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Abstract. In the natural-scientific community it is often taken for granted that, 
sooner or later, all basic physical property dimensions can be quantified and 
turned into a kind-of-quantity; meaning that all their possible determinate 
properties can be put in a one-to-one correspondence with the real numbers. By 
using some transfinite mathematics, the paper shows this tacit assumption to be 
wrong. Shape is a very basic property dimension; but, since it can be proved 
that there are more possible kinds of determinate shapes than real numbers, 
shape cannot be quantified. There will never be a shape scale the way we have 
length and temperature scales. This is the most important conclusion, but more 
is implied by the proof. Since every n-dimensional manifold has the same 
cardinality as the real number line, all shapes cannot even be represented in a 
three-dimensional manifold the way perceivable colors are represented in so-
called color solids. 
  

1 Shape as a Physical Dimension 

Let me start almost from scratch. The word ‘shape’ (possible synonyms: ‘form’ and 
‘figure’) is in everyday life mostly used to refer to the two- and three-dimensional 
finite outlines of surfaces and things. Such shapes are closed shapes, but in science 
there is often talk also of open shapes, e.g., parabolas and hyperbolas. In what 
follows, when nothing to the contrary is said, the extension of the term ‘shape’ will 
include both closed and open shapes with finite spatial extension. Moreover, not only 
geometrical such shapes, but any arbitrary such shape whatsoever. If a determinate 
shape (at a certain region in space) by means of translation, rotation, and uniform 
scaling can be made congruent with another determinate shape at another region, then 
these two shapes are two instances of the same (kind of) determinate shape. In other 
words, shapes are invariant to location, rotation, and size. 

Shape so delineated is a property dimension on a par with basic physical property 
dimensions such as length, mass, and temperature. Some determinate shapes also 
have second-order properties such as being symmetric, being regular, and being 
polyhedral; and some have mathematical properties such as specific eccentricities.  

Ever since the birth of modern science, shapes have been of considerable 
significance in several disciplines. In astronomy, the shapes of the orbits of planets 
and asteroids have always been of central interest; and in classifications of crystals, 
plants and animals, shape has always been one among the features used. Famously, 



 

the fact that the DNA molecule has the shape of a double helix is crucial when it 
comes to understanding how it functions, but the same is true of most protein 
macromolecules. Structural biology has even become a special branch of molecular 
biology. In medicine, shape can play quite a role when it comes to evaluating what is 
seen by means of X-ray pictures, computer tomography, magnetic resonance imaging, 
and functional neuroimaging. In short, the natural sciences and the life sciences have 
always been referring to shapes without quantifying this feature in the way the basic 
property dimensions of mathematical physics have been quantified, i.e., that each and 
every possible determinate of the property dimension in question is (via a 
conventionally chosen standard unit) put in a one-to-one correspondence with a real 
number.  

That shape, despite not being quantified, is commonly regarded as a physical 
property dimension with many different determinate shapes is obvious. In ordinary 
language, determinate shapes are represented by means of words such as ‘round’, 
‘elliptical’, ‘triangular’, and ‘star-shaped’; but we can also represent determinate 
shapes by means of pictures. As a matter of fact, shape is today in the natural sciences 
an important but nonetheless non-quantified physical dimension; I will show that this 
is not a contingent fact. (The paper develops thoughts earlier put forward in [1].) 

The quantifications of length, mass, temperature, etc. are quantifications of all the 
possible determinate properties of the physical dimension in question; for instance, 
there are no possible determinate mass properties outside of the quantity dimension 
mass. Therefore, with respect to shape, the quantification problem to be dealt with 
here is whether or not all possible shapes can be quantified.  

Surely, at least one subset of shapes, the ellipses, can be linearly ordered and 
mapped onto a part of the number line. This is done by means of their eccentricity (e). 
If the length of the semimajor axis of the ellipse is called a and the length of the 
semiminor axis b, then each and every ellipse can be given an eccentricity value 
larger than zero but lesser than one according to the formula: e = √ (1 – b2/a2). Such 
orderings can be very useful and important for specific purposes in science, but this is 
beside the quantification problem now at issue. What has been done with respect to 
ellipses cannot, I claim, be done for all possible shapes. Whereas it makes good sense 
to say ‘this ellipse has an eccentricity of 0.73’, it is impossible to give every shape a 
number related to a standard unit (call it ‘morphe’), and make sense of sentences such 
as ‘this shape has a morphe of 2.31’. In my non-quantifiability proof, I will in detail 
only discuss finite 2D-shapes; if these cannot be quantified neither can the more 
complex finite 3D-shapes. 

