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Abstract. Fuzzy Description Logics (DLs) are logics that allow to deal
with vague structured knowledge. Although a relatively important amount
of work has been carried out in the last years concerning the use of fuzzy
DLs as ontology languages, the problem of automatically managing fuzzy
ontologies has received very little attention so far. We report here our
preliminary investigation on this issue by describing a method for induc-
ing inclusion axioms in a fuzzy DL-Lite like DL.

1 Introduction

Description Logics (DLs) [1] play a key role in the design of ontologies. An on-
tology consists of a hierarchical description of important concepts in a particular
domain, along with the description of the properties (of the instances) of each
concept. In this context, DLs are important as they are essentially the theoreti-
cal counterpart of the Web Ontology Language OWL 2 3, the current standard
language to represent ontologies, and its profiles. 4 E.g., DL-Lite [2] is the DL
behind the OWL 2 QL profile and is especially aimed at applications that use
very large volumes of instance data, and where query answering is the most
important reasoning task.

On the other hand, it is well-known that “classical” ontology languages are
not appropriate to deal with vague knowledge, which is inherent to several real
world domains [21]. So far, several fuzzy extensions of DLs can be found in the
literature (see the survey in [14]), which includes, among others a fuzzy DL-Lite
like DL [23] which has been implemented in the SoftFacts system [23] 5.

Although a relatively important amount of work has been carried out in the
last years concerning the use of fuzzy DLs as ontology languages, the problem of
automatically managing fuzzy ontologies has received very little attention so far.
In this work, we report our preliminary investigation on this issue by describing

3 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
4 http://www.w3.org/TR/owl2-profiles/.
5 See, http://www.straccia.info/software/SoftFacts/SoftFacts.html



 Lukasiewicz logic Gödel logic Product logic

a⊗ b max(a+ b− 1, 0) min(a, b) a · b
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b

a⇒ b min(1− a+ b, 1)

{
1 if a 6 b

b otherwise
min(1, b/a)

	 a 1− a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise

Table 1. Combination functions of various fuzzy logics.

a method for inducing inclusion axioms in a fuzzy DL-Lite like DL. The method
follows the machine learning approach known as Inductive Logic Programming
(ILP) by adapting known results in ILP concerning crisp rules to the novel case
of fuzzy DL inclusion axioms.

The paper is structured as follows. Section 2 is devoted to preliminaries on
Mathematical Fuzzy Logic, Fuzzy DLs and ILP. Section 3 describes our pre-
liminary contribution to the problem in hand, also by means of an illustrative
example. Section 4 concludes the paper with final remarks and comparison with
related work.

2 Background

2.1 Mathematical Fuzzy Logic Basics

In Mathematical Fuzzy Logic [7], the convention prescribing that a statement is
either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but the [0, 1]. This degree is called degree of truth
(or score) of the logical statement φ in the interpretation I. In this section,
fuzzy statements have the form φ[r], where r∈ [0, 1] (see, e.g. [6,7]) and φ is a
statement, which encode that the degree of truth of φ is greater or equal r.

A fuzzy interpretation I maps each basic statement pi into [0, 1] and is then
extended inductively to all statements: I(φ ∧ ψ) = I(φ) ⊗ I(ψ), I(φ ∨ ψ) =
I(φ) ⊕ I(ψ), I(φ → ψ) = I(φ) ⇒ I(ψ), I(¬φ) = 	I(φ), I(∃x.φ(x)) =
supa∈∆I I(φ(a)), I(∀x.φ(x)) = infa∈∆I I(φ(a)), where ∆I is the domain of I,
and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication functions, and
negation functions, respectively, which extend the Boolean conjunction, disjunc-
tion, implication, and negation, respectively, to the fuzzy case.

One usually distinguishes three different logics, namely  Lukasiewicz, Gödel,
and Product logics [7], whose combination functions are reported in Table 1.
The operators for Zadeh logic, namely a ⊗ b = min(a, b), a ⊕ b = max(a, b),
	 a = 1− a and a⇒ b = max(1− a, b), can be expressed in  Lukasiewicz logic6.

