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Abstract. In this paper, we extend our previous approach to memory in the DALI
language from facts to (sets of) rules, and we extend their management by intro-
ducing operators for reasoning about the context and agent is involved in, and
about modules that should be associated to that context in the working mem-
ory. We exploit and extend our past work where we introduced meta-axioms for
run-time self-checking and self-reconfiguration and the possibility of employing
sub-modules for various forms of reasoning.

1 Introduction

Agents are by definition software entities which interact with an environment, and thus
are subject to modify themselves and evolve according to both external and internal
stimuli, the latter due to the proactive and deliberative capabilities of the agent them-
selves.

A well-known and particularly difficult problem in AI is the so-called “brittleness”
problem: automated systems tend to “break” when confronted with even slight devia-
tions from the situations specifically anticipated by their designers. Brittleness and in-
flexibility are often attributed to rule-based systems (see, e.g., [1]) due to their supposed
over-commitment to particular courses of action.

In past work, we have defined DALI (cf. [2, 3]), a logic programming agent-oriented
language. In the development of DALI, we have come to understand the important role
of memory in an agent’s behavior, from reactivity to self-checking. We have designed
for DALI a flexible management of memories [4], limited however to storing, retrieving
and managing past events, that can be external or internal events, and actions performed
in the past. The set of agent’s memories is maintained not by means of rules as usually
intended (which is, in the opinion of [1], a source of brittleness) but by means of special
constraints to be dynamically checked with a certain (customizable) frequency. This ap-
proach has taken its basic inspiration from the long-termed work on memory presented
in [5, 6, 7].

In order to enlarge the set of perceptions they can recognize, elaborate on and re-
act to, and in order to expand their range of expertise, agents need to learn (either via
“deep” learning or by other trusted agents [8, 9, 10]). Also, they should recognize the
situation they are in at the moment (the present “context”) and put different “compe-
tencies” at work. In a rule-based approach, these “competencies” can be seen as sets
of rules, that can themselves evolve in time. In this paper, we extend our previous ap-
proach to memory from facts to (sets of) rules, and we extend their management by
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introducing operators for reasoning about the past. In this direction we exploit our past
work [9, 11] where we introduced: (i) meta-axioms for run-time self-checking and self-
reconfiguration; (ii) introduced the possibility of employing sub-modules for reasoning
about how to possibly react to an event and (naively) about possibility and necessity.

The paper is structured as follows: in Section 2 we discuss some issue concerning
memory management in agents. In Section 3 we introduce items of our past works that
we will use as building blocks in the proposed approach, that we illustrate in Section 4.
Finally, in Section 5 we conclude. We assume that the reader is somewhat familiar
with logic programming, and in particular with prolog-like logic programming and with
answer set programming (ASP). The reader may however refer to [12] for the former
and to [13] for the latter, and to the references therein.

2 Motivation: Memory

Assume an agent that is capable of remembering the received external stimuli, the rea-
soning process adopted and the performed actions. Through “memory”, the agent is
potentially able to learn from experiences and ground what it knows through these
experiences [6]. The interaction between the agent and the environment can play an
important role in constructing its “memory” and may affect its future behavior. Most
methods to design agent memorization mechanisms have been inspired by models of
human memory [14, 15] developed in cognitive science.

In 1968, Atkinson and Shiffrin [14] proposed a model of human memory which
posited two distinct memory stores: short-term memory and long-term memory. This
model has been suggested and further enhanced by Gero and Liew for constructive
memory [5, 7] whose implementation has been presented in [5]. Memory construction
[in this model] occurs whenever an agent uses past experiences in the current environ-
ment in a situated manner. In a constructive memory system, any information about the
current design environment, the internal state of the agent and the interactions between
the agent and the environment is used as cues in its memory construction process.

Baddeley and Hitch introduced in 1974 the notion of working memory [16], a
workspace for reflective and reactive processes where explicit reasoning occurs. Items
of information within the working memory are combined with the stored knowledge
and experiences, manipulated, interpreted and recombined to develop new knowledge,
assist learning, form goals, and support interaction with the external environment.

