
Connecting points by Smooth Connection
Functions defines shapes in the smoothest

possible way

Alex Alon1 and Sven Bergmann2

1 Chief Scientist at R.A.W
Sheshet Hayamim 11/c, Binyamina, Israel

2 Associated Professor at the University of Lausanne
Department of Medical Genetics

Rue du Bugnon 27 (DGM-101), 1005 Lausanne, Switzerland

Abstract. We consider the basic challenge of drawing a smooth curve
through a list of ordered points in a plane. This is similar to the kids’
game known as ”join-the-dots”, which usually results in some kind of
shape. Requiring that not only the curve but also its slope is continu-
ous at each point gives rise to a well-defined mathematical optimization
problem. In order to address it we make use of co-called “Smooth Con-
nection Function” (SCF), which provide generic solutions to Hermite’s
interpolation between two points in two dimensions. We have shown pre-
viously that SCFs can be determined analytically as the exact solutions
of a variational problem that is invariant under translations and rota-
tions (J. Phys. A: Math. Gen. 35 (2002) 3877). A SCF has a unique
solution, given its boundary points and slopes, and only depends on a
single parameter ν determining the relative importance of minimal cur-
vature with respect to minimal length. The extreme examples are a very
large ν, requiring minimal curvature at each point and therefore giving
rise to curves made only of circle segments, and a vanishing ν optimizing
only total length and thus resulting in straight lines. Here we show that
the curve connecting all points can be constructed from SCF segments
and that the slope at each point arises naturally when optimizing overall
smoothness. Our approach provides a practical, yet rigorous, solution to
the very general challenge of defining shapes from a collection of points.

1 Introduction

Shapes can be defined in many different ways. While for arbitrary shapes, it
may be impossible to define them with a finite list of elementary curves or
drawing instructions [1], it is often possible to approximate shapes with such
a list. Such an approximation may suffice for practical purposes because of the
limited resolution of human vision. For example, digitalized images often provide
reasonable representations of real shapes (which may be as complicated as those
corresponding to human faces). Yet, pixelized images do not scale, in the sense
that there is a fixed length scale beyond which zooming into the image will
provide no further details (although they might have been present in the original
object).

Representation of shapes by drawing instructions is one possibility to over-
come this limitation. Usually such instructions include a list of points together
with a prescription of how to draw curves between some of these points. This is
also known as vector presentation and a well known example are letters in true
type fonts [2]. The simplest way to connect between points is to draw straight
lines, but this will necessarily give rise to discontinuities in the slope of the con-
nection curve at the points (see Fig. 1). Using higher order polynomial functions
provides a simple way to overcome this limitation. For N points in two spatial di-
mensions one can always find a polynomial of degree N−1 that goes through all
points. Yet, spline interpolation is usually preferred to this polynomial interpola-
tion because it allows for determining in which order the points are passed by the
curve, while avoiding oscillations of the curve (known as Runge’s phenomenon [3–
5]). A spline is a sufficiently smooth piecewise-polynomial function [6]. For each
piece it is usually sufficient to use low-degree polynomial functions. For example,
the four coefficients of cubic polynomials are fully determined by the coordinates
of two points (with different x-coordinates) and requiring that the slopes and
curvatures at these points match to the neighboring pieces. Yet, the resulting
curves depend on the choice of coordinate system and their shape is not invariant
under rotational transformations. Parametric Bezier-curves [7–9] provide an an-
swer to this by explicitly conserving rotational invariance. This is because they
are defined through the two end points as well as a number of control points,
such that a rotation of these points will also rotate the entire shape defined by
the curve they generate. The most common cubic Bezier curves have two control
points and are thus defined by eight parameters.

This allows for adjusting not only the slope of the interpolating curves at
the end points, but also its curvature. However, there is no principled way for
choosing the control points other than minimizing the deviation from some de-
sired curve. In a work we published almost ten years ago [10] we proposed a new
class of functions that interpolate smoothly between two given points [11–15].
These so-called “Smooth Connection Function” (SCF) are the exact solutions of
a variational problem [16, 17] that is invariant under translations and rotations.
Specifically SCFs minimize the curvature κ raised to some power ν along the

curve C in the sense that the integral (corresponding to a cost-function)

S =

∫
C

[κ]
ν
ds . (1)

takes the smallest possible value. Thus the choice of the parameter ν determines
the relative importance of minimal curvature with respect to minimal length.
Each choice of ν defines a class of SCFs. The extreme cases include a very large
ν, requiring minimal curvature at each point and therefore giving rise to curves
made only of circle segments, and a vanishing ν optimizing only total length and
thus resulting in straight lines. Intermediate values of ν give rise to compromises
between these extremes.