6 More precisely, min(a, b) = a⊗L (a⇒L b),max(a, b) = 1−min(1− a, 1− b).



(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal function trz (x; a, b, c, d), (b) triangular function tri(x; a, b, c),
(c) left shoulder function ls(x; a, b), and (d) right shoulder function rs(x; a, b).

A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The
trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the L-function (left-shoulder
function, Fig. 1 (c)), and the R-function (right-shoulder function, Fig. 1 (d)) are
frequently used to specify membership degrees. In particular, the left-shoulder
function is defined as

ls(x; a, b) =


1 if x 6 a

0 if x > b

(b− x)/(b− a) if x ∈ [a, b]

(1)

The notions of satisfiability and logical consequence are defined in the stan-
dard way. A fuzzy interpretation I satisfies a fuzzy statement φ[r] or I is a
model of φ[r], denoted I |=φ[r] iff I(φ) > r.

2.2 DL-Lite like description logic and its fuzzy extensions

For computational reasons, the logic we adopt is based on a fuzzy extension of
the DL-Lite DL without negation [23]. It supports at the intensional level unary
relations (called concepts) and binary relations (called roles), while supports
n-ary relations (relational tables) at the extensional level.

Formally, a knowledge base K = 〈F ,O,A〉 consists of a facts component F ,
an ontology component O and an abstraction component A, which are defined
as follows (for a detailed account of the semantics, see [22]). Information can be
retrieved from the knowledge base by means of an appropriate query language
discussed later.

Facts Component. The facts component F is a finite set of expressions of the
form

R(c1, . . . , cn)[s] , (2)

where R is an n-ary relation, every ci is a constant, and s is a degree of truth
(or score) in [0, 1] indicating to which extent the tuple 〈c1, . . . , cn〉 is an instance
of relation R.7 Facts are stored in a relational database. We may omit the score
component and in such case the value 1 is assumed.

7 The score s may have been computed by some external tool, such as a classifier, etc.



Ontology Component. The ontology component is used to define the relevant
abstract concepts and relations of the application domain by means of inclusion
axioms. Specifically, O is a finite set of inclusion axioms having the form

Rl1 u . . . uRlm v Rr , (3)

where m > 1, all Rli and Rr have the same arity and each Rli is a so-called
left-hand relation and Rr is a right-hand relation8. We assume that relations oc-
curring in F do not occur in inclusion axioms (so, we do not allow that database
relation names occur in O). Also we recall that from a semantics point of view,
Gödel logic is adopted. The intuition for one such semantics is that if a tuple c
is instance of each relation Rli to degree si then c is instance of Rr to degree
min(s1, . . . , sm).

The exact syntax of the relations appearing on the left-hand and right-hand
side of inclusion axioms is specified below:

Rl −→ A | R[i1, i2]
Rr −→ A | R[i1, i2] | ∃R.A (4)

where A is an atomic concept and R is a role with 1 6 i1, i2 6 2. Here R[i1, i2]
is the projection of the relation R on the columns i1, i2 (the order of the indexes
matters). Hence, R[i1, i2] has arity 2. Additionally, ∃R.A is a so-called quali-
fied existential quantification on roles which corresponds to the FOL formula
∃y.R(x, y) ∧ A(y) where ∧ is interpreted as the t-norm in the Gödel logic (see
Table 1).

Abstraction Component. A (similarly to [3,17]) is a set of “abstraction state-
ments” that allow to connect atomic concepts and roles to physical relational ta-
bles. Essentially, this component is used as a wrapper to the underlying database
and, thus, prevents that relational table names occur in the ontology. Formally,
an abstraction statement is of the form

R 7→ (c1, . . . , cn)[cscore].sql , (5)

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n 6 2) with
score determined by the cscore column. The tuples have to be ranked in decreas-
ing order of score and, as for the fact component, we assume that there cannot
be two records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with s1 6= s2 (if there are,
then we remove the one with the lower score). The score cscore may be omitted
and in that case the score 1 is assumed for the tuples. We assume that R occurs
in O, while all of the relational tables occurring in the SQL statement occur in
F . Finally, we assume that there is at most one abstraction statement for each
abstract relational symbol R.