In fact, memory, experience, and knowledge are strongly related. Correlation be-
tween these elements can be obtained via neural networks as in [17], via mathematical
models as in [18] or via logical deduction. In [7] the reader can find a nice summary
with many references of cognitive studies and their applications to software agents,
mainly by Gero et al. on design agents and by Laird et al. on the SOAR cognitive archi-
tecture [19, 20]. These applications are based upon a combination of a connectionistic
component and some kind of software component, consisting of production rules in the
case of SOAR.

In [7] it is remarked that, while the term ’memory’ in computational systems often
just refers to a place that holds data and information (that may be called “memories”),
memory in an agent is a a reasoning process: in particular, it is the process of learn-
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ing or reinforcing a concept. In agents, such memories must be associated with both
the previous memories (called “experiences” when used in the current situation), and
the current need for a memory (in terms of environment stimuli). Important features
of the constructive memory proposed in [7] are constructive learning and experiential
grounding mechanisms [6]. Constructive learning has an effect that brings changes in
the structure of the memory system. Experiential grounding is concerned with the pro-
vision of meanings to the experiences processed by an artificial agent. It is similar to
historical grounding, which considers the consequence of the utility of an experience in
determining its meaning. In SOAR [19, 20], beyond short-term memory (graph struc-
ture) and long-term memory (production rules) there is an “episodic memory” which
contains temporally ordered “snapshots” of working memory and a “semantic memory”
which contains symbolic structures representing general facts, and provides the ability
to store and retrieve declarative facts about the world.

To the best of our knowledge, general-purpose agent-oriented logic languages do
not have coped with the problem of memory (except for specific implementations of
particular applications where some “ad hoc” kind of treatment is provided). In current
logic-based agent languages, the various memory components are in fact “blurred” in a
general-purpose knowledge base. The only exception we are aware of is our approach of
[4], summarized below, which however concerns only facts, though providing memory
management by means of special constraints to be dynamically checked on need or at a
certain frequency. This avoids the problem mentioned in [1] that in rule-based systems
“every item which is added to memory via a rule must be maintained by other rules . . . ”
thus resulting, in their opinion, in brittleness and inflexibility.

In this paper, we build upon previous work in order to devise techniques for en-
riching DALI, but in principle any logic-based agent language, with advanced memory
treatment. We do not complain in principle with the integration of connectionist and
symbolic approaches. However, in this paper we deal with what can be possibly done
at the symbolic level.

In the illustration of the approach we will adopt a syntax which is reminiscent of
the DALI language. However, we invite the reader to consider this syntax as being by
no means mandatory: it is basically aimed at illustrating on the one hand the conceptual
elements of the approach and, on the other hand, how it can be put at work. A suitable
variant of the syntax can be developed when applying the approach in some other prac-
tical setting. The approach is not fully implemented, but all its building blocks have
been either implemented in the DALI interpreter or at least emulated by pieces of DALI
software.

3 Background

3.1 Defining agent experience

Some of the authors of this paper have proposed in [2, 3] a method of correlating agent
experience and knowledge by using a particular construct, the internal events, that has
been introduced in the DALI language (though it can be in principle adopted elsewhere).
We have defined the “static” agent memory in a very simple way as composed of the
original knowledge base augmented with past events that record the agent’s activities.
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Past events can play a role in reaching internal conclusions. These conclusions,
which are proactively pursued, take the role of “dynamic” memory that supports
decision-making and actions: in fact, the agent can inspect its own state and its view
of the present state of the world, so as to identify the better behavioral strategy in that
moment. More specifically, past events, in our approach, record external events that
have happened, internal events that have been raised and actions that have been per-
formed by the agent. Each past event is time stamped to also record when the event has
happened. Past events have at least two relevant roles: describe the agent experience;
keep track of the state of the world and of its changes, possibly due to the agent in-
tervention. With time, on the one hand past events can be overridden by more recent
ones of the same kind (take for example temperature measurement: the last one is the
“current” one) and, on the other hand, can also be overridden also by more recent ones
of different kinds, which are somehow related.