Here we set out to use the optimization criteria in eq. (1) to establish a
generic approach for connecting an ordered set of points with a single curve. Our
procedure allows for defining shapes only based on points, while the slopes and
the curvatures at these points are determined automatically in such a way that
the “global cost” SΣ is minimal for a given ν. SΣ =

∑
Si is defined by the sum

of Si corresponding to each curve segment Ci. Importantly, while each segment
is a SCF, the slopes at the points are obtained by an iterative optimization
procedure. The choice of ν in general impacts the resulting shape. For example,
in the case of three points, ν = 0 gives rise to the triangle having these points
at its corners, while an infinite ν results in the circle having these points on
its circumference. In other words, our method provides a solution to the game
known as ”join-the-dots”, by drawing a continuous, and for ν < 0 or ν > 1
smooth, curve along the dots (see Fig. 1).

Before we describe our optimization procedure and show a few examples of
how the choice of the single parameter ν alters the shape which is otherwise
defined by the same collection of points, we would like to provide some further
motivation for the usefulness of our approach. In our previous work [10] we
showed that SCFs can define optimal trajectories also in an economic sense.
For example, we considered a (space) ship that starts from some point with a
given orientation and has to reach a target at a given angle. We argued that its
total fuel consumption is proportional to the cost function in (1) if directional
changes are made by exerting a force F perpendicular to its motion with a fuel
consumption per unit time W that is governed by some potential law (W ∝ F ν).
In the case of multiple points the corresponding scenario could be a list of targets
that need to be passed in a given order. Our approach would yield the optimal
trajectory of approach for each target.

2 Results

We start by introducing some notations: We call the function y(x) that in-
terpolates between an initial point P i and a final point P f with (Euclidean)
coordinates

P i = (xi, yi) and P f = (xf , yf) , (2)

a “Smooth Connection Function” (SCF), if it minimizes S in eq. (1) while sat-
isfying the boundary conditions

y(xi) = yi and y(xf) = yf , (3)

y′(xi) = tan(αi + α0) and y′(xf) = tan(αf + α0) . (4)

Here the prime denotes a derivative with respect to x and α0 is the angle between
the positive x-axis and the vector pointing from P i to P f . Since S only depends
on the local curvature

κ[y(x)] =
1

r[y(x)]
=

|y′′(x)|
[1 + y′(x)2]3/2

, (5)

and the infinitesimal length element along the curve

ds(x) =
√
1 + y′(x)2 dx , (6)

it is invariant under translations and rotations.
For the functional parametrization of the interpolating curve the integral

introduced in eq. (1) reads:

S̃[y(x)] ≡
∫ xf

xi

(κ[y(x)])
ν
ds(x) =

∫ xf

xi

|y′′(x)|ν

[1 + y′(x)2]
3ν−1

2

dx . (7)

In [10] we showed how to find explicit solutions for y(x) for a given ν subject
to the boundary conditions in eq. (3) and eq. (4) making use of variational
calculus [18] and the Noether theorem [19]. Several examples for SCFs given in
Fig. 2. We also showed that there is a simple way to compute the cost function
in eq. (1) for a given solution.

For the problem we consider in this paper the slope αk assigned to each
point Pk affects two curve segments. For the incoming curve αk = αf and for
the outgoing curve αk = αi. Thus the total costs SΣ corresponding to the entire
curve is a function depending on all αk, and in general there is an optimal
combination of these slopes that minimizes SΣ .

We first implemented the following optimization procedure for computing
the optimal curve (in the sense described above) for an ordered list of points in
two dimensions and a fixed parameter ν:

1. For each point k we compute an initial guess for the slope in terms of the

inclination of the line connecting the neighboring points: α
(0)
k = atan2(yk−1−

yk+1, xk−1 − xk+1). (For closed curves this is always possible, otherwise for
the initial and final points we use the lines connecting these points to their
neighbors.)

2. For each point we compute the combined cost S
(n)
k for the two curve segments

that contain this point. (These are the only segments affected by the slope
at this point.)

