TheBirth of a WASP:
Preliminary Report on a New ASP Solver*

Carmine Dodaro, Mario Alviano, Wolfgang Faber, Nicola Lepn
Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Univeraitella Calabria, 87030 Rende, Italy
carm nedodaro@nuai | . com
{al vi ano, f aber, | eone, ricca, sirianni }@mt.unical.it

Abstract. We present a new ASP solver for ground ASP programs that builds
upon related techniques, originally introduced for SAT solving, whictetimen
extended to cope with disjunctive logic programs under the stable madehse
tics. We describe the key components of this solving strategy, namelgirigar
restarts, heuristics based on look-back concepts, and backjumgitige A&ame
time, we introduce a new heuristics based on a mixed approach betwden loo
back and look-ahead techniques. Moreover, we present the respiiminary
experiments that we conducted in order to assess the impact of thesigtesh

on both random and structured instances (used also in the last ASP tampe
2011). In particular, we compared our system with both DLV and ClaspD.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programgnpiaradigm which has
been proposed in the area of hon-monotonic reasoning anmc poggramming. The
idea of ASP is to represent a given computational problem logia program whose
answer sets correspond to solutions, and then use a soffied thhem [2].

The ASP language considered here allows disjunction inhregels and nonmono-
tonic negation in rule bodies. These features make ASP wgmgssive; all problems in
the second level of the polynomial hierarchy are indeedesgible in ASP [3]. There-
fore, ASP is strictly more expressive than SAT (unléss: N P). Despite the intrinsic
complexity of the evaluation of ASP, after twenty years cl@rch many efficient ASP
systems have been developed (e.g. [4—11]). The availabflitobust implementations
made ASP a powerful tool for developing advanced applioatio the areas of Arti-
ficial Intelligence, Information Integration, or Knowlegldlanagement; for example,
ASP has been used in applications for team-building [12hasdic-based information
extraction [13], and e-tourism [14]. These application&8P have confirmed the via-
bility of the use of ASP. Nonetheless, the interest in dgvielp more effective and faster
systems is still a crucial and challenging research togiavitnessed by the results of
the ASP Contests series [15-17].

* Partly supported by Regione Calabria and EU under POR Calabria FESR22A.3 and
within the PIA project of DLVSYSTEM s.r.l., and by MIUR under the PRpbject LoDeN.
We also thank the anonymous reviewers for their valuable comments.

This paper provides a contribution in the aforementionetexd. In particular, we
provide a preliminary report on the development of a new A&@#es for propositional
programs calledasp. The new system is inspired by several techniques that wige o
inally introduced for SAT solving, like the Davis-Putnanegemann-Loveland (DPLL)
backtracking search algorithm [18}Jause learning[19, 20], backjumping[21, 22],
restarts [23], and conflict-driven heuristic§d24] in the style of Berkmin [25]. The
mentioned SAT-solving methods have been adapted and cenhhiith state-of-the-art
pruning techniques adopted by modern native disjunctive 8gstems [4]. In particu-
lar, the role of Boolean Constraint Propagation in SAT-smdybased on the simplmit
propagationinference rule) is taken by a procedure combining a set efémfce rules.
Those rules combine an extension of the well-founded opef@at disjunctive programs
with a number of techniques based on ASP program propesties €.9., [26]). More-
over,wasp uses a new branching heuristics tailored for ASP prograrhihns based
on a mixed approach between Berkmin-like heuristics anki-dtead, which takes into
account minimality of answer sets (a requirement not ptage®AT solving). Finally,
stable model checking, which is a co-NP-complete problendigjunctive logic pro-
grams, is efficiently implemented relying on the rewritingthmod of [27], by calling
Minisat [28] as suggested by [29].

In the following, after briefly introducing ASP, we descrithe new systenwasp.
We start from the solving strategy and present the desigicesoegarding propagation,
constraint learning, restarts, and the new heuristics.elh@r, we present the results
of some experiments conducted for assessing the impacesé ttechniques, on both
random and structured instances; some of these instandebelem used in the last
ASP Competition [17]. In particular, we compared our systgith both DLV and
ClaspD. The obtained results are encouraging: the new tgpscsystem is already
competitive with state-of-the-art solvers, even if therstill room for improvements in
both the implementation (e.g., through the optimizatiod aming of data structures
and heuristic parameters), and in the supported languaderés (notably aggregates
and weak constraints).

2 Preliminaries

In this paper we consider propositional programs, so an atsna member of a count-
able setA. A literal is either an atonp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Aule r is of the form

pl\/"‘\/pn:' qla"'7qj7nOtQj+17"'an0tqm (1)
wherepy, ..., pn, q1, ---, gm @areatomsand > 0, m > j > 0. The disjunctiorp; VvV
.-+ V py, is theheadof r, while the conjunctiory,, ..., g;, not ¢ 41, ..., not g, is

thebodyof r. Moreover,H (r) denotes the set of head atoms, wiile-) denotes the set
of body literals. We also usB™(r) and B~ (r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, am¢) for the setd (r)UB™ (r)U
B~(r). A rule r is normal (or disjunction-free) ifH (r)| < 1, positive (or negation-
free) if B~ (r) = 0, afactif both B(r) = @ and|H (r)| = 1, aconstraintif |H (r)| = 0.

A program?P is a finite set of rules; if all rules in it are positive (resprmal), ther?
is a positive (resp. normal) program.