In [4], we have extended and refined the concepts that we had introduced in the
above-mentioned previous work. In particular, we introduced a set P of current “valid”
past events that describe the state of the world as perceived by the agent. We also in-
troduced a set PNV where we store all previous ones. Thus, the history H referred to
in the definition of the evolutionary semantics that we introduced in [21] is the tuple
〈P, PNV 〉. In practice, H is dynamically augmented with new events that happen. Let
Y = (E ∪ I ∪ A) be the set of all the events (both external and internal) that may hap-
pen and the actions that the agent may perform. Each event or action in X ∈ Y may
occur none or several times in the agent’s life. Each occurrence is therefore indicated as
X : Ti where Ti is a time stamp indicating when this specific occurrence has happened
(where the time stamp can be omitted if irrelevant). Each X ∈ Y is a ground term,
with the customary prolog-like syntax. If one is interested in identifying which kind of
event is X , a postfix (that can be omitted if irrelevant) can provide this indication. I.e.,
let XE be an external event, XA an action and XI an internal event. As soon as X is
perceived by the agent, it is recorded in P in the form XP

Y : Ti where P is a postfix
that syntactically indicates past events and Y is a label indicating what is X , i.e., if it
belongs to E, I or A. By abuse of notation for the sake of conciseness we will often
omit label Y if the specific kind of event is irrelevant.

Clearly, as new “versions” of an event arrive, they should somehow “override”
the old versions that have to be transferred into PNV: for instance, P will contain the
most recent measure of the outside temperature, while previous measurements will be
recorded in PNV. Note that past events in PNV may still have a relevant role for the en-
tity decision process. In fact, an agent could be interested for instance in knowing how
often an action has been performed or a particular stimulus has been received by the en-
vironment, or the first and last occurrences, etc. In the previous example, measurements
recorded in PNV might for instance be used for computing the average temperature in
a certain period of time. Clearly, PNV will have a limited size and thus eldest or less
relevant events will have to be canceled. We do not cope with this issue here, while we
cope with the issue of how to keep P up-to-date. Consider for example to have an agent
that opens or respectively closes some kind of access. The action of opening the access
can be performed only if the access is closed, and vice versa for closing.
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Assume that this very simple agent believes that no external interference may occur,
and thus the access is considered (by the agent) to be closed if the agent remembers to
have closed it, and vice versa it is considered to be open if the agent remembers to have
opened it. These “memories”, in our approaches, are past events in P. Therefore, the
agent will have previously closed the door (and thus it considers itself enabled to open
it) if a past event such as closeAP : t1 is in P. After performing the action openA : t2,
not only the past event openA

P : t2 must be inserted into P , but for avoiding possible
mistakes the previous past event closeAP : t1 should be removed from P and transferred
into PNV.

Past Constraints define which past events must be eliminated and under which con-
ditions. These constraints should be automatically checked and their outcome actually
applied in order to keep the agent memory consistent with the external world. Formally,
we define a Past Constraint as follows (where we overlook the label Y indicating the
kind of past event).

Definition 1 (Past Constraint). A Past Constraint has syntax:

XkP : Tk, ..., XmP : Tm �XsP : Ts, ..., XzP : Tz, {C1, ..., Cn}

where XkP : Tk, ..., XmP : Tm are the past events which are no longer valid whenever
past events XsP : Ts, ..., XzP : Tz become known and conditions C1, ..., Cn are all
true, i.e., as we will say, whenever the constraint holds.

