Random (white)

W
in

n
in

g

p
e
rc

.

129

Table 3. Result of thirty runs RP vs. SP

 Random

player

(black)

Smart

player

(white)

1 31 78

2 50 52

3 35 56

…

28 36 67

29 61 50

30 39 67

Table 4. Result of thirty runs RP vs. GP

 Random

player

(black)

GnuGo

player

(white)

1 92 10

2 88 12

3 79 15

…

28 96 10

29 89 12

30 57 28

Table 5. Result of thirty runs SP vs. SP.

 Smart

player

(black)

Smart

player

(white)

1 46 67

2 32 33

3 67 45

…

28 71 43

29 46 80

30 79 39

Random (black) Smart (white)

W
in

n
in

g

p

er
c
.

Random (black) Gnu-go (white)

W
in

n
in

g

p
er

c.

Smart (black) Smart (white)

W
in

n
in

g

p
er

c.

130

Table 6. Result of thirty runs SP vs. GP.

 Smart

player

(black)

GnuGo

player

(white)

1 104 6

2 91 10

3 102 6

…

28 99 6

29 102 6

30 99 66

Conclusion: A formal grammar for modeling the Go game is introduced; the flow

diagram and context-free grammar fundament the automated Go player algorithms.

The deployed Go player mostly beat the well-known GnuGo, as well as to humans Go

medium level of expertise or other automated Go players. The reason of the

advantage is due to the application of offensive, territorial and defensive strategies

introduced. The algorithmic implementation of these strategies, it supports the agile

response by our automated Go player during the matches. Further test are required to

assess the automated Go player performance.

Ongoing work: The introduction of artificial neural network (NN) for patterns

recognition allow acquire more information about the state of board game and what

the enemy is doing. By segmenting the board game into 3 x 3 and 5 x 5 windows

allows detect eyes, ladders, and net patterns. NN usage improves offensive/defensive

tactics and strategies application for playing Go game. Moreover, for learning on the

usage of tactics and strategies, given specific game circumstances. Formal grammar

models the moves of the player and whole Go game, but still lacking for represent

specific tactics and strategies, what we are working on.

Reference

1. D. B. Benson.: Life in the game of Go.: J. Information Sciences , 10(2),17-29, (1976).

2. K. Chen and Z. Chen.: Static analysis of life and death in the game of Go. J. Information

Sciences, 121(1-2), 133-134, (1999).

3. M. Muller.: Computer Go. J. Artificial Intelligence, 134(1-2), 145-179, (2002).

4. E.C.D van der Werf, H.J. van den Herik and Uiterwijk.: Learning to estimate potential

territory in the game of Go. Lecture Note in Computer Science, 3846, 81-96, (2006).

5. B. Bouzy and T. Cazenave.: Computer go: An AI oriented survey. J. Artificial Intelligence,

132(1), 39-103, (2001).

6. GnuGo. http://www.gnu.org/software/gnugo/gnugo_toc.html

7. E. Berlekamp and D. Wolfe.: Mathematical Go-Chilling gets the last point. Wellesley, MA:

A K Peters, (1994).

Smart (black) Gnu-go (white)

W
in

n
in

g

p
er

c.

131

8. B. Bouzy.: The INDIGO program. Proc. Of the 2nd Programming Workshop in Japan, 192-

200, (1995).

9. Y. Nagahara.: Strategic Concepts of Go, Ishi Press, (1972).

132