2 Shapes and their Segments 

Every 2D-shape has some two-dimensional extension in a real or an abstract space, 
and the shape outline can always be divided into a number of segments. Furthermore, 
since the shape/line in question constitutes a continuum, it must contain at least as 
many infinitesimally small segments as there are real numbers.  

The next thing to be noted is that there are different kinds of shape segments. 
Using an idea from Hoffman and Richards 2, I will do some of the reasoning on the 



 

assumption that there are five basic different kinds of such segments, but I will later 
comment on this assumption. The five kinds of segments are:  

1. curving-in () 
2. curving-out ()  
3. angle-inward (>) 
4. straight (–) 
5. angle-outward (<).  

On the assumption made, each infinitesimal segment of a two-dimensional shape 
can be ascribed one and only one of these five different kinds of open shapes. Even 
though the curving-in by rotation can be turned into the curving-out (and the angle-
inward into the angle-outward), and they are in this sense identical shapes, they are 
nonetheless as shape segments different. If a curving-in is via one of its end points 
joined to the end point of another curving-in of the same kind, one obtains another 
shape than if it is joined to a corresponding curving-out.  

I now claim: there are both as many different determinate curving-ins and curving-
outs as there are real numbers. Furthermore, there are also, taken together, as many 
segments of kinds 3 to 5 as there are real numbers. This can be shown as follows. 

First, let us look at the curving-ins at the vertex of hyperbolas. Like ellipses, 
hyperbolas can be linearly ordered by means of an eccentricity measure, and each 
different eccentricity implies a different curving-in at the vertex. According to the 
usual eccentricity formula for hyperbolas, eccentricity can vary from >1 to infinity, 
which means that there are at least as many curving-ins as there are real numbers 
between 1 and infinity. Second, parabolas have another curvature at the vertex than 
the hyperbolas; let us associate all these parabola curvatures with the number 1, since 
they have the same eccentricity, 1. Third, let us look at the curvatures at the end 
points of the major axis of the ellipses. They differ from that of the hyperbolas and 
parabolas, and they also differ from each other depending on the eccentricity of the 
ellipse. This eccentricity varies from zero (the circle) to <1. Surely, adding the 
curving-ins of hyperbolas, parabolas, and ellipses together, we will obtain at least as 
many different determinate curving-ins as there are real numbers. And there are of 
course as many determinate curving-outs as there are curving-ins.  

The angle-inwards and the angle-outwards can together with the straight line be 
linearly ordered according to degree of angularity, and be given values between 0 and 
360. One merely ascribes angle-inward degrees that are larger than zero but smaller 
than 180o, gives the straight line the value 180o, and angle-outward degrees larger 
than 180o but smaller than 360o. Since there are as many values between 0 and 360 as 
there are real numbers, there as many segments of kinds 3 to 5 as there are real 
numbers, too. 

There are, no doubt, at least as many different kinds of possible shape segments as 
there are real numbers.  

The Hoffman-Richards view does not take fractal geometry into account, but this 
does not affect my reasoning. Let me explain. Every given distinctly perceivable 
shape outline can be divided into Hoffman-Richards segments. However, we may 
regard our perception of the shape outline to be too coarse-grained to show the actual 
shape. If we zoom in on the line to a more fine-grained level, we may discover that it 
in fact has another shape than we at first thought. Now, since the identity of a shape is 



 

invariant to uniform scaling, the following is a possible scenario. The first-level shape 
is the arc , and the second-level shape consists of seven connected exactly similar 
but much smaller arcs () bent in an arc. Iterating the zooming in procedure to an 
even more fine-grained level shows that each of the small second-level arcs consists, 
in turn, of seven exactly similar but even smaller arcs. And so on, into infinitesimally 
small arcs.   

