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Abstract. This paper describes the design and implementation of an Ontology-
Based System for Features Recognition and Design Rules Checking in the 
domain of sheet-metal engineering using Semantic Web technologies. The 
system was implemented by means of the Protégé Application Programming 
Interface (API), a rule engine and a reasoner. Using ontology in the core of the 
system enabled the representation of manufacturing rules and Automatic 
Features recognition. Rules and Queries were not hard coded in the program, 
giving the system a high level of maintainability and reusability.  Features were 
classified as general and specific, easing the work of classifying newer features 
as they appear given their previous classification. Most common sheet metal 
features referred to in the literature were recognized by the system.  
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1   Introduction 

Sheet metal parts are elements commonly used in several products manufactured in 
modern industry; aerospace, automotive, appliances, machine tools, etc. are only 
some of these. Although various software tools are available for making digital 
designs for such metal parts, trying to use those designs as input for process planning 
and manufacturing is not straightforward.  The majority of standards for Computer 
Aided Design (CAD) do not represent certain features that are needed when 
manufacturing. For instance, declaring when a circle corresponds to an inner edge or 
an outer edge has significant consequences during manufacturing although not 
necessary when displaying designs. Facilitating the interoperability across the CAD-
CAM (Computer Aided Manufacturing) process should make it possible for designers 
to select optimal manufacturing conditions. For instance, to choose a sheet thickness 
that would prevent crashes when punching holes. 

In order to achieve such interoperability, manufacturing features must be extracted 
from CAD files.  Extracting these features entails identifying certain patterns from the 
CAD files that are to receive additional manufacturing-relevant enrichment. This 
information about features is used a posteriori to determine the machining tools and 



manufacturing processes required to manufacture a given design [1]. Feature 
information can also then be used to pre-check designs in order to detect production 
rules violations. If these violations are not detected in the early stage of design, the 
life cycle of its development increases; raising both production costs and time to 
market [2]. Manual recognition of the targeted features is not a viable alternative; 
Automated Features Recognition (AFR) is thus required. However, even nowadays 
AFR is not fully integrated with CAD software tools. It is applicable only to parts 
with relatively simple geometry and still requires human intervention to obtain the 
features identified. Moreover, such techniques are generally supported only on 
expensive CAD software tools that are beyond the reach of small-scale industry [3].  

To address these shortcomings of AFR from sheet metal designs and design 
checking, in this paper we propose an ontology-based framework that facilitates 
interoperability across the entire CAD-CAM process. Our system integrates both a 
CAD and a feature ontology; these ontologies were written in OWL (Web Ontology 
Language) and represent 2D primitives as lines, arcs and circles in the CAD ontology 
and as edges, slots, tab and holes in the features ontology. In order to provide rules 
and query support, OWL was complemented with SWRL [4] and SQWRL [5]. The 
result is an ontology-based system that allows us to automatically extract the most 
common manufacturing features referred to in the literature. 

The paper is organized as follows. We begin with related work in Section 2. 
Section 3 then describes the components in the architecture of the implemented 
system. Section 4 shows the implementations and some results of the evaluation on a 
sample design and Section 5 concludes with an outlook for future work.  

2   Related work 

2.1 AFR & Design Advisory Systems  
 

Henderson & Anderson [6] reported on early experiences with the use of production 
rules that were not hard-coded into the system using Prolog, while Meeran & Pratt [7] 
proposed to extract features from 2D drawings to generate process planning and 
machining instructions from CAD. The latter approach was also based on logic 
programming, adopting Prolog as the implementation language. These authors 
mentioned that Prolog presented certain limitations when dealing with trigonometric 
functions.  

Other authors, such as Vasilakis [8] and Krima et al [9], did not use logic 
programming. Rules were represented instead as a set of nested IF <list of 
conditions> THEN <hypothesis><list of actions>. In the case of Vasilakis [8], when 
a design rule was violated the system showed the rule violated but did not suggest any 
corrective action.  Radhakrishnan [2] integrated a rule checker within a design 
adviser; this approach identifies distance violations amongst features. The general 
tendency in these contributions was the development of feature recognition and 
design advisory systems with hard-coded rules. 
 



 In summary, two main classes of approach can be identified from the literature.  
On the one hand there are approaches based on logic programming.  Here, rules are 
separated from code, facilitating interoperability, shareability and maintainability; 
these approaches have generally used Prolog as implementation language. On the 
other hand, there are also approaches relying on procedural programming, commonly 
using C and C++ as implementation languages. As these are not rule-based, 
maintainability and share-ability are limited. Babic et al [10] consider that emerging 
approaches should be hybrids.  
 