For the previous example, we would have the following past constraint.

closeAP : t1 � openA
P : t2, t1 < t2

A relevant role of past constraints is to allow one to specify which versions of analogous
past events one intends to keep simultaneously in P. Assume for instance to have past
events of the form temperatureP (C, V ) : T being C the place where the temperature
is measured and V its value. One may reasonably want to move one such past event,
e.g., temperatureP (bruxelles, 22) : t1 , into PNV whenever another measurement for
the same place arrives. This can be specified by means of the following past constraint:

temperatureP (P1, V1) : t1 � temperatureP (P1, V2) : t2 , t1 < t2

We define H � {X1, . . . , Xn} as the operation of adding the set of events and actions
{X1, . . . , Xn} to the the history of an agent. Basically, this operation corresponds to
adding the new upcoming events to P and transferring past events from P to PNV
according to the past constraints.

Definition 2. Let PC be a set of past constraints and S a set of past events. By F =
PC(S) we indicate the result of the application of the past constraints in PC, that is F
includes the left-hand side of all the constraints in PC which hold given the past events
in S.

Definition 3. Given a history H = 〈P, PNV 〉, a set of past constraints PC and a
set of events {X1, . . . , Xn}, the result of H � {X1, . . . , Xn} is an updated history
H ′ = 〈P ′, PNV ′〉 where: (i) P ′ = (S ∪ {X1, . . . , Xn}) \ F with F = PC(P ∪
{X1, . . . , Xn}); (ii) PNV ′ = PNV ∪ F .
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Sets P and PNV and past constraints have been fully implemented within the DALI
multi-agent system [22], and used in a number of applications. For instance, in the real-
world application described in [23], which concerns agents that act as guides to tourists
during their visit to a museum or an archeological area, sets P and PNV have been used
to record the user activity and preferences in order to personalize her/his route.

Overall, P represents the set of the most recent events perceived and PNV the pre-
vious experiences that have been recorded. Thus, P constitutes a kind of short-term
memory with includes the current state-of-affairs of the outside environment, to the ex-
tent to which the agent has been able to perceive it. PNV instead is a kind of long-term
memory.

3.2 ASP Modules

In [24], we have proposed kinds of ASP (Answer Set Programming) modules to be
invoked by a logical agents. In particular, one kind is defined so as to allow forms of
reasoning to be expressed on possibility and necessity analogous to those of modal
logic. In this approach, the “possible worlds” that we consider refer to an ASP program
Π and are its answer sets. Therefore, given atom A, we say that A is possible if it
belongs to some answer set, and that A is necessary if it belongs to the intersection of
all the answer sets.

Precisely, given answer set program Π with answer sets enumerated as
M1, . . . ,Mk, and an atom A, the possibility expression P (wi, A) is deemed to hold
(w.r.t. Π) whenever A ∈ Mwi , wi ∈ {1, . . . , k}. The possibility operator P (A) is
deemed to hold whenever ∃M ∈ {M1, . . . ,Mk} such that A ∈ M . Given answer
set program Π with answer sets M1, . . . ,Mk, and an atom A, the necessity expres-
sion N(A) is deemed to hold (w.r.t. Π) whenever A ∈ (M1 ∩ . . . ∩ Mk). Possibil-
ity and necessity can possibly be evaluated within a context, i.e., if E(Args) is ei-
ther a possibility or a necessity expression, the corresponding contextual expression
has the form E(Args) : Context where Context is a set of ground facts and rules.
E(Args) : Context is deemed to hold whenever E(Args) holds w.r.t. Π ∪ Context ,
where, with some abuse of notation, we mean that each atom in Context is added to Π
as a new fact. The answer set module T where to evaluate an operator can possibly be
explicitly specified, in the form: E(T,Args) : Context .

In this approach, one is able for instance to define meta-axioms, like, e.g., the fol-
lowing, which states that a proposition is plausible w.r.t. theory T if, say, it is possible
in at least two different worlds, given context C:

plausible(T,Q,C) ← P (T, I,Q) : C,P (T, J,Q) : C, I �= J.

Another kind of ASP module that we have proposed is reactive ASP modules, de-
fined so as to be suitable for specifying the reaction to external stimuli, where, in an
invocation, the inputs include the external stimuli and the outputs include a set of ac-
tions to be executed in response to the stimuli according to the assumptions. In our
view in fact, reactive ASP modules should be used to describe knowledge and beliefs
concerning how an agent would cope with some events in a given situation. The answer
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sets of a reactive module are meant to represent the possible courses of action that the
agent might undertake whenever these events actually occur, given the present context.