3. We alter slightly the slope in both directions at each point by ±∆α and
compute again the corresponding combined cost S±

k for the two neighboring
curve segments.

4. We only update the slope at the point k̂ yielding the maximal decrease in

cost: α
(n+1)

k̂
= α

(n)

k̂
±∆α.

5. We continue steps (2)-(4) until no change at any of the points leads to a
decrease of SΣ .

This is a greedy procedure, which is guaranteed to converge to a local mini-
mum. Indeed, for the cases with relatively few dots we studied (see Fig. 3), we
observed very nice convergence. The curves in Fig. 3 show how the interpolation
curve evolves under the iterations. The initial curve is shown in black and the
final, optimal curve in red. Intermediate curves are thinner and shown with col-
ors ranging from blue to red. We investigated three lists of points: The top panel
corresponds two three points, the middle panel to four points, and the bottom
panel of 10 points. For the triplets we found that indeed for ν = 20 our procedure
finds an interpolating curve very close to a circle, as is expected for very large
ν. For smaller values the total length of the curve becomes smaller, but this is
at the expense of a larger curvature close to the three points. Interestingly, for
small ν there is little adjustment of the slopes under the iterations. A similar
behavior is observed when connecting four points. For 10 points, only some an-
gles undergo significant changes during the iterations, while others stayed close
to the initial guesses determined in step (1) above.

Trying out the greedy optimization procedure for the Octopus example in
Fig. 1, we observed a rather long runtime, while the interpolation curve did not
change dramatically for most points. We thus suspect that our simple optimiza-
tion procedure gets stuck in a local minimum when applied to a large number
of points. We therefore tried out a more sophisticated Black-box optimization
tool using Gaussian Adaptation [20, 21]. We found that this algorithm seemed to
work much better in the case of many points, making it applicable also for large
numbers of dots. The evolution of the interpolation curve for the Octopus char-
acterized by 95 dots is shown in Fig. 4 for ν = 2 and ν = 20. One can see that for
the latter choice the interpolation curves tends to be rounder, in particular at
the end of the tentacles. Yet, for close dots there is usually not much flexibility
for adjusting the local slope. We therefore also tried out an example with only 58
dots, which resulted in much more refinements (Fig. 5). In particular for ν = 2
the algorithm found that a looped curve at one tentacle allowed for reducing the
action.

3 Discussion

Finding interpolating curves through a sequence of points is a fundamental math-
ematical challenge. While B-splines provide a solutions for generating smooth
interpolations, they offer little control for the degree of smoothness. Our Smooth
Connection Functions (SCFs) provide this feature in terms of a single tunable

parameter ν, but so far they could only be used for Hermite Interpolation [11],
where also the slopes at the boundary of each curve segment have to be de-
termined. Here we presented a general approach overcoming this limitation by
automatically computing the optimal slope at each point. This optimization is
based on a global cost function, summing up the contributions from each curve
segment. For simplicity we assumed a single ν determining the relative impor-
tance between small curvature and a short path on all segments. Also we kept
the slope at all points as free parameters subject to our optimization procedure.

Clearly, one could extend the present procedure by defining subsets of curve
segments with distinct ν. Similarly, it is straight forward to fix the slope at some
of the point. For example, this would make it much easier to provide an accurate
presentation of the shape in Fig. 1 by fixing the angles at the end of the tentacles.

There are many conceivable applications for using our method for curve in-
terpolation. For example, interpolation curves are a central tool in the field of
Computer Aided Geometrical Design (CAGD) [9]. Yet, for computational rea-
sons software for interpolation usually relies on simple functions, like the Bezier
curves [7]. Tuning of these curves is cumbersome and requires many control
points. In contrast, our procedure gives a principled approach for finding the
best interpolation, which nevertheless is tunable. Finally, we would like to re-
mark that one could in fact also perceive optimizing ν for a given shape and a
fixed number of control points by minimizing the deviation of the interpolation
curve from the real shape between these points. This would allow for assigning
a typical ν to an entire shape or a part of it. For example, one could analyze
handwritten letters and attribute a characteristic profiles of ν providing a unique
signature to each handwriting. The feasibility of this and other applications will
depend on further development and optimization of the computer code for the
implementation of our method, which is available freely from the authors.