2.2 Ontology for CAD 

The limitations of CAD software tools have motivated researchers to develop 
frameworks that overcome those limitations and some of these have already adopted 
ontological approaches. Vasilakis & Andersen [11] and Krima et al [12], for example, 
developed ontologies for the Standard for the Exchange of Product model data 
(STEP). Here, Krima et al [12] acknowledged the limitation of STEP and accordingly 
developed OntoSTEP. OntoSTEP is based on OWL precisely because of its support 
of logic reasoning and inference mechanisms.  

Approaches addressing the problem of interoperability across CAD standards 
have been explored by Ghafour et al [13], Sun & Ding [14] and Ramos [15]. Ghafour 
et al. proposed a common Design Features Ontology written in OWL and one domain 
ontology from each specific standard, an approach similar to that of Sun & Ding. 
Ramos focused on an ontology for CAD primitives populating a CAD ontology. In 
addition, Grüninger & Delaval [16] developed an ontology for the cutting process of 
sheet metal parts; this approach was proposed as a theoretical step from which the 
planning process could be supported. Franke et al [17] developed an ontology-based 
tool for quality control in CAD design. They aimed to verify cases in which 
overlapping occurred in order to determine if this constituted a design mistake. Their 
architecture included their own software tool (OntoDMU) and the system HETS [18].  

2.3 Sheet Metal Features and Rules for Manufacturing 

Defining features in the manufacturing domain is not straightforward [1]; a feature is 
understood here as a part of a mechanical design that has a specific functionality and 
that is semantically significant within the manufacturing process. Farsi & Arezoo [19] 
classified sheet metal features according to whether those features were internal or 
external; internal features are holes and external features are different types of 
notches. Radhakrishnan et al [2] classified rules into two types: intrafeature rules and 
interfeature rules. Interfeature rules are related only to the feature itself and its 
constraints, indicating minimum values of its dimensional parameters. Interfeature 
rules describe restrictions across features and contours. In Fig. 1 some of the most 
common features and rules found in the literature are described.  The figure includes 
features names and some of their most important parameters. The indicated rules are 
related directly with the production process. It is necessary to take such rules into 
account in order to provide the necessary structural strength to the design´s features. 
Improperly formed features will contribute to waste of material in the finished 
products due to buckle, cracks or breaks. 
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Fig. 1. Manufacturing features with their constraints 

3 An Ontology-Based AFR and Design Checker system 

The approach developed here builds on the state of the art we have seen and takes this 
further, relying on a modular architecture that makes use of the Protégé API. In the 
following subsection we describe the approach’s components and the way in which 
they interact with each other. Although the organization and classes of the two 
ontologies are often comparable, it is important to see that they reflect fundamentally 
different kinds of ontological information. To the extent that similarities are found, 
then this renders the subsequent mapping process more straightforward, but there is 



no requirement that the ontologies correspond precisely. Since the identification 
criteria for the CAD and the features ontologies are quite distinct—the former relating 
to descriptions of design, the latter to manufacturability —it is both theoretically and 
architecturally cleaner to maintain them separately. We return to this important 
consideration and the issues of perspectives below. 

3.1 A CAD Ontology 

The first component to be discussed is the CAD ontology. During the development of 
this ontology several CAD formats, such as DXF [20] and IGES [21], were 
considered.  The resulting CAD ontology is under continued revision and update. Fig. 
2 illustrates the current state of the CAD Ontology: http://bit.ly/q8baMm.   

 
Fig. 2. CAD Ontology, http://bit.ly/q8baMm 

 
As is illustrated in the figure, we divided CAD_Features into the two subclasses: 

Qualitative_Features and Quantitative_Features.  Among the former, Primitives can 
be either Open or Closed. Under these classes, Line, Arc, Circle and Ellipse are 
understood as Primitive elements that are present in any CAD standard that provides 
at least a 2D representation. Derived elements are then Qualitative Features that may 
vary and are standard dependent; they appear as a combination of certain primitive 
elements. For example, a Vertex appears when two primitive lines are connected at 
one end. Definition of concepts, such as Vertex, is dimensional-space dependent.  

3.2 Ontology of Features 

For the development of the ontology of features, available at http://bit.ly/pyQGEE, 
we considered information such as that shown in Fig. 1. An extract of the resulting 
ontology is presented in Fig 3. There are two main concepts: these are 
Shape_Features and NonGeometry. Shape_Features was divided further into 
Qualitative_Features and Quantitative_Features, analogously to the top-level 
distinction in the CAD ontology. Named_Feature involves features found in the 
literature that can be precisely defined and identified using their properties or 
attributes. Atomic_Feature is then a  Named_Feature consisting of exactly one 



identifiable element which has meaning in a manufacturing domain. These elements 
can have Open or Closed edges.  