Operationally, invocation of ASP modules can explicitly occur in an agent program,
where the precise way to invoke a module will depend upon the agent language at
hand. In DALI for instance, the simple reactive rules of the language can be used to
directly resort to a reactive module whenever relevant events occur together (where
DALI provides a way of specifying what it does mean to happen together for a given
set of events, e.g., in the same day, same second, etc.). At invocation, reactive ASP
modules can be (optionally) fed with input, representing (items of) the current agent
state. The elements (facts and rules) of the input will be added to the module code.

3.3 A-ILTL

In [25] we have proposed an extension to the well-known LTL Linear Temporal Logic
[26, 27, 28] called A-ILTL, for “Agent-Interval LTL”, which is tailored to the agent’s
world in view of run-time verification.

Based on this new logic, we are able to enrich agent programs by means of A-ILTL
rules. These rules are defined upon a logic-programming-like set of formulas where all
variables are implicitly universally quantified. They use operators over intervals that are
reminiscent of LTL operators.

During the agent life, each A-ILTL rule is attempted at a certain frequency and with
certain priorities (possibly customizable by means of directives). If the current state of
affairs satisfies every A-ILTL rule, then no action is required. Otherwise, some kind of
repair action has to be undertaken with respect to the violated A-ILTL rule. Below we
report the definition of such a rule.

Definition 4. An A-ILTL rule with a repair is a rule the form:
OP(M ,N ;K )ϕ :: χ÷ ψ, where:

– OP(M ,N ;K )ϕ :: χ is a contextual A-ILTL rule;
– ψ is called the repair action of the rule.

In particular, OP is a temporal operator which is required to hold in the interval
between time instants M and N on formula ϕ evaluated in the context χ (where the
context is aimed at providing values for variables occurring in ϕ). The rule is supposed
to be checked at run-time at frequency K (if K is omitted, at a default frequency). If a
violation is detected, ψ is executed which is supposed to be a procedure that determines
suitable self-modifications so as to cope with the unwanted situation and/or improve
future agent’s behavior. The repair action is specified via an atom that is executed as an
ordinary goal.

The A-ILTL rule in the following example monitors the achievement of goals, and
specifies that, in case of violation (some goal, though not achieved, has been dropped),
the present level of commitment of the agent to its objectives has to be increased. This
can be specified as:

NEVERm,n (not achieved(G), dropped(G) ) ::
(goal(G), deadline(G ,T ),NOW (T1 ),T1 ≤ T )÷ inc comt(T1 )
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Suppose that at a certain time t the monitoring condition
NEVER (not achieved(g), dropped(g) ) is violated for some goal g. Upon de-
tection of the violation, the system will attempt the repair action consisting in executing
the goal ?−inc comt(t). Its execution will allow the system to perform the specified
run-time re-arrangement of the program that attempts to cope with the unwanted
situation.

3.4 Learning by rule exchange

In [8, 10], we have introduced an approach to learning centered on the possibility of
acquiring sets of rules from other agents, namely “learning by being told”. In the ap-
proach, agents do not blindly incorporate the new knowledge. Rather, they evaluate how
useful the new knowledge is, and on this basis decide whether to keep or discard it. The
approach is based upon maintaining a meta-level description of the acquired (sets of)
rules, that associates to the acquired knowledge a specific objective and (possibly) a set
of conditions, including a time limit. The purpose is that the new rules should help the
agent reach that objective and fulfill the conditions within the given time limit. After a
while, the agent will evaluate by means of meta-reasoning performed at a meta-control
layer whether (or to what extent) this has been achieved. If the evaluation is unsatis-
factory, then the new knowledge will be discarded or possibly deactivated for future
re-trial in a modified context. There is a clear similarity between our approach and re-
inforcement learning, where here the action that is to be evaluated is the use of the new
knowledge.