Let L denote the complement of a literA] i.e.,a = not a andnot a = a for an
atoma. We extend this to sets of literals and will uSéor denoting{L | L € S}. An
interpretation/ is a subset oAU A. An interpretation is total if for eachu € A either
a € I ornot a € I; otherwise,l is partial. An interpretatiod is inconsistent if there
existsa € A such thafa, not a} C I; otherwise/[is consistent. An interpretation thus
associates each ASP structure (atom, literal, head or hitlyr truth value in the set
{T,F,U}, which extends td (r) and B(r) in the standard way.

An interpretation/ satisfiesa ruler € P if H(r) is true w.r.t.] wheneverB(r) is
true w.r.t., while I violatesr if H(r) is false butB(r) is true. A total interpretatior
is amodelof a progranP if I satisfies all the rules i?. Given an interpretatior for
a programP, the reduct ofP w.r.t. I, denoted byP’, is obtained by deleting fror®
all the rulesr with B~ (r) N I # (), and then by removing all the negative literals from
the remaining rules. The semantics of a progr@rs given by the sefdS(P) of the
answer sets (or stable models)@fwhere a total interpretatioM is an answer set (or
stable model) fo if and only if M is a subset-minimal model ¢#/.

3 Mode Generator

In this section we sketch the main model generator functidh (df. Fig. 1), which
is able to perform learning and restart techniques. MG islairto the Davis-Putnam
procedure in SAT solvers. For reasons of presentation, we ¢@nsiderably simplified
the procedure in order to focus on its main ideas. For exanipdeversion described
here computes only one answer set, but modifying it to complitorn stable models
is straightforward.

In the sequelP will refer to the input program. Initially, the MG functios invoked
with I = @, andbj_level = —1 (but it will become 0 immediately), and the global
variable numberOfConflicts is set to 0. MG returns true ifphegramP has an answer
set, and set$ to the computed answer set; otherwise it returns false.

MG first calls a function Propagate, which exterdsith those literals that can be
deterministically inferred, and keeps track of the readaach inference by building a
representation of the so-called implication graph [24¢fRigate is similar to unit prop-
agation as employed by SAT solvers, but exploits the petiidia of ASP for making
further inferences (e.g., it uses the knowledge that eveswar set is a minimal model).
Propagate, described in more detail in Section 3.1, refiatas if an inconsistency (or
conflict) is detected (i.e., the complement of a true litésahferred to be true), true
otherwise.

If Propagate returns true and no undefined atom is Idft MG invokes CheckModel
to verify that the current total interpretation is also apwer set; the CheckModel func-
tion implements the techniques described in [27]. If théititg check succeeds, MG
returns true! If Propagate returned true bitis still partial, an undefined literdl is
selected according to a heuristic criterion and MG is rdeelg called. The atom.
corresponds to Branching variablen SAT solvers.

! This is a co-NP-complete task in case of general disjunctive ASP prsgra

If Propagate returns false, function ResolveConflict isechlwhich calculates the
Unigue Implication Point (UIP) of the implication graph és8ection 3.1), and exploits
it to learn a constraint representing the inconsistency (see Secnvghich is added
to the input program. As a by-product, ResolveConflict resithe recursion level to go
back to (backjumping) in order to continue the search in titst firanch of the search
that is free of the just-detected conflict.

After a certain number of conflicts, ResolveConflict may dedb restart the entire
search, if the total number of conflicts found during the seaeached a certain thresh-
old. It is important to note that after each restart MG worksaoprogram composed
of the original input program and the learned constraints. ®start policy is based on
the sequence of thresholds (32, 32, 64, 32, 32, 64, 128,ntroduced in [30].

If the recursive call returned true, MG just returns true &$.wf it returned false,
the corresponding branch is inconsistént/cvel is set to the recursion level to back-
track or backjump to. Now, ibj_level is less than the current level, this indicates a
backjump, and we return. If not, then we have reached théteg® to, and the search
continues.

bool MG (Interpretation& |, int& bjlevel)
int currlevel = ++ bjlevel;

if (! Propagate(1))
bj_level = ResolveConflict();
return false;

if (“no atom is undefined in 1")
if (CheckModel() return true;

else
bj_level = ResolveConflict();
return false;

Select an undefined atorhusing a heuristic;

if (MG(1U{A}, bj_level))returntrue;
if (bj_level < currlevel)return false;

if (MG(I U {not A}, bj_level))return true;
if (bj_level < currlevel)return false;

return falsg;

int ResolveConflict()
int level = calculateFirstUIP();
learning();
if(inRestartSequence(numberOfConflicgjurn 0;
return level,

Fig. 1. Computation of answer sets

3.1 Propagation

WASP implements a number of deterministic inference rutespfuning the search
space during the computation of stable models. These mfereules are nameur-
ward inferenceKripke-Kleene negatigrcontraposition for true heaggontraposition
for false headsandwell-founded negatiarAll of these inference rules are briefly de-
scribed in this section.

During the propagation of deterministic inferences, irggion relationships among
atoms are stored in a graghnamed Implication Graph. This graph has a nédg)
for each atonu and truth valug such thata has been assigned Each node of the
graph is associated withaecision levelwhich is set to the level of the backtracking
tree whert is assigned ta. Moreover,G has a directed arc connecting a nddet)
to a node(da’, t') whenever(a, t) is one of the reasons that lead to the derivation of the
truth valuet’ for the atoma’. Note thatG will contain at most one node for each atom
of the program, unless a conflict is derived. The way of boddj is described below.