8 Note that recursive inclusion axioms are allowed.



Query Language. The query language enables the formulation of conjunctive
queries with a scoring function to rank the answers. More precisely, a ranking
query [13] is of the form

q(x)[s]← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)), Limit(k)

(6)

where

1. q is an n-ary relation, every Ri is a ni-ary relation (1 6 ni 6 2). Ri(zi) may
also be of the form (z 6 v), (z < v), (z > v), (z > v), (z = v), (z 6= v), where
z is a variable, v is a value of the appropriate concrete domain;

2. x are the distinguished variables.

3. y are existentially quantified variables called the non-distinguished variables.
We omit to write ∃y when y is clear from the context;

4. zi, z
′
j are tuples of constants or variables in x or y;

5. s, s1, . . . , sl are distinct variables and different from those in x and y;

6. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score
pj(cj) ∈ [0, 1]. We require that an n-ary fuzzy predicate p is safe, that is,
there is not an m-ary fuzzy predicate p′ such that m < n and p = p′.
Informally, all parameters are needed in the definition of p.

7. f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the scores
of the l relations Ri(c

′
i) and the n fuzzy predicates pj(c

′′
j ) into an overall

score s to be assigned to q(c). We assume that f is monotone, that is, for
each v,v′ ∈ ([0, 1])l+h such that v 6 v′, it holds f(v) 6 f(v′), where
(v1, . . . , vl+h) 6 (v′1, . . . , v

′
l+h) iff vi 6 v′i for all i. We also assume that the

computational cost of f and all fuzzy predicates pi is bounded by a constant;

8. Limit(k) indicates the number of answers to retrieve and is optional. If omit-
ted, all answers are retrieved.

We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and OrderBy(s =
f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)) the scoring atom. We also allow the scores [s], [s1],
. . . , [sl] and the scoring atom to be omitted. In this case we assume the value 1
for si and s instead. The informal meaning of such a query is: if zi is an instance
of Ri to degree at least or equal to si, then x is an instance of q to degree at
least or equal to s, where s has been determined by the scoring atom.

The answer set ansK(q) over K of a query q is the set of tuples 〈t, s〉 such that
K |= q(t)[s] with s > 0 (informally, t satisfies the query to non-zero degree s)
and the score s is as high as possible, i.e. if 〈t, s〉 ∈ ansK(q) then (i) K 6|= q(t)[s′]
for any s′ > s; and (ii) there cannot be another 〈t, s′〉 ∈ ansK(q) with s > s′.

2.3 Learning rules with ILP

Inductive Logic Programming (ILP) was born at the intersection between Con-
cept Learning and Logic Programming [16].



From Logic Programming it has borrowed the Knowledge Representation
(KR) framework, i.e. the possibility of expressing facts and rules in the form of
Horn clauses. In the following, rules are denoted by

B(x)→ H(x) (7)

where x is the vector of the n variables that appear in the rule, B(x) = B0(x)∧
. . . ∧Bq(x) represents the antecedent (called the body) of the rule, and H(x) is
the consequent (called head) of the rule. The predicate H pertains to the concept
to be learnt (called target). Given an attribute domain D and a vector t ∈ Dn of
n values of the domain, we denote the ground substitution of the variable x with
t by H(t) = σ[x/t]H(x). Then H(t) is true or false in a given interpretation.

From Concept Learning it has inherited the inferential mechanisms for in-
duction, the most prominent of which is generalisation. A distinguishing feature
of ILP with respect to other forms of Concept Learning is the use of prior do-
main knowledge in the background during the induction process. The classical
ILP problem is described by means of two logic programs: (i) the background
theory K which is a set of ground facts and rules; (ii) the training set E which is
a set of ground facts, called examples, pertaining to the predicate to be learnt.
It is often split in E+ and E−, which correspond respectively to positive and
negative examples. If only E+ is given, E− can be deduced by using the Closed
World Assumption (CWA). A rule r covers an example e ∈ E iff K ∪ {r} |= e.
The task of induction is to find, given K and E , a set H of rules such that: (i)
∀e ∈ E+,K ∪ H |= e (completeness of H) and (ii) ∀e ∈ E−,K ∪ H 6|= e (consis-
tency of H). Two further restrictions hold naturally. One is that K 6|= E+ since,
in such a case, H would not be necessary to explain E+. The other is K∪H 6|= ⊥,
which means that K ∪H is a consistent theory. Usually, rule induction fits with
the idea of providing a compression of the information contained in E .