This infinite sequence gives rise to an interesting question: should the whole bent 
seven-elements arc be regarded as a basic shape segment in itself, or should it be 
regarded as consisting of seven instances of an Hoffman-Richards segment? This 
paper, however, requires no answer to the question. The positing of irreducibly fractal 
shape segments would not alter the fact that there are as many different kinds of 
possible Hoffman-Richards segments as there are real numbers; and that is all I need 
for my reasoning in the next section.  

3 There are More Shapes Than Real Numbers 

Let me repeat: there are at least as many different possible kinds of shape segments as 
there are real numbers. The real task, however, is to prove that there are more 
possible shapes than real numbers. In order to do this, some transfinite mathematics 
is needed. Two things should be remembered:   

 Raising 2 to the power of a cardinal, be it finite (n) or infinite (א), always gives a 
larger cardinal: 2n > n and 2 א   .א <

 The set of real numbers have a cardinality that is larger than that of the set of 
natural numbers; if the latter is called aleph-null (0א), the former is 20א.  

If the much discussed continuum hypothesis is true, then there is no cardinal 
number between 0א and 20א, and if it is false then there is at least one. In the former 
case, the cardinality of the real numbers ought to be called aleph-one (1א), but if the 
hypothesis is false, it ought to be called at least aleph-two (2א). At no point in my 
reasoning, however, does the truth or falsity of the continuum hypothesis play any 
role; but instead of avoiding an aleph-number altogether, I have chosen to call the 
cardinality of the set of real numbers 1א.   

Let us now take a look at what 2D-shapes (lines) may look like when analyzed into 
a number of end-to-end connected segments that might be shape segments of different 
kinds. Shapes that consist of two segments chosen among two different kinds of shape 
segments (a, b) can, following ordinary combinatorial reasoning, be combined in four 
different ways. But there are nonetheless not four, but three different shapes. This is 
due to the fact that a 2D-shape is invariant to rotation (rotation in a third dimension is 
allowed). If we represent the four possible combinations as <a, a>, <b, b>, <a, b>, and 
<b, a>, then the last two combinations can by rotation be made identical. Similarly, if 
we look at two particular segments chosen among three different kinds of segments 
(a, b, c), then we obtain nine combinations, namely <a, a>, <b, b>, <c, c>, <a, b>, 
<b, a>, <a, c>, <c, a>, <b, c>, <c, b>, but the last six ordered pairs represent only 
three different shapes.  



 

Only 2-segment combinations that have the same kinds of elements can by rotation 
be made identical; which means that in this kind of combinatorial enterprise there will 
always be more shapes than the total number of possible combinations divided by 
two. In the case of 2 segments chosen among 2 kinds-of-segment, there are more than 
22/2 shapes (namely 3); in the case of 2 segments chosen among 3 kinds-of-segment 
there are more than 32/2 shapes (namely 6); 4 kinds-of-segment give more than 42/2 
shapes; and so on. If we look at shapes consisting of three segments, we obtain, for 
two, three, and four different kinds-of-segment more than 23/2 (namely 6), 33/2 
(namely 18), and 43/2 shapes, respectively. In the case of three segments out of three 
different kinds-of-segment, the segment <a, b, c> can by rotation be turned into 
<c, b, a>, but not into <c, a, b>; no rotation can turn the middle segment into an end 
segment. In general, out of a finite number of segments, m, chosen among n different 
kinds-of-segment, more than nm/2 different possible shapes can be produced. Letting 
n and m move into infinity does not, as far as I know, change anything in the remarks 
made. 

From what has been said the following ensues. If we fix the number of segments to 
2, and then let the number of kinds-of-segment progress from 2, 3, and 4 to an 
arbitrary finite number n, and further into the infinite cardinal numbers 0א and 1א, it 
holds true that we obtain, in turn, at least the following number of shapes: 22/2, 32/2, 
42/2, n2/2, 0א

2/2, and 1א
2/2 (this progression makes up the uppermost line in Table 1). 

However, since 0א
0א = 2/2

1א and 0א = 2
1א = 2/2

 we do not here find more shapes ,1א = 2
than real numbers. Let us try another course (resulting in the first column in Table 1). 