Forward Inference. This is essentially modus ponens. When the body of airige
true w.r.t. the current partial interpretation, and all boe of the head atoms ofare
false and the remaining one is undefined, then there is ordyway to satisfyr, by
deriving the remaining head atom as true.

Concerning the Implication Gragh, it is updated as follows. Let be of the form
(1) and letp; be the undefined atom if (r). The following elements are added to
g:a nOde<pi7 T>1 arCS(<qk, T>7 <pla T>) (k =]-a s 7J)1 arCS((qk,}'>, <p17 T>) (k =
Jj+1,...,m);arcs((pk, F), (pi, T)) (k =1,...,nandk # i).

Kripke-Kleene Negation. This derives negative information by using supportedness,
the fact that each atomwhich is true in a stable modadll must occur in at least one
ruler such thatB(r) is true w.r.t. M anda is the only atom inH () which is true w.r.t.
M. Hence, atoms with no candidate supporting rules can beetktd be false. So, if
all of the rulesr such thatu € H(r) are satisfied because of a false body literal or
because of a true head atom different frepatoma is inferred as false.

ConcerninggG, a node(a, F) is introduced. Moreover, for each rutewith a €
H(r), let L be the first literal (in chronological order of derivatiomgt satisfied-. If
L € B*(r), an arc((L, F), (a, F)) is added tog; otherwise, ifL € H(r), an arc
((L,T),{a, F)) is added ta7; otherwise,L € B~ (r) and thus an ar¢(L, T), (a, F))
is added tqj.

Contraposition for True Heads. Supportedness is also used by this inference rule:
If an atoma that has been derived as true has only one candidate suppaute r,
the truth of all literals inB(r) and the falsity of all atoms i/ () different froma are
inferred.

Concerningg, the following new nodes and arcs are introducgd7) (for each
b € B*(r)); (b,F) (for eachb € B~(r) U H(r) \ {a}); for each new nodéb, v)
an arc({a, T), (b, v)). Moreover, for each rule’ such thata € H(r'), let L be the
first literal (in chronological order of derivation) thattisdied »'. If L € B*(+'), an
arc ((L, F), (b,v)) is added tog, otherwise, ifL € B~ (r') U H(r') \ {a}, an arc
((L, T), (b,v)) is added taF; this is done for each new nodg, v) introduced by the
application of the inference rule for

Contraposition for False Heads. This inference rule is essentially modus tollens.
When for a ruler all head atoms are false, the only way to satisfy by having a false
body. In case all but one body literalsioére true, falsity of the remainingis inferred.

Concerningg, a node(a, v) is added, where is the atom inL. andv = Fif L = a
orv = T if L = not a. Moreover, the following arcs are addedgo ((b, F), (a,v))
(foreachb € H(r) U B~ (r) \ {a}; ((b, T), {a,v)) (for eachb € BT (r) \ {a}).

Well-founded Negation. Unfounded sets are sets of unsupported or self-supporting
atoms, that is, atoms that can have supporting rules onheif bwn truth is assumed.

It is well-known that unfounded sets are disjoint from statlodels, which allows for
assuming the falsity of all the atoms that belong to someuwnded set. Hence, after the
propagation process has been carried autsp determines the set of all the atoms
belonging to some unfounded set and derives the falsity efettatoms; if this set is
empty, the rule does not apply.

In order to model such a lack of external supporting ruleyralrer of nodes and
arcs is added tg. For eachu € X, a node(a, F) is added. Arcs are introduced ac-
cording to the following schema: L&t be the set of atoms iX that were previously
derived as true, and letbe a randomly selected atom@h For eachu € X \ C, an arc
({a, F),{c, F)) is added tq;. Moreover, for eacth € C'\ {c} and for each rule such
thatb € H(r), let L be the first literal (in chronological order of derivatiohgt satisfied
r.If L € BT (r), an arc((L, F), (¢, F)) is added ta7; otherwise, ifL € H(r), an arc
((L,T),{c, F)) is added ta7; otherwise,L € B~ (r) and thus an ar¢(L, T), (c, F))
is added tq7.

3.2 Constraint Learning

Constraint learning means acquiring information that ds@irriving again at a conflict
that was already encountered during the search. Our lepatinema is based on the
concept of the first Unique Implication Point (UIP) [24]. Ad®n in the Implication
Graph is a UIP for a decision levdliff all paths from the literal chosen at the levél
to a conflict atom pass through Intuitively, a UIP is the most concise reason for the
conflict of a certain decision level. We calculate the firsPdhly for the decision level
of the conflict. By definition the chosen literal is always &Ubut since several UIPs
may exist, we calculate the UIP closest to the conflict, thet €ilP. After each conflict
at the decision level, a constraint is learned that contains the first UIP and athat
of lower levels that are connected to a node between the filsabid the conflict.

Since the number of learned constraints may become expahienthe size of the
program, we adopt the standard technique of expiring lebcoastraints. Our policy
is similar to Minisat's [28]: Each learned constraint hasaativity value, measuring
how much it is involved in conflicts. If a learned constraiasirecently been used for
propagation, we do not delete it. If the number of learnedtraints is greater than one
third of the input program, then we delete half of the learoaulstraints. Moreover, we
also delete all learned constraints with an activity vabvedr than a threshold value.

4 Heuristics

Clearly, a crucial issue in the Model Generator functioniig. B is the selection of a
literal when all inferences have been made and there drergiéfined atoms. It is clear
that the correctness of the algorithm reported in Fig. 1 admtslepend on the strategy
in which this selection is made, but making a “good” choicedsy important for prac-
tical efficiency. However, strategies which perform venfllvem some domains may
perform very bad for other domains, and of course an optitnalegyy seems unlikely
to be found. For this reason, some heuristic must be adojtedjuality of the adopted
heuristic can often only be assessed empirically.