A popular ILP algorithm for learning sets of rules is FOIL [18]. It performs
a greedy search in order to maximise a gain function. The rules are induced
until all examples are covered or no more rules are found that overcome the
threshold. When a rule is induced, the positive examples covered by the rule
are removed from E . This is the sequential covering approach underlying the
function FOIL-Learn-Sets-of-Rules shown in Figure 2. For inducing a rule,
the function FOIL-Learn-One-Rule reported in Figure 3 starts with the most
general clause (> → H(x)) and specialises it step by step by adding literals to
the antecedent. The rule r is accepted when its confidence degree cf(r) (see later
on) overcomes a fixed threshold θ and it does not cover any negative example.

The Gain function is computed by the formula:

Gain(r′, r) = p ∗ (log2(cf(r′))− log2(cf(r))) , (8)

where p is the number of distinct positive examples covered by the rule r that
are still covered by r′. Thus, the gain is positive iff r′ is more informative in the
sense of Shannon’s information theory (i.e. iff the confidence degree increases).
If there are some literals to add which increase the confidence degree, the gain
tends to favor the literals that offer the best compromise between the confidence
degree and the number of examples covered.



function FOIL-Learn-Sets-of-Rules(H, E+, E−, K): H
begin
1. H ← ∅;
2. while E+ 6= ∅ do
3. r ← FOIL-Learn-One-Rule(H, E+, E−, K);
4. H ← H∪ {r};
5. E+r ← {e ∈ E+|K ∪ r |= e};
6. E+ ← E+ \ E+r ;
7. endwhile
8. return H
end

Fig. 2. Algorithm for learning sets of rules in FOIL

Given a Horn clause B(x)→ H(x), the confidence degree is given by:

cf(B(x)→ H(x)) = P (B(x) ∧H(x))/P (B(x)) . (9)

Confidence degrees are computed in the spirit of domain probabilities [8]. Input
data in ILP are supposed to describe one interpretation under CWA. We call
IILP this interpretation. So, given a fact f , we define:

IILP |= f iff K ∪ E |= f . (10)

The domain D is the Herbrand domain described by K and E . We take P as a
uniform probability on D. So the confidence degree in a clause B(x)→ H(x) is:

cf(B(x)→ H(x)) =
|t ∈ Dn | IILP |= B(t) and H(t) ∈ E+|
|t ∈ Dn | IILP |= B(t) and H(t) ∈ E|

(11)

where | · | denotes set cardinality. Testing all possible t ∈ Dn is not tractable
in practice. However, we can equivalently restrict the computation to the sub-
stitutions that map variables to constants in their specific domains. In fact,
this computation is equivalent to a database query and thus, we can also use
some optimization strategy such as indexing or query ordering. This makes the
computation tractable although it remains costly.

3 Towards Learning Fuzzy DL-Lite like Inclusion Axioms

In this section we consider a learning problem where:

– the target concept H is a DL-Lite atomic concept;
– the background theory K is a DL-Lite like knowledge base 〈F ,O,A〉 of the

form described in Section 2.2;
– the training set E is a collection of fuzzy DL-Lite like facts of the form (2)

and labeled as either positive or negative examples for H. We assume that
F ∩ E = ∅;



function FOIL-Learn-One-Rule(H, E+, E−, K): r
begin
1. B(x)← >;
2. r ← {B(x)→ H(x)};
3. E−r ← E−;
4. while cf(r) < θ and E−r 6= ∅ do
5. Bbest(x)← B(x);
6. maxgain← 0;
7. foreach l ∈ K do
8. gain← Gain(B(x) ∧ l(x)→ H(x), B(x)→ H(x));
9. if gain > maxgain then
10. maxgain← gain;
11. Bbest(x)← B(x) ∧ l(x);
12. endif
13. endforeach
14. r ← {Bbest(x)→ H(x)};
15. E−r ← E−r \ {e ∈ E−|K ∪ r |= e};
16. endwhile
17. return r
end