Now, we first fix the number of kinds-of-segment to 2, and then let the number of 
segments progress from 2, 3, and 4 to an arbitrary finite number m, and further into 
the infinite cardinal numbers 0א and 1א. With respect to the finite numbers there are at 
least, in turn, the following numbers of shapes: 22/2, 23/2, 24/2, and 2m/2. Aleph-null 
number of segments gives us 20/2א number of shapes. Since 20א < 0א2 = 0/2א, we have 
found a set of shapes with a cardinal number larger than that of the natural numbers, 
but we have not yet found a set of shapes whose cardinal number is provably larger 
than the set of real numbers (1א). However, aleph-one number of segments supplies us 
with such a set. Even if there are only 2 kinds-of-segment possible, but there are 1א 
number of segments, there are more than 1א number of shapes, since 21א < 1א2 = 1/2א.    

The reasoning in the last two paragraphs can be repeated in such a way that we 
obtain the results displayed in Table 1. In all the squares of the lowest line, but 
nowhere else, there are more possible shapes than real numbers. 
 
  2 kinds: 3 kinds: 4 kinds: n kinds: 0א kinds:   1א kinds: 
2 seg.: 22/2  32/2  42/2 n2/2 0א

1א 2/2
1א= 2/2

1א= 2
 

3 seg.: 23/2 33/2 43/2 n3/2 0א
1א 3/2

1א= 3/2
 1א= 3

4 seg.: 24/2  34/2 44/2 n4/2 0א
1א 4/2

1א= 4/2
 1א= 4

m seg: 2m/2  3m/2 4m/2 nm/2 0א
m/2 1א

m/2 =1א
m =1א 

0א 0א< 0/2אn 0א< 0/2א4 0א< 0/2א3 0א< 0/2אseg: 2 0א
1א 0א< 0/2א

1א= 0/2א
 1א= 0א

0א 1א< 1/2אn 1א< 1/2א4 1א< 1/2א3 1א< 1/2אseg: 2 1א
1א 1א< 1/2א

1א=1/2א
 1א< 1א

Table 1. The lines tell how many shape segments a certain shape has, and the columns how 
many kinds-of-segment the same shape has. The number in a specific square tells how many 
different kinds of shapes the given combination (of number of segments and number of kinds-
of-segment) can surely give rise to. 



 

I have for a long time suspected that the fact that shape has not been quantified is 
not due to contingency or lack of intellectual capability among people analyzing 
shapes. Therefore, I am not astonished that it is possible to put forward a proof that 
this cannot be done. I am, however, astonished that that there are more shapes than 
real numbers already in the lower left corner in Table 1. Originally, I thought this 
would be the case only in the lower right corner. It should, however, be remembered 
that transfinite mathematics often gives astonishing results. Table 1 makes it clear that 
the existence of two different kinds-of-segment is enough for the proof; and such a 
minimal assumption seems incontestable.  

4  Shape Cannot be Quantified 

In a quantification of a scalar property dimension, the determinate properties of a 
physical property dimension are given a one-to-one mapping onto the real numbers. 
Now, if a domain S has a larger cardinality than another domain R, then there can be 
no one-to-one mapping between S and R. Therefore, if there are a larger number of 
2D-shapes (S) than there are real numbers (R), then 2D-shapes cannot possibly be 
quantified. That is, the proof that there are more 2D-shapes than real numbers entails 
a proof that all possible 2D-shapes cannot be quantified. And since there are at least 
as many 3D-shapes as there are 2D-shapes, neither can all possible 3D-shapes be 
quantified. 

In the proof that there are more shapes than real numbers no distinction is made 
between closed and open shapes. The combinatorial reasoning used is indifferent to 
whether segment combinations give rise to closed or to open shapes. Now, it might be 
argued, that just as length and area are regarded as different physical dimensions, 
open and closed shapes should similarly, for some topological reasons, be regarded as 
two different physical dimensions. And, if this is the case, it might be said that I have 
not really proved that shape cannot be quantified; only proved that the pseudo-
dimension consisting of both closed and open shapes cannot be quantified.  

I find it hard, however, to see that open and closed shapes can be regarded as two 
different property dimensions. This would mean that turning an open curved line into 
a circle would change its property dimension. But more can be said. 