Heuristics can be classified in two main clasdesk-aheadbased andook-back
based. Look-ahead heuristics estimate the effects ofrangig@ specific truth value to a
given undefined atom, for any truth value and for a set of unddfatoms (which might
also be the set of all undefined atoms). Once the effects cfalllidate assumptions
have been estimated, a look-ahead heuristic selects thegpnoosising undefined atom
and truth value according to some function. Look-back rstigs, instead, rely on the
information on conflicts derived in the computation so far.

The heuristic implemented imasp is based on a mixed approach. In fact, a look-
back approach is used for selecting an undefined atom analyia sases, a look-ahead
step is performed for choosing the truth value for the setbatom. More specifically,
statistics on previously detected conflicts are analyzelchéoms that have caused most
conflicts are preferred. Also the “age” of conflicts is taketoiaccount in the selection
process, and more recent conflicts are given greater imma&taThis approach has
already been adopted in the context of SAT, for example irBér&Min solver [31]. In
this sense, our heuristic could be seen as an extension bethéstic implemented in
BerkMin to the framework of ASP.

In the remainder of this section, we will provide a few adutiil details on the
strategy adopted byasp for selecting undefined atoms and truth values to be assumed
during the computation of stable models.

A countercl(L) is associated with each literal Initially, all of these counters are
set to zero. When a new constraint is learned, counters fditeathls occurring in the
constraint are increased by one. In this waysp keeps track of those literals occurring
more frequently in learned constraints. Moreover, cowdee also updated during the
computation of the First UIP: If a literal is traversed in the implication graph, the
associated countet (L) is increased by one. In this way, those literals that mainly
caused the derivation of a conflict are identified. FinaNgrg 100 conflicts, all these
counters are divided by 4 (this is an experimentally deteethjparameter), which gives
more importance to recently active literals. Our heurigtilt first select an atom and
then a truthvalue for this atom. To this end, we will uséa) := ci(a) + cl(not a), for
each propositional atom

Learned constraints are stored in chronological order. &tben selection is first
restricted to those undefined atoms that occur in the firgtn{) learned constraint
with undefined body. Among those, the atom with the higlest) value is chosen.
In case of ties, the atom removing the highest number of stipgaules is selecteéd

2 An atom removes a supporting rule if it makes the body fz#lse or the head of true

If two or more atoms remove the same number of supporting rtike first processed
atom is chosen. In this way, the chances of achieving a coifiiceases, and this
may help the learning process. If no learned constrainth witdefined body exist,
the undefined atom with the highest(-) value is selected. In case of ties, the first
processed atom is selected. If there are no learned cartstraig. in the beginning of
the solving process, the atom occurring in most rules isqalck

After selecting an atom according to the strategy described abavesp chooses
a truth value fow. For this purpose, we only distinguish two cases, namelythare
learned constraint with undefined body exists or not. If a learned constraiwith un-
defined body exists, additional counters are considerechfoosing a truth value far.
In particular, a counteycl(L) is associated with each literalfor estimating the global
contribution of L to all of the conflicts derived during the computation. Fostebteral
L, gcl(L) is initially set to zero and increased whenevK() is increased. The differ-
ence tocl(L) is thatgel(L) is never decreased, that ég] (L) is unchanged wheel (L)
is divided by 4. Thus, in this caseasp assumes the truth afif gcl(a) > gcl(not a);
otherwise, ifgcl(a) < gcl(not a), the falsity ofa is assumed. It is important to em-
phasize that this counter is not used when the atom remotimdpighest number of
supporting rules was chosen. In fact, in this case the literaoving the highest num-
ber of supporting rules is picked. In the other case, thétadl,learned constraints have
false bodies, a look-ahead step is performed and beatidnot « are propagated (i.e.,
the function Propagate is invoked). The literal appearingnore rules is propagated
before the other one. During these propagatianssp estimates the impact of the two
assumptions on the computation of answer sets. In pantjeuap counts the number
of inferred atoms and the number of rules that have beerfiedtlsy the two propaga-
tions. The truth of: is then assumed if the impact of the propagation afgreater than
the impact of the propagation abt a, while a is assumed to be false in other case, that
is, if the impact of the propagation abt a is greater than the impact of the propaga-
tion of a. If the impact is equal them is assumed to be false. It is important to note that
when a conflict is derived in one of the two propagations, ardehistic inference is
determined. That is, if a conflict is derived during the prpg#on ofa, the falsity ofa
is determined, while the truth ef is determined whenever a conflict is derived during
the propagation ofiot a.

Example 1.We will now provide an example of the way our heuristic wollksthe ex-
ample, we will consider the following rules—r, and learned constraints—c, (listed
in chronological order):

7t a - c rg: aVc:i- e cp: - a,b
ro: aVbi-d rg: eVbi-c cy: - a,note, d.

Moreover, let us assume a partial interpretatfor= {a, not b} and the following
counter valuesel(a) = 2, cl(not a) = 2, ¢l(b) = 1, cl(not b) = 0, cl(c) = 1,
cl(not ¢) = 2, cl(d) = 3 andcl(not d) = 0.