4 Advanced Memory Management in Logical Agents

In the overall framework that we have outlined up to now (based on DALI but easily
adaptable to other logic languages for agents), and embracing the view of [7] where
memory is a reasoning process, we can set the following scenario. The semantic mem-
ory (say S) coincides with the agent’s initial knowledge base. The short-term memory is
constituted by set P. The set P plus the A-ILTL axioms constitute the working memory.
The long-term memory is constituted by set PNV.

The first new element that we intend to introduce is a notion concerning the context
an agent is presently involved in. For instance, if you consider an agent that is able to
play a number of games (say, e.g., chess, poker, and others, and even gamble on the
stock exchange as a particular kind of game), the context includes the game the agent is
presently playing (if any). The context need not be a single one. For instance, the agent
can be at leisure or at work, at home or somewhere else, and either in a normal or in an
emergency situation, and so on.

We assume that, like in DALI, the various agent activities may in principle proceed
in parallel (where in the DALI interpreter they are actually interleaved, also according
to priorities). Thus for instance, playing a game and answering the phone may occur in
combination.

We may simply assume to represent context by means of a set of (meta-)facts con-
cerning a distinguished predicate context (again, we expect the reader not to stick on the
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syntax we adopt here). The version contextN of this predicate will define the present
context (by adapting the DALI notion of present events). This version will become,
when no longer actual, a time-stamped past event with predicate contextP . A sample
context definition can be the following:

context(at leisure, at work , play chess ,normal , emergency , . . .).
contextN (play chess).
contextN (at leisure).
contextN (normal).

where the first fact lists all possible contexts, and the following ones the contexts that
are active at the moment. More generally, it is required that the agent initial program
contains a fact, that we call context declaration, of the form:

context(PC1, . . . , PCr).

where we call DC the set PC1, . . . , PCr, and we call the PCis, which are either con-
stants or ground terms, contexts. This declaration states which are the contexts the agent
may possibly find itself in, or may choose to set itself in. Facts contextN may be ini-
tially stated, but this is not strictly required as the agent may want to set a context later.
We let CN be the set of contexts occurring in facts contextN (C) which are present in
the knowledge base.

In our setting, in order to either set or change context, the agent may invoke a dis-
tinguished action (postfix A):

change contextA(M1, . . . ,Mk;C1, . . . , Cn).

where: (a) each Mj is an atom and each Ci can be either an atom or a disjunction
of atoms in the form:

(Ci1 | . . . | Cis) : Prefs

b) all the Mjs, Ci and Cir s occur in DC.
The part : Prefs is optional, and expresses in the notation of [29, 30] preferences

about which of the Cij s is preferred under which conditions. The intended meaning is
that the agent wishes to switch to contexts M1, . . . ,Mk, C1, . . . , Cn where: (i) the Mjs
are mandatory, i.e., after the context switch all of them must be present contexts; (ii) the
Cis are wished for, i.e., they will become present contexts if possible; (iii) for each Ci

which is a disjunction, any of the Cij s can be selected, either indifferently or according
to preferences, if stated. For instance,

change contextA(at leisure; (play chess | play checkers : less difficult)).
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means that the agent intends to switch to a context where it is at leisure and wishfully
plays either chess or checkers, preferring the one which is less difficult. Binary predicate
less difficult(X,Y ) must be defined in the agent’s knowledge base where whenever
less difficult(g1, g2) holds, g1, g2 ∈ {play chess , play checkers}, the former is best
preferred. This notation extends to sets of elements and to any binary predicate which
establishes an ordering over these elements.