Fig. 3. Algorithm for learning one rule in FOIL

– the target theory H is a set of inclusion axioms of the form

B v H (12)

where H is an atomic concept, B = C1 u . . . uCm, and each concept Ci has
syntax

C −→ A | ∃R.A | ∃R.> . (13)

Note that the language of hypotheses LH differs from the language of the
background theory LK as for the form of axioms. Yet the alphabet underlying LH
is a subset of the alphabet for LK. Note also that H, in order to be acceptable,
must be complete and consistent w.r.t. E , i.e. it must cover all the positive
examples and none of the negative examples.

3.1 The FOIL-like algorithm

We now show how we may learn inclusion axioms of the form (12). To this aim,
we adapt (10) to our case and define for C 6= H

IILP |= C(t) iff K ∪ E |= C(t)[s] and s > 0 . (14)

That is, we write IILP |= C(t) iff it can be inferred from K and E that t is an
instance of concept C to a non-zero degree. Note that E is split into E+ and E−. In
order to distinguish between the two sets while using a uniform representation



with K, we introduce two additional concepts, H+ and H−, whose intension
coincide with the sets E+ and E−, respectively, as well as the axioms H+ v H
and H− v H. We call K′ the background theory augmented with the training
set represented this way, i.e. K′ = K ∪ E .

Now, in order to account for multiple fuzzy instantiations of fuzzy predicates
occurring in the inclusion axioms of interest to us, we customise (11) into the
following formula for computing the confidence degree:

cf(B v H) =

∑
t∈P B(t)⇒ H(t)

|D|
(15)

where

– P = {t | IILP |= Ci(t) and H(t)[s] ∈ E+}, i.e. P is the set of instances for
which the implication covers a positive example;

– D = {t | IILP |= Ci(t) and H(t)[s] ∈ E}, i.e. D is the set of instances for
which the implication covers an example (either positive or negative);

– B(t)⇒ H(t) denotes the degree to which the implication holds for a certain
instance t;

– B(t) = min(s1, . . . , sn), with K ∪ E |= Ci(t)[si];
– H(t) = s with H(t)[s] ∈ E .

Clearly, the more positive instances supporting the inclusion axiom, the higher
the confidence degree of the axiom.

Note that the confidence score can be determined easily by submitting appro-
priate queries via the query language described in Section 2.2. More precisely,
proving the fuzzy entailment in (14) for each Ci is equivalent to answering a
unique ranking query whose body is the conjunction of the relations Rl result-
ing from the transformation of Ci’s into FOL predicates and whose score s is
given by the minimum between sl’s.

From an algorithm point of view, it suffices to change FOIL-Learn-One-Rule
at step 7., where now l may be of any of the forms allowed in (13). More precisely,
in line with the tradition in ILP and in conformance with the search direction
in FOIL, we devise a specialization operator, i.e. an operator for traversing the
hypotheses space top down, with the following refinement rules:

1. Add atomic concept (A)
2. Add complex concept by existential role restriction (∃R.>)
3. Add complex concept by qualified existential role restriction (∃R.A)
4. Replace atomic concept (A replaced by A′ if A′ v A)
5. Replace complex concept (∃R.A replaced by ∃R.A′ if A′ v A)

The rules are numbered according to an order of precedence, e.g. the addition of
an atomic concept has priority over the addition of a complex concept obtained
by existential role restriction. A rule can be applied when the preceding one in
the list can not be applied anymore. Concept and role names in the alphabet
underlying LH are themselves ordered. This implies that, e.g., the addition of
an atomic concept is not possible anymore when all the atomic concepts in the
alphabet have been already used in preceding applications of the rule.