Note that constraint; is satisfied becaugas false. Thus, the first learned constraint
(according to the chronological order) which is not satisig:, . Indeed, two undefined
literals occur in the body of;, namelynot ¢ andd. We then consider the counters

cv(c) = cl(c) + cl(not ¢) andcv(d) = cl(d) + cl(not d), which are both equal to 3.
The heuristics then examines the removal of supportingrule

Two supporting rules would be remover (and r,) by settingc false, and one
supporting rule £3) would be removed by setting true, for a total of 3 supporting
rules removed. Concerning one supporting rulerf) would be removed by setting
false, and no rules would be removed by settirtgue, for a total of 1 supporting rule
removed. Thereforeremoves more supporting rules tharand therefore our heuristic
will choosec and it first will be set to false.

5 Experiments

In this section we report the results of an experimentalyammalve carried out in order
to assess the performancewisp. As a comparison, we also ran the suite of our bench-
marks on two state-of-the-art ASP solvers, namely DLV arab@D? a discussion on
the difference betweenasp and these two systems is provided in Section 6.

The machine used for the experiments is a two-processdri{eten “Woodcrest”
(quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAMyning Debian
GNU Linux 4.0. As our ASP system focuses on the Model Germrgthase, only
the time for evaluating ground programs (previously praaliocy the DLV instantiator
from the original non-ground instances) have been corsitldn the following, we
briefly describe both benchmark problems and data.

5.1 Benchmark Problemsand Data

In our experiments, we considered problems from the mosnte8SP Competition
[17] and other problems which have already been employeddeessing performance
of the ASP solver DLV [4]. Our experiments consist of 36 imstas in 15 different
domains. The instances and encodings are those that wederufiee competitions
or in the other publicly available suites. In the followingwlescribe the benchmark
problems.

Labyrinth. Ravensburger's Labyrinth game deals with guiding an avataugh a
dynamically changing labyrinth to certain fields. A solutis represented by pushes of
the labyrinth’s rows and columns such that the avatar cachrdae goal field (which
changes its location when pushed) from its starting field¢lvhlso changes its location
when pushed) by a move along some path after each push.

Knight-tour. Given a chessboard, the problem is to find a tour for a knigetepthat
starts at any square, travels all squares, and comes babk wrigin, following the
knight move rules of chess.

Graph coloring. Given an undirected graph and a sehafolors, we are interested in
checking whether there is an assignment of colors to noddsthat no adjacent nodes
share the same color.

8 Winners of the disjunctive tracks in the last ASP Competitions [15-17].

Maze-Generation. A maze is anm x n grid, in which each cell is empty or a wall
and two distinct cells on the edges are indicated as entrandeexit, satisfying the
following conditions: (1) each cell on the edge of the gridhisvall, except entrance
and exit that are empty; (2) there is Poc 2 square of empty cells or walls; (3) if two
walls are on a diagonal ofax 2 square, then not both of their common neighbors are
empty; (4) no wall is completely surrounded by empty cebBgthiere is a path from the
entrance to every empty cell. The problem has been provee Pbcomplete in [32].

Strategic Companies. Strategic companies is a well-knowiP ”’-complete prob-
lem that has often been used for system comparisons, alse prévious ASP Compe-
titions. In the Strategic Companies problem, a collectibs: ¢, . . ., ¢,,, Of companies
is given, for somen > 1. Each company produces some goods in aGseind each
companyc; in C'is possibly controlled by a set of owner companigs(whereO; is

a subset of”, for eachi = 1,...,m). In this context, a sef’ of companies (i.e., a
subset of”) is astrategic setf it is minimal among all the sets satisfying the following
conditions: (i) Companies in C' produce all goods in G; (ii{J; is a subset of”, the
associated company must belong taC” (for eachi = 1,...,m). We considered a
random instance having 7500 companies and 22500 products.

2-QBF. The problem consists of checking the validity of a quantibedlean formula

& = 3XVY ¢, whereX andY are disjoint sets of propositional variables ahe C; v
...V C} is a DNF on variableX andY'. In our benchmark, we used the transformation
from 2-QBF to ASP presented in [4], which is based on a redagiresented in [33].
The instance considered has 1000 universal variables, i2teetial variables, 10000
clauses, and is a 5-DNF.

Primelmplicants. In Boolean logic, an implicantis a "covering” (sum term ooguct
term) of one or more minterms (a product term in which eacheftvariables appears
once) in a sum of products, or, maxterms (a sum term in which e&the n variables
appears once) in a product of sums, of a boolean functiom&léy, a product ternP

in a sum of products is an implicant of the Boolean functioif P implies F'. A prime
implicant of a function is an implicant that cannot be coddog a more general (more
reduced - meaning with fewer literals) implicant. The ims&we considered consists
of 180 variables and 774 clauses.

3-Colorability. This well-known problem asks for an assignment of threersdlothe
nodes of a graph, in such a way that adjacent nodes alwaydifferent colors. One
simplex graph was generated with the Stanford GraphBasa&yilj34], by using the
functionsimplex (600, 600, —2, 0, 0, 0,0). Another ladder graph was generated having
11998 edges, and000 nodes.

Hamiltonian Cycle. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed grépk= (V, E) and a noder € V of
this graph, does there exist a pathGhstarting ate and passing through each node
in V exactly once? One random graph was generated with the &daBfaphBase li-
brary [34], by using the functionandom_graph(85,700,0,0,0,0,0, 1,1, 33), having
700 edges and5 nodes; the other instances has been generating using tbgofun
random_graph(80,456,0,0,0,0,0,1, 1,33), having456 edges an@0 nodes.