Since only two different kinds-of-segment are needed for the proof, it goes through 
for the subset of open shapes if there are two different kinds-of-segment all whose 
combinations give rise to open shapes. And there are. Every combination of one 
curving-in segment with one curving-out segment results in an open shape. That is, 
not only is the set of all shapes not quantifiable; the same is true for the subset of open 
shapes, too. I am not, however, able to prove that there are more closed shapes than 
real numbers.  

5 Other Implications of the Proof 

I have so far used ‘quantification’ in its (outside of logic) central sense, i.e., to 
quantify a kind of property is to make it possible to assign numbers to all its 



 

determinates in such a way that the linear order of the real numbers correspond to a 
linear order of the determinates. Sometimes, however, the term takes on such a wide 
meaning that everything that can be mapped onto a part of an n-dimensional vector 
space is said to have been quantified. For instance, all humanly perceivable colors 
have been given a number of different quite elegant and informative mappings by 
means of three-dimensional so-called color solids; the dimensions being hue, 
saturation/chroma, and intensity/value. Is it perhaps possible to map all possible 
shapes into a corresponding “shape solid”?   

The answer to the question is: no, it is not. The reason is that any specific 
n-dimensional manifold has the same number of points as there are points in the real 
number line. This general truth implies that since there are more shapes than real 
numbers, all shapes cannot even be mapped into an n-dimensional solid; whatever 
value n is given.  

A further and quite peculiar thing follows from the general truth just mentioned. I 
have been discussing possible shapes. The proof states that there are more possible 
determinate shapes than there are real numbers. But, as just pointed out, this means 
that there are more possible shapes than there are points in any n-dimensional 
manifold, not only when the manifold is a line and n equals 1. The conclusion to draw 
is this: independently of whether we regard our world as being three-dimensional, 
four-dimensional, eleven-dimensional (as one kind of string theory claims) or 
something else, all possible shapes can never exist actually.  

6 Concluding Comments 

The non-quantifiability proof put forward must not be misunderstood. Without the 
addition of further premises, it does by no means imply that subsets of shapes cannot 
be quantified. And, of course, wherever and whenever a partial quantification of 
shape fulfills a scientific or practical purpose, it should be made.  

Neither does the proof imply that the shape dimension exists in splendid isolation 
from natural laws stated by means of variables that relate quantified physical property 
dimensions to each other. What the special theory of relativity says about length 
contraction has implications for what is true about shapes. Just one example: 
necessarily, what is a circle in one specific inertial frame is a non-circle in all other 
inertial frames. 

Note, again, that it doesn’t matter to the proof put forward whether or not the much 
discussed continuum hypothesis is true or false. It does, however, rely on two 
assumptions that are not obviously true:  

 Traditional combinatorial reasoning can be used in relation to combinations of 
infinitesimally small shape segments.  

 Finite 2D-shapes can be divided into 20א shape segments.  

Neither of these assumptions seems ever to have been seriously scrutinized; and I 
don’t know how to prove them. Moreover, perhaps it is the case that they cannot be 
strictly proved; and neither strictly disproved. Such a proof or counter-proof may 
require that shape has already been quantified, which I have claimed is impossible. 



 

This does not mean, however, that I cannot be proved to be wrong. As the proof of the 
pudding is only in the eating, and not in a thinking that tries to find out how the 
pudding tastes; the proof of the possibility of a quantification of shape may consist 
only in an actual quantification, and not in an attempt to disprove the somewhat 
problematic assumptions mentioned.  

Leaving this remark aside, let us nonetheless assume that one day one of these 
assumptions, or perhaps another one not noted by me, is shown to be false. What 
would such a discovery imply?  

Of course, it would show that I have managed to prove neither that the number of 
shapes is larger than aleph-one nor that shape is a non-quantifiable dimension. It 
would not, however, show that shape really is quantifiable. In order to prove this, at 
least two further tasks have to be carried out. First, a proof to the effect that there 
cannot possibly be more shapes than real numbers has to be construed. Second, it has 
to be shown that it is possible to order all possible shape determinates linearly, which 
seems to run counter to the intuition that determinate shapes have no magnitude, 
degree, or intensity.  

In the natural-scientific community it is often simply taken for granted that, sooner 
or later, all basic physical property dimensions, shape included, can be quantified. I 
think the default view today ought to be the opposite: shape is a non-quantifiable 
physical property dimension.  
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