A distinguished ASP module is supposed to be defined in order to manage context
shift. This module is similar to a “reactive ASP module” as defined in [24]. An ASP
module is needed (that may have no, one or several answer sets) as there can be either
complementarity or incompatibilities among contexts: for instance, one cannot be both
at leisure and at work, does not play games if in emergency, and, say, one gambles
on the stock exchange only when working. The definition of this module is therefore
an important part of the definition of an agent. A possible (naive) definition of this
module related to our example can be for instance the following (where we remind the
reader that rules starting with :- are constraints and state that their conditions cannot
simultaneously hold, and that an even cycle like a:- b, b:- a generates indifferently either
a or b.

at_leisure:- not at_work.
at_work:- not at_leasure.
normal:- not emergency.
emergency:- not normal.
:- emergency, game.
game:- play_chess.
game:- play_checkers.
play_check:- not play_checkers.
play_checkers:- not play_chess.
:- at_leisure,at_work.
:- normal,emergency.

Such a module, that we can call context-switch module, may have none, one or more
answer set. We say that a context switch is enabled if the context-switch module admits
answer sets. If so, we will say that an answer set M of the context-switch module
entails change contextA(M1, . . . ,Mk;C1, . . . , Cn) if for every Mj , j ≤ k, Mj ∈ M ,
and that M enables each Ci which is an atom if Ci ∈ M , and each Ci which is a
disjunction, if at least one element Cij of the disjunction is in M .

In our prototype implementation, the interpreter treats the action of context change
CC = change contextA(M1, . . . ,Mk;C1, . . . , Cn) as follows, where as said CN is
the set of facts of the form contextN (C) included in the knowledge base.

– The context-switch ASP module is invoked, with the Mjs as input. I.e., the Mjs
will be added to the module as new facts.

– If the resulting module has no answer set, then the action fails and a failure past
event will be generated, that can possibly be suitably managed by a DALI internal
event.
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– If the resulting module admits answer sets, than it entails CC by construction (as
the Mjs are added to the module). One answer set M̂ is selected in the following
way.
• The best preferred answer sets N1, . . . , Nk are chosen according to the prefer-

ences expressed in the CC elements1.
• Among the Nvs, the answer set M̂ is chosen that maximizes the intersection

with CN . I.e., as few changes as possible are performed (other strategies are
of course possible). If more than one of the Nvs fulfils the requirements, one
of them is nondeterministically chosen.

– All facts of the form contextN (C) presently included in the knowledge base are
removed, and corresponding facts contextP(C) : T are added to PNV, where T is
the present time.

– For each C ∈ M̂ ∩ DC, a new fact of the form contextN (C) is added to the
knowledge base.

In the proposed setting, each context is associated to one or more modules (intended
as set of rules) aimed at managing the situation the context is about. These modules can
be part of the agent program, can have been acquired from other agents (see [8, 10])
or even somehow synthesized by the agent itself via some form of learning. However,
following [10], we assume that such modules are kept in a meta-level format enriching
each module with additional information. Let for instance a possible form be the fol-
lowing, where let �M� be any meta-level representation of the module M (that we take
here to be a set of DALI rules).

mod(context(c),name(n), source(a), time(t1 ), goal(g), timeout(t2 ),
feature(f ), eval(v), active(b), lastused(t3 ), �M�)

The elements of the description have the following meaning:

– context(c) indicates which context the module is aimed at managing. c is a con-
stant, might in principle be a list. name(n) specifies the module name.

– source(a) indicates which agent the module has been acquired from. a is the
agent’s name, can be self if the module is part of the agent program. time(t1 )
is the time of acquisition, can be 0 if the module is part of the agent program from
the beginning.

– goal(g) is the goal that the module is aimed at reaching. E.g., for a module with
context chess the goal can be, e.g., win-game or teach-to-play, where timeout(t2 )
states the deadline for reaching the goal. The goal may be empty or can be in
principle a list, the timeout may be empty. feature(f ), if specified (f might be a
list), may express some refinement with respect to the context and the goal. For
instance, for any game where the goal is to win, the feature might be the level of
expertise at which the module is supposed to enable the agent to play.

1 Fundamental techniques for combining preferences (seen as generic binary relations) can be
found for instance in [31]. Regarding combination of preferences in Logic Programming, cri-
teria are also given, for instance, in [32, 33, 34, 35, 29].
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– eval(v) is some kind of rating associated to the module, that should be related to
“how good” the module has been in reaching the goal in past usages. The evaluation
can be inherited by sender agent in case of acquired knowledge, and/or can be
updated by the agent itself.