Blocks World. Blocks world is one of the most famous planning domains itficel
intelligence. We have a set of cubes (blocks) sitting on ¢etabhe goal is to build
one or more vertical stacks of blocks. The catch is that onky lnlock may be moved
at a time: it may either be placed on the table or placed atoghan block. Because
of this, any blocks that are, at a given time, under anotheckbtannot be moved.
The four instances considered are by Esra Erdem and takentfi® ccalc homepage
(http://lwww.cs.utexas.edu/users/tag/cc/).

3SAT. The satisfiability problem (SAT) is a decision problem, whdsstance is a
propositional formula. The question is: given the formigahere some assignment of
T and.F values to the variables that will make the entire expressios’? SAT is the
best-known NP-complete problem. 3-satisfiability is a sgaase of SAT, where each
formula is a CNF in which each clause contains exactly thiteeals. We considered
two random instances with 280 variables and 1204 clauses.

Towers of Hanoi. The Towers of Hanoi (ToH) problem has three pegs and n disks.
Initially, all n disks are on the left-most peg. The goal isrtove all n disks to the right-
most peg with the help of the middle peg. The rules are: (1)erane disk at a time;

(2) only the top disk on a peg can be moved; (3) a larger diskaigpe placed on top

of a smaller one. The instance we considered has 6 disks, antieck whether a plan

of length 64 exists.

Ramsey Numbers. The Ramsey numberamsey(k, m) is the least integer such
that, no matter how the edges of the complete undirectechdidigue) withn nodes
are colored using two colors, say red and blue, there is aliggecwith k£ nodes (a
red k-clique) or a blue clique withn nodes (a bluen-clique).The encoding of this
problem consists of one rule and two constraints. For therxents, the problem was
considered of deciding whether, for= 3, m = 7, n = 21, and fork = 4, m = 6,

n = 26, n is the Ramsey numbenmsey(k, m).

n-Queens. The 8-queens puzzle is the problem of putting eight chess queers o
8x8 chessboard such that none of them is able to capture any gy the standard
chess queen’s moves. Thequeens puzzle is the more general problem of plaeing
queens on anxn chessboard(> 4). The instance considered is for= 23.

Timetabling. The problem is determining a timetable for some universityures that
have to be given in one week to some groups of students. Thetaiile must respect a
number of given constraints concerning availability ofme) teachers, and other issues
related to the overall organization of the lectures.

5.2 Experimental Results

The results of our experiment are summarized in Table 1,rtieyo for each consid-
ered instance the execution times in seconds elapsed byceaskhdered system. For
each instance of the benchmark problems, we allowed a maxiofl600 seconds of
execution time. Timeouts are indicated by means of the wdkETin Table 1. In the
last rows we report, for each system, the total number ofsbinstances, the average
execution time for solving all the 36 considered instantieseouts are counted 600s
each), and the number of instances in which each solverteglsial be the fastest.

Table 1. Benchmark Results on ASP competition suite

[Problem [wasp] DLV[ClaspD| [Problem [wasp] DLV [ClaspD}
CABYRINTH-1 0,39 0,027 0,03 PRIMEIMPL 324 133 0,21
LABYRINTH-2 299,74 3,17| 65,84 3COL-SIMPLEX 23,02 33,58 TIME
LABYRINTH-3 415,14 56,19 113,04 3COL-LADDER 2,29 9124 34,08
LABYRINTH-4 TIME| 25,76 561,93 HAMCYCLE-RANDOM | 529 150 252
LABYRINTH-5 14,47 29,15 490,04 HAMCYCLE-FREE 106,89 31,37 0,47
KNIGHT-TOUR-1 0,07 0,21 0,15 BLOCKS-WORLD-1 224,09 6,48 1,92
KNIGHT-TOUR-2 0,14 1,64 034 BLOCKS-WORLD-2 340,84 11,84 1,75
KNIGHT-TOUR-3 0,65 14,45 2,84 BLOCKS-WORLD-3 0,76 8,87 1,67
KNIGHT-TOUR-4 0,67 56,31 10,56 BLOCKS-WORLD-4 129,28 11,05 0,83
KNIGHT-TOUR-5 7,44 TIME | 179,48 3SAT-1 78,31 9,59 65,84
GRAPH-COLOURING-1153,67 TIME| 3,05 3SAT-2 31,07 5,43 0,06
GRAPH-COLOURING-2 TIME | TIME| TIME TOWERS-OF-HANOI 381 8,46 437,55
MAZE-GENERATION-1| 0,28 0,93 0,79 RAMSEY-1 3,03 9,84 24,01
MAZE-GENERATION-2| 46,84104,47 1,76 RAMSEY-2 4,87 15,74 40,24
MAZE-GENERATION-3| 47,37261,57 3,94 23-QUEENS 0,10 41,10 0,54
MAZE-GENERATION-4| 94,17 TIME| 9,64 SCHOOL-TIMETABLING | 7,45 61,09 224,93
MAZE-GENERATION-5|123,4q TIME| 23,49 TOTAL SOLVED] 7
STRATCOMP 17904 2,33 574 WEIGHTED AVERAGE | 98,08/10887| 98,17
2QBF 011 3,31 0,92 WINS 15 5 5

Overall, the results of the preliminary experimental aslyare encouraging: the
performance ofvasp is comparable to ClaspD (same number of wins and cumulative
average time), and it is often faster than DLV (only 9 wins 8twasp and ClaspD).