3.2 An illustrative example

For illustrative purposes we consider the following case involving the classifica-
tion of hotels as good ones. We assume to have a background theory K with
a relational database F (reported in Figure 4), an ontology O 9 (illustrated in
Figure 5) which encompasses the following inclusion axioms

Park v Attraction
Tower v Attraction
Attraction v Site
Hotel v Site

and the following set A of abstraction statements:

Hotel 7→ (h.id).SELECT h.id
FROM HotelTable h

hasRank 7→ (h.id, h.rank).SELECT h.id, h.rank
FROM HotelTable h

cheapPrice 7→ (h.id, r.price)[score].SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.id = r.hotel
ORDER BY score

closeTo 7→ (from, to)[score].SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

where cheap(p) is a function determining how cheap a hotel room is given its
price, modelled as e.g. a so-called left-shoulder function cheap(p) = ls(p; 50, 100),
while closedistance(d) = ls(d; 5, 25).

Assume now that:

– H = GoodHotel;
– E+ = {GoodHotel(h1)[0.6], GoodHotel(h2)[0.8]};
– E− = {GoodHotel(h3)[0.4]}.

In order to have a uniform representation of the examples w.r.t. the background
theory, we transform E as follows:

GoodHotel+ v GoodHotel
GoodHotel− v GoodHotel
GoodHotel+(h1)[0.6]
GoodHotel+(h2)[0.8]
GoodHotel−(h3)[0.4]

9 http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html



HotelTable
id rank noRooms

h1 3 21

h2 5 123

h3 4 95

RoomTable
id price roomType hotel

r1 60 single h1

r2 90 double h1

r3 80 single h2

r4 120 double h2

r5 70 single h3

r6 90 double h3

Tower
id

t1

Park
id

p1

p2

DistanceTable
id from to time

d1 h1 t1 10

d2 h2 p1 15

d3 h3 p2 5

Fig. 4. Hotel database

and call K′ the background theory augmented with the training set represented
this way.

The following inclusion axioms:

r0 : > v GoodHotel
r1 : Hotel v GoodHotel
r2 : Hotel u ∃cheapPrice.> v GoodHotel
r3 : Hotel u ∃cheapPrice.> u ∃closeTo.Attraction v GoodHotel
r4 : Hotel u ∃cheapPrice.> u ∃closeTo.Park v GoodHotel
r5 : Hotel u ∃cheapPrice.> u ∃closeTo.Tower v GoodHotel

belong to LH = {r|Ci ∈ {>, Hotel,∃cheapPrice,∃closeTo}} ⊂ LK. They can
be read as:

r0 : Everything is a good hotel
r1 : Every hotel is a good hotel
r2 : Hotels having a cheap price are good hotels
r3 : Hotels having a cheap price and close to an attraction are good hotels
r4 : Hotels having a cheap price and close to a park are good hotels
r5 : Hotels having a cheap price and close to a tower are good hotels

thus highlighting the possibility of generating “extreme” hypotheses about good
hotels such as r0 and r1. Of course, some of them will be discarded on the basis
of their confidence degree.

Before showing how hypotheses evaluation is performed in our adaptation of
FOIL, we illustrate the computation of the confidence degree for r3. It can be
verified that for K′

1. The query
qP (h)[s]← GoodHotel+(h),

cheapPrice(h, p)[s1],
closeTo(h, a)[s2], Attraction(a),
s = min(s1, s2)

has answer set ansK′(qP ) = {〈h1, 0.75〉, 〈h2, 0.4〉} over K′;



Fig. 5. Hotel ontology.

2. The query
qD(h)[s]← GoodHotel(h),

cheapPrice(h, p)[s1],
closeTo(h, a)[s2], Attraction(a),
s = min(s1, s2)

has answer set ansK′(qD) = {〈h1, 0.75〉, 〈h2, 0.4〉, 〈h3, 0.6〉} over K′;
3. Therefore, according to (15), P = {h1, h2}, while D = {h1, h2, h3};
4. As a consequence,

cf(r3) =
0.75⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 1.0

3
= 0.5333 .