– active(b) states whether the module is presently in use or not, if not lastused(t3 )
states the last time of module usage.

The set of module descriptions will include none, one or more module(s) for each
possible context. In our view, these descriptions are part of the long-term memory. We
also enhance the definition of the working memory, that in our setting at this point will
be composed not only by the set P plus the A-ILTL axioms, but also by the context
declarations, and by one module for each present context. This module will be loaded
whenever a context enters into play.

Then, when updating contexts, two more actions have to be performed:

– Eliminate from working memory modules concerning context which are removed,
and update the corresponding descriptions in the fields active , which is set to false,
lastused , that is set to the time of removal, eval that can be updated according to
agent’s satisfaction (we do not treat this aspect here).

– Load into the working memory one module for each new context. In the extreme
case where no module is available, a request might be issued to sibling agents (this
aspect has been discussed at some length in [8, 10]).

It remains to be seen what to do if there is more than one module corresponding
to one context. The different modules may correspond to different goals or to the same
goal with different features. E.g., for the context poker the goals might be either win-
money or minimize-loss and the features might be for instance either low-risk or high-
risk, referring to the style and attitude of the player.

To this aim, we can improve the change contextA format. Precisely, each Ci (or
each Cij for elements of disjunctions can be of the form:

Ci(Goal ,Feature).

e.g., in the above example, poker(win-money,high-risk). The specification of goal and
feature is to be intended as optional, but can also be enriched to:

Ci(Goal ,Feature pref ).

where Feature pref expresses preferences about features, e.g., in the above example,
poker(win-money, low-risk > high-risk pref when short-money), stating (in the style
of [29]) that in the case short-money is entailed by the present knowledge base, low-
risk should be preferred as a feature to high-risk, in case both modules are available
(otherwise, the choice is indifferent). Another possible choice is whether one might
select (given goal and features) the most recent or the best evaluated module.

What would it happen in case the agent loads a module in the view of a goal, but
the goal is not reached within the given deadline? Clearly, the evaluation of the module
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should be affected accordingly. However, in case alternative modules are available, the
agent might wish to remain in the context where it is, but exchange the module “on the
fly”. This can be obtained by means of a suitable A-ILTL axiom. For simplicity, let us
assume that whenever loading a context C and a related module, an object-level fact is
created of the following form:

module(C ,N ,Goal ,Timeout ,Feature).

where N is the module name and the other fields (possibly empty) represent goal, time-
out and features as extracted from the module definition. The above fact is to be re-
moved on removal of the module. Below is an A-ILTL axiom that, whenever checked
at run-time (at a customizable frequency), if it finds that a module has failed its objective
then it replaces it with another one (if available).

NEVER (module(C ,N ,Goal ,Timeout ,Feature),
not achieved(Goal), expired(Timeout)) ÷

replace module(C ,N ,Goal ,Timeout ,Feature)

Or, in the case an agent wishes to update the feature, e.g., passing from beginner
to expert in some game, let us assume it asserts a fact new feature(C ,Goal ,F ). The
following A-ILTL axiom would perform a module exchange (if a suitable module is
available) whenever checked:

NEVER (module(C ,N ,Goal ,Timeout ,Feature),
new feature(C ,Goal ,F ),F �= Feature) ÷

update module(C ,Goal ,F )

5 Concluding Remarks

In this paper, we have presented a context-sensitive approach to managing memory
and memories in logical agents. The approach was born in the context of the DALI
language, but can be easily adapted to other logic-programming based agent-oriented
languages. To the best of our knowledge the proposed approach, though in its early
stage, is a novelty in the logical agents realm. It drew inspiration from related work in
Artificial Intelligence, yet it introduces original aspects.

A full implementation is still lacking, but all the proposed features have been simu-
lated and experimented in DALI. Much remains to done for refining and extending the
approach, and for completing the implementation.
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