In more detail, for the Labyrinth problemasp was able to solve four instances out
of five in the allowed time, while the other systems solvedia#l instances; the sys-
tem is always outperformed by the competitors, except feriostance in which it is
the best performer. Regarding the Knight Tour problemsp always outperforms the
competitor systems, solving the hardest instance (on wbict timed out) in only
7,44 seconds compared 9, 48 seconds for ClaspD. Concerning the Graph Color-
ing problem,wasp was slower than ClaspD, but solved one instance more than.DLV
Also for the Maze Generation benchmarks,sp was slightly slower than ClaspD, but
always outperformed DLV. Considering the other benchmarksp outperformed the
other two ASP solvers on 2QBF, Ramsey Numbers, N-QueengoEdimetabling,
3Colorability, and Towers of Hanoi. In the remaining benelnks, the system remains
competitive, with the single exception of Strategic Comparfor this, we hypothesize
that a reason might be that.sp does not implement yet a model-checking-driven back-
jumping technique, which proved to be very effective on gagticular benchmark [35].

6 Redated Work and Conclusion

In this paper we provided a preliminary report on a new ASResdior propositional
programs calledasp. The new system is inspired by several techniques that wigre o
inally introduced for SAT solving, like the Davis-Putnanegemann-Loveland (DPLL)
backtracking search algorithm [18}lause learning[19, 20], backjumping[21, 22],
restarts[23], andconflict-driven heuristic§24] in the style of Berkmin [25]. Actually,
some of the techniques adoptedinsp, includingbackjumpingandlook back heuris-
tics were first introduced for Constraint Satisfaction [21, 2, 8nd successively suc-
cessfully applied in SAT [37, 38, 25, 24] and QBF solving [83} Some of these tech-

niques were already adapted in modern non-disjunctive A8fs like Smodels [43,
44], Clasp [8], and solvers supporting disjunction like Giéts3 [10], GnT [45], and
DLV [46,47].

Concerning other ASP solvers, we differ from non-nativersrd like Cmodels3 [10],
in the sense that we do not rely on a rewriting into a propms#i formula and an ex-
ternal SAT solver, but use native ASP techniques. Among/aatlvers, similarities
with DLV [4] can be found in the propagation rules, in the cargtion of the great-
est unfounded set, and in the model checking technique. ¥Hawere clearly differ
from DLV as it does not implement many of the look-back teqgeis borrowed from
CP and SAT. The prototypical version of DLV presented in [d6 extended in [47],
implements backjumping and some forms of look back heasstiut it does not in-
clude clause learning, restarts, and does not use an irtipliograph for determining
the reasons of the conflicts. Similar considerations haldioT [45], which, as DLV,
implements a systematic backtracking without learninglanl-ahead heuristics.

Comparing our system with ClaspD (a disjunction-suppgrtrersion built upon
Clasp) more similarities can be found, as it includes simi@ahniques, e.g. backjump-
ing, clause learning, restarts, and look-back heurisfibgere are nonetheless several
differences withwasp. First of all,wasp performs the unfounded set checking by means
of the well-founded operator, while ClaspD relies on the patation of loop formulas.
Moreover, ClaspD implements an alternative version of thplication graph that is
more similar to SAT solvers, since it relies on unit propagabdf nogoods (minimality
is handled via loop formula learning). Furthermore, Clasgfwasp, adopts a branch-
ing heuristics based on Berkmin [25]; howevefgsp extends the original Berkmin
heuristics by exploiting a lookahaed technique in placehef‘two” function calcu-
lating the number of binary clauses in the neighborhoodtefdiL, together with an
additional criterion based on minimality of answer setspamticular, to deal with the
case of two atoms with the same heuristic vatuesp chooses the atom that introduces
the maximum number of unsatisfied supporting rules.

It is worth pointing out that the implementation efusp is still in a preliminary
phase, yet the results obtained up to now are encouragimgySiem is able to compete
with the state-of-the-art solvers, and even outperforrmtiresome of the considered
benchmarks.

Concerning future work, we plan to extend the prototypigatem by introducing
new language constructs such as aggregates [48, 49] andoweskaints [50], which
are currently missing fromwasp. Moreover, the current implementation can be im-
proved in several respects: parameter tuning of the hag;idine tuning of the source
code, a model-checking-driven backjumping [35] as welluggpsrt for multi-threading
are also planned.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Bigjunctive Databases.
NGC9 (1991) 365-385

2. Lifschitz, V.: Answer Set Planning. In: ICLP’99, Las CrucesywNdexico, USA, The MIT
Press (1999) 23-37

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TOR3(1997) 364-418

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,.S8arcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TD@D006) 499-562

. Simons, P., Niemél I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. Al 138 (2002) 181234

. Lin, F.,, Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Progkey SAT Solvers. In:

AAAI-2002, Edmonton, Alberta, Canada, AAAI Press / MIT Pres302)

. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sgtr smhanced to non-tight

programshtt p: / / ww. cs. ut exas. edu/ user s/t ag/ cnodel s. ht m (2003)

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cordliz®en answer set solving.

In: IJCAI 2007,(2007) 386—392

. Janhunen, T., Nieni| ., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-

junctions in Stable Model Semantics. ACM TOQIL(2006) 1-37

Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. IRNMR’05. LNCS
3662, (2005) 447-451

Drescher, C., Gebser, M., Grote, T., Kaufmann, Bini§, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proc. of KR 20&dney, Australia,
AAAI Press (2008) 422—-432

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., liritago, Leone, N.: Team-building
with Answer Set Programming in the Gioia-Tauro Seaport. TRIWP (2011) To appear.
Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.: ThéldX System for Semantic
Information Extraction. Transactions on Large-Scale Data and Knae&l€kntered Sys-
tems.Berlin/Heidelberg(2011) To appear.