Composed_Features include features that appear as a combination of 
Atomic_Features. Partial_Composed includes identifiable features that need to be 
part of a whole to be consistent. Total_Composed covers a feature that exists as a 
whole. Partial_Composed features have to be part of a Total_Composed feature. 
hasPart and isPartof were included following a standard mereological [22] point of 
view and its terminologies  and definitions. Properties such as properWidth, 
properHeight, properCircularHole were included as part of SWRL rules. When these 
rules are evaluated, results are bound to true or false. If results are all true, the design 
passes its evaluation; otherwise the design is flagged as needing to be checked.  

 

 
 

Fig. 3. Sheet features Ontology, http://bit.ly/pyQGEE 
 

3.3 Mapping two domains of interpretation 

One of the main issues of AFR is the level of abstraction involved in the 
manufacturing domain [23]. On the one hand, designers make designs from the 
functionality and usability point of view, with its own constraints and rules. On the 
other hand, manufacturing engineers evaluate a design from the manufacturing point 
of view, considering factory constraints. It is for this reason that, in general, quite 
distinct standards, formats and tools have been developed. In the two domains, two 
different interpretations of the requirements take place for the same object, so an 
interoperability channel between them is needed.  This channel should facilitate the 
interchange of information about products as well as the evaluation of designing and 
manufacturing constraints.  

In Fig. 4, we introduce the framework implemented for dealing with this 
situation. Knowledge transfer between domain ontologies has been facilitated by 
means of a third, mapping ontology, which keeps track of the related concepts of both 
domains. This mapping ontology was developed using the Prompt plug-in [24]. Given 
that in many cases the difference between the domains can be reduced to  



 
Fig. 4 System Architecture 

 
terminological issues (factoring out often implicit identity criteria), we first made an 
internal comparison [25]. This consisted of comparing concepts based on attributes 
and properties. The ontology of CAD and the ontology of features were used as inputs 
and a mapping ontology was the output. Mapping was semi-automatic because the 
algorithm did not detect all relationships; human intervention was needed to complete 
the process. This preliminary mapping already gave us the necessary information to 
generate individuals of the features ontology and then to transfer the knowledge about 
individuals and their properties from the ontology of CAD to the ontology of features 
in a workable fashion.  

3.4 Feature Patterns as Queries 

Features were recognized by querying the features ontology with SQWRL. These 
queries were performed at two levels of abstraction. A first set of queries was 
implemented to facilitate a general classification of features and a second set was 
executed to facilitate specialized classification. These two sets of queries reduced the 
impact of not extracted or unidentified features referred to in the literature [26]. 
Within the first set of queries, all given atomic features were classified as is part of, a 
general pattern. Subsequently, having assigned all atomic features to some general 
pattern, we proceeded to identify specific patterns.  If some atomic feature was not 
classified as is part of some specific pattern, then a new specific pattern had to be 
added. 

For example, a protrusion pattern is formed by three connected edges having a 
specific slope. The query for extracting this pattern was expressed as follows: 
 

Open_Primitive(?l1) ∧ Slope(?l1, "-0.0") ∧       
Open_Primitive(?l2) ∧  Slope(?l2, "Infinity") ∧ 
Open_Primitive(?l3) ∧ Slope(?l3, "+0.0") ∧  
hasendpoint(?l1, ?p1) ∧ hasstartpoint(?l2, ?p1) ∧ 
hasendpoint(?l2, ?p2) ∧ hasstartpoint(?l3, ?p2) ˚  



sqwrl:makeSet(?s, ?l3)  
→ sqwrl:select(?s, ?l1, ?l2, ?l3) 
 

The number of sets obtained and their composition allows the generation of composed 
features. Once the query has been executed, composed features are related to atomic 
features by means of the has-part property. 

3.5 Design and Manufacturing Rules Checking 

Although AFR research is receiving considerable attention, a recognized feature still 
does not indicate anything about its quality. This aspect is fundamental in order to 
reduce the cost of manufacturing a given design [27]. To this end, two sets of SWRL 
were implemented to check manufacturing rules. The first set allowed  us to enrich 
the features ontology with the necessary engineering information about features.  For 
instance, the width of a Partial Composed feature was calculated with the following 
rule: 

 
PartialComposed(?pc) ∧ hasEdge(?pc, ?e) ∧ slope(?e, 
"0.0") ∧ hasEndPoint(?e, ?p2) ∧ hasYcoordinate(?p2, 
?y2) ∧ hasStartPoint(?e, ?p1) ∧ hasYcoordinate(?p1, 
?y1) ∧ swrlb:subtract(?v1, ?y2, ?y1) ∧ swrlb:abs(?v1) → 
width(?pc, ?v1) 