Note that in qP the literals Hotel(h) and GoodHotel(h) are removed from the
body in favour of GoodHotel+(h) because the concepts Hotel and GoodHotel
subsume GoodHotel (due to a derived axiom) and GoodHotel+ (due to an as-
serted axiom) respectively. Analogously, in qD, the literal Hotel(h) is superseded
by GoodHotel(h).

Analogously, we can obtain:

cf(r2) =
0.8⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 0.4

3
= 0.3333 .

cf(r4) =
0.4⇒ 0.8

2
=

0.4

2
= 0.2 .



cf(r5) =
0.8⇒ 0.6

2
=

0.6

2
= 0.3 .

The function FOIL-Learn-One-Rule starts from r0 which is then spe-
cialized into r1 by applying the refinement rule which adds an atomic concept,
Hotel, to the left-hand side of the axiom. As aforementioned, r0 and r1 are trivial
hypotheses, therefore we can skip the computation steps for them and go ahead.
In particular, the algorithm generates r2 from r1 by adding a complex concept
obtained as existential restriction of the role cheapPrice. This hypothesis is not
consistent with the training set, therefore it must be specialized in order not
to cover the negative example. Considering that r3, r4 and r5 are both possible
specializations of r2, we can now compute the information gain for each of them
according to (8):

Gain(r3, r2) = 2∗(log2(0.5333)−log2(0.3333)) = 2∗(−0.907+1.5851) = 1.3562 ,

Gain(r4, r2) = 1 ∗ (log2(0.2)− log2(0.3333)) = (−2.3219 + 1.5851) = −0.7368 ,

Gain(r5, r2) = 1 ∗ (log2(0.3)− log2(0.3333)) = (−1.7369 + 1.5851) = −0.1518 ,

The algorithm will prefer r3. Yet r3 still covers the negative example, there-
fore it must be further refined, e.g. by strengthening the qualified restriction of
closeTo. The algorithm then generates once again the axioms r4 and r5 which
have the following values of information gain over r3:

Gain(r4, r3) = 1 ∗ (log2(0.2)− log2(0.5333)) = (−2.3219 + 0.907) = −1.4149 ,

Gain(r5, r3) = 1 ∗ (log2(0.3)− log2(0.5333)) = (−1.7369 + 0.907) = −0.8299 ,

The axiom r5 is more informative than r4, therefore it is preferred to r4. Also
it does not cover the negative example. Indeed, the literal ∃closeTo.Tower is
a discriminant feature. Therefore, r5 becomes part of the target theory. Since
one positive example is still uncovered, the computation continues within the
function FOIL-Learn-Sets-of-Rules aiming at finding a complete theory,
i.e. a theory which explains all the positive examples.

4 Final remarks

In this paper we have proposed a method for inducing ontology inclusion axioms
within the KR framework of a fuzzy DL-Lite like DL where vagueness is dealt
with the Gödel logic. The method extends FOIL, a popular ILP algorithm for
learning sets of crisp rules, in a twofold direction: from crisp to fuzzy and from
rules to inclusion axioms. Indeed, related FOIL-like algorithms are reported in
the literature [20,5,19] but they can only learn fuzzy rules. Another relevant work
is the formal study of fuzzy ILP contributed by [10]. Yet, it is less promising than
our proposal from the practical side. Close to our application domain, [9] faces
the problem of inducing equivalence axioms in a fragment of OWL corresponding
to the ALC DL. Last, the work reported in [11] is based on an ad-hoc translation



of fuzzy  Lukasiewicz ALC DL constructs into LP and then uses a conventional
ILP method to lean rules. The method is not sound as it has been recently shown
that the traduction from fuzzy DLs to LP is incomplete [15] and entailment in
 Lukasiewicz ALC is undecidable [4].

For the future we intend to study more formally the proposed specialization
operator for the fuzzy DL being considered. Also we would like to investigate
in depth the impact of Open World Assumption (holding in DLs) on the pro-
posed ILP setting, and implement and experiment our method. Finally, it can
be interesting to analyze the effect of the different implication functions on the
learning process.
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