Ricca, F., Alviano, M., Dimasi, A., Grasso, G., lelpa, S.M., Ird@aS., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. FOS Presdl05 (2010) 35-55

Gebser, M., Liuy, L., Namasivayam, G., Neumann, A., Sch@uyBruszczyski, M.: The first
answer set programming system competition. In: LPNMR'07. LNCS3448007) 3-17
Denecker, M., Vennekens, J., Bond, S., Gebser, M., Teyagki, M.: The second answer
set programming competition. In: Proc. of LPNMR '09, Berlin, Heideih€2009) 637-654
Calimeri, F., lanni, G., Ricca, F., Alviano, M., Bria, A., CatalagGo, Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, Crj,P®r, Reale, K., Santoro,
M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer Sebgtamming Competi-
tion: Preliminary Report of the System Competition Track. In: Proc. dfiMR11., LNCS
(2003) 388-403

Davis, M., Logemann, G., Loveland, D.: A Machine ProgramTioeorem Proving. Com-
munications of the ACM (1962) 394—-397

Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Effidi€onflict Driven Learning
in Boolean Satisfiability Solver. In: ICCAD 2001. (2001) 279-285

Pipatsrisawat, K., Darwiche, A.: On Modern Clause-Learning f&tikty Solvers. JAIR
44 (2010) 277-301

Gaschnig, J.: Performance measurement and analysis ahcggtach algorithms. PhD
thesis, CMU (1979) Tech. Report CMU-CS-79-124.

Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction [Bnb Computational
Intelligence9 (1993) 268-299

Gomes, C.P,, Selman, B., Kautz, H.A.: Boosting Combinatoriatc®eThrough Random-
ization. In: Proceedings of AAAI/IAAI 1998, AAAI Press (1998) 4437

Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik; £haff: Engineering an
Efficient SAT Solver. In: DAC 2001 (2001) 530-535

Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-8olNn: Design, Automation
and Test in Europe Conference and Exposition (DATE 2002), PaascE, IEEE Computer
Society (2002) 142-149

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation liff lComputations. In: LP-
NMR’99. LNCS 1730, (1999) 177-191

Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive LogiogPamming Systems by
SAT Checkers. AllL5 (2003) 177-212

Een, N., rensson, N.: An Extensible SAT-solver. In: Theory and ApplicatimiSatisfia-
bility Testing, 6th International Conference, SAT 2003., LNCS (2002518

Maratea, M., Ricca, F., Veltri, P.: DI Enhanced Model Checking in DLV. In: Proceedings
of Logics in Atrtificial Intelligence, JELIA 2010. (2010) 365-368

Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of lagagalgorithms. Inf. Pro-
cess. Lett47 (1993) 173-180

Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-eal\Discrete Appl. Math155
(2007) 1549-1561

Alviano, M.: The Maze Generation Problem is NP-complete. In:.Rd€TCS '09. (2009)
Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive LogagPamming: Propo-
sitional Case. AMAIL5 (1995) 289-323

Knuth, D.E.: The Stanford GraphBase : A Platform for Combinat@omputing. ACM
Press, New York (1994)

Pfeifer, G.: Improving the Model Generation/Checking Interplaigitbance the Evaluation
of Disjunctive Programs. In: LPNMR-7. LNCS 2923, (2004) 2203-23

Dechter, R., Frost, D.: Backjump-based backtracking fortcains satisfaction problems.
Al 136 (2002) 147-188

Bayardo, R., Schrag, R.: Using CSP Look-back Techniqueslie® Real-world SAT In-
stances. In: Proceedings of the 15th National Conference on Atrtifitilligence (AAAI-
97). (1997) 203-208

Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm forgrgitional Satisfiability.
IEEE Transaction on Computef8 (1999) 506521

Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified BaoleSatisfiability Solver.
In: Proc. of ICCAD 2002. (2002) 442-449

Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaetia Conflicts in Quan-
tified Boolean Formula Evaluation. In: CP 2002. NY, USA, (2002) 20®&-2

Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping foraQtified Boolean Logic
Satisfiability. Al145 (2003) 99-120

Letz, R.: Lemma and Model Caching in Decision Procedures fan€fied Boolean For-
mulas. In: TABLEAUX 2002. Denmark, (2002) 160-175

Ward, J., Schlipf, J.S.: Answer Set Programming with Clausenirea In: LPNMR-7.
LNCS 2923, (2004) 302-313

Ward, J.: Answer Set Programming with Clause Learning. Phistt@kio State University,
Cincinnati, Ohio, USA (2004)

Janhunen, T., Nientll.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, Fort Lauderdale, Florida, USA, (2004) 331-335

Ricca, F., Faber, W., Leone, N.: A Backjumping Technique fisjudctive Logic Program-
ming. Al Communication49 (2006) 155-172

Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-backriphes and heuristics in div: Im-
plementation, evaluation and comparison to gbf solvers. Journal ofiigts in Cognition,
Informatics and Logic63 (2008) 70-89

Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded atab® Semantics of Logic
Programs with Aggregates. TPI/R2007) 301-353

Faber, W., Leone, N., Pfeifer, G.: Semantics and complexiteairsive aggregates in an-
swer set programming. All75 (2011) 278-298 Special Issue: John McCarthy’s Legacy.
Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive atdy Constraints. IEEE
TKDE 12 (2000) 845-860