 
     The second set of rules was implemented for checking the design. For instance, 
given the thickness of a given material, a minimum width is mandatory to make its 
manufacturability feasible. For some materials the width must be 1.5 times greater 
than the given thickness. This rule was expressed in SWRL as follows: 
 

PartialComposed(?pc) ∧ width(?pc, ?w) ∧ heigh(?pc, ?h) 
∧ thickness(?pc, ?t) ∧ swrlb:multiply(?v1, ?t, 1.5) ∧ 
swrlb:greaterThan(?w, ?t) → proper_width(?pc, true) 

3.6 Reasoning framework 

The reasoning capabilities of the Semantic Web framework gives us the possibility of 
classifying instances of classes against the ontologies of our application. Our 
reasoning was done in two steps. Firstly, using SWRLTab [28], rules and queries 
were edited, implemented and debugged. JESS [29], a rule engine for JAVA 
platforms, has been included in Protégé for enabling this tab. Each OWL Model and 
its corresponding SWRL rules were loaded into the JESS engine. The JESS engine 
was then run and the resulting inferences were uploaded into the OWL model. Thus, 
the amount of knowledge encoded in the OWL model was augmented. Results of 
querying the models were also considered for creating new individuals. This result 
was finally compared with the design in order to determine if the result was consistent 
with it. Here we used Pellet [30] for the automatic verification of the consistency of 
the OWL model and for classifying the instantiated features.   
 



 
 

Fig. 5. Sample shape 
 
 
Secondly, using the SWRL API [31], the OWL Reasoning API [32] and the 

Protégé API, a prototype was developed. SWRLJessBridge, SWRLQueryAPI and 
ProtegePelletJenareasoner were also used in this implementation; the overall 
architecture is presented in Fig 4. Rules and the results of running the rules were 
loaded into models at run time. Queries were made to the OWL models, and the 
results were again imported so as to add new knowledge into the OWL models. 
Finally, the reasoner verified the consistency of these ontologies and classified 
instanced features. Resulting from this process we obtained an OWL model of 
features containing all the necessary information pertaining to recognized features 
with their quality; our model also includes non-identified features. 

4 Implementation and Results 

The implementation was tested with several designs of shapes. In Fig. 5 one of these 
is displayed by means of a CADViewer plug-in for Protégé [15]. Our first evaluation 
of the design consisted of diagnosing the topological correctness of the model and 
verifying the connectivity of edges and vertex [33]. For this verification, we defined 
Isolated_Point as a subclass of Point. After populating the CAD ontology, the 
reasoner was invoked. If instances of Isolated_Point are found then the design is 



considered as inconsistent; such a case is illustrated in Fig. 6. As soon as the problem 
was corrected, the system continued with the extraction of features and their 
validation.  

The features described in Fig. 1 were recognized and extracted into the features 
ontology. Manufacturing rules were run on the OWL model adding newer knowledge. 
This new knowledge was then used by the reasoner to classify features into sets of 
proper and improper features.  
 

5 Conclusions and future work 

AFR is a research and application area devoted to bridging the gap between design 
and manufacturing. Most of the approaches used in AFR are divided into procedural 
and declarative approaches. We have developed an Ontology-Based AFR and Design 
Rules Checker System that combines the advantages of both approaches. An ontology 
of CAD and an ontology of features are the fundamental components of our system. 
The necessary interoperation between both ontologies was achieved by means of a 
mapping ontology generated in a semi-automatic manner using the Prompt Protégé 
plug-in.  

SWRL was used to perform engineering calculations in order to add appropriate 
semantics to the features ontology. SQWRL was used for modeling feature patterns 
commonly referred to in the literature. Sheet metal features were extracted as the 
result of queries applied to the features ontology. SQWRL queries and SWRL rules 
were written at several levels of abstraction in order to make a progressive 
identification of features possible. By using such combination, SQWRL and SWRL, 
we have identified a significant number of features. 

In this paper we have demonstrated that complex rule of mechanical and 
manufacturing engineering processes can be expressed using OWL and SWRL. 
Similarly, we have demonstrated that complex engineering information can be 
retrieved from the ontology using the SQWRL language. These rules and queries 
were also used for inferring knowledge and driving appropriate decision-making 
information. New features, rules and patterns can be integrated into our system by 
means of standard ontology editors. In the near future, we plan to integrate a 
recommendation ontology. Thus, as soon as a design violation is found, a 
recommendation will be presented to the user. We will also investigate how to deal 
with intersecting mechanical features.  

The resulting set of recognized features could be used as an input in Computer 
Aided Process Planning (CAPP) systems, from which process planning will be 
obtained. We will continue this line of development as a Semantic Web CAPP 
system, focusing on the accuracy of the kind of planning generated with the Semantic 
Web Technologies taking into consideration other aspects of the engineering 
environment and investigating scalability. 
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