References

1. I. Johansson Shape is a Non-Quantifiable Physical Dimension, this workshop.
2. The US patents for TrueType fonts are available at:

http://freetype.sourceforge.net/patents.html.
3. C. Runge Über empirische Funktionen und die Interpolation zwischen quidis-

tanten Ordinaten, Zeitschrift fr Mathematik und Physik 46: 224243 (1901),
available at http://www.archive.org/details/zeitschriftfrma12runggoog.

4. J.P. Berrut and L.N. Trefethen Barycentric Lagrange interpolation, SIAM Re-
view 46: 501517 (2004), doi:10.1137/S0036144502417715, ISSN 1095-7200.

5. G Dahlquist and A. Bjrk 4.3.4. Equidistant Interpolation and the Runge Phe-
nomenon, Numerical Methods, pp. 101103 (1974), ISBN 0-13-627315-7.

6. G. Birkhoff and C. De Boor, Piecewise polynomial interpolation and approxi-
mation in Approximation of Functions (H.L. Garabedian, ed.), Elsevier, Ams-
terdam: 164-190 (1965).

7. P. Bézier, Example of an existing system in motor industry: The Unisurf sys-
tem, Proc. Royal Soc. London, A321: 207-218 (1971);

8. A. Forrest, Interactive interpolation and approximation by Bézier polynomials,
The Computer Journal 15(1): 71-79 (1972), reprinted in CAD 22(9): 527-537
(1990).

9. G. Farin, J. Hoschek and M.-S. Kim (editors), Handbook of Computer Aided Ge-
ometric Design, to be published in Elsevier Science, Amsterdam, 2002 (the on-
line manuscript is currently available at: http://cagd.snu.ac.kr/main.html).

10. A. Alon and S. Bergmann Generic Smooth Connection Functions: A New Ana-
lytic Approach to Hermite Interpolation J. Phys. A: Math. Gen. 35 3877(2002).

11. C. De Boor, K. Höllig and M. Sabin, High accuracy geometric Hermite inter-
polation, CAGD 4: 269-278 (1987).

12. G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Prac-
tical Guide (third edition), Academic Press, San Diego (1993).

13. K. Höllig and J. Koch, Geometric Hermite interpolation. CAGD 12: 567-580
(1995).

14. K. Höllig and J. Koch, Geometric Hermite interpolation with maximal order
ang smoothness, CAGD 13: 681-695 (1996).

15. X. Lianghong and S. Jianhong, Geometric Hermite interpolation for space
curves, CAGD 18: 817-829 (2001).

16. G. Brunnett, H. Hagen and P. Santarelli, Variational design of curves and
surfaces, Surveys Math. Indust. 3(1): 1-27 (1993).

17. W. Wesselink and R.C. Veltkamp, Interactive design of constrained variational
curves, CAGD 12(5): 533-546 (1995).

18. L.A. Pars, An Introduction to the Calculus of Variations, Heinemann, London
(1962).

19. E. Noether, Nachrichten Gesell. Wissenschaft, Göttingen 2: 235 (1918).
20. C. L. Mueller and I. F. Sbalzarini. Gaussian Adaptation revisited - an entropic

view on Covariance Matrix Adaptation. In Proc. EvoStar, volume 6024 of
Lecture Notes in Computer Science, pages 432-441, Istanbul, Turkey, April
2010. Springer.

21. C. L. Mueller and I. F. Sbalzarini. Gaussian Adaptation as a unifying
framework for continuous black-box optimization and adaptive Monte Carlo
sampling. In Proc. IEEE Congress on Evolutionary Computation (CEC),
Barcelona, Spain, July 2010.

(a) Some shape (b) Points on shape (c) Points only

(d) Linear interpolation (e) quadratic B−Spline interpolation (f) cubic B−Spline interpolation

Fig. 1. Example for “Join the dots”: Some shape defined by a curve along its bound-
ary (a) can be approximated based on a list of (ordered) points along this curve (b).
Having just these dots (c) allows for different ways of reconnecting the dots by inter-
polation. Linear interpolation (d) induces discontinuities in the slope at each point.
Using quadratic (e) or cubic (c) B-splines gives rise to much smoother interpolations,
which are almost identical due to the high density of the points.

xi xf

yi

yf

αi=80, αf=80

Pi

Pf

αi

αf

xi xf

yi

yf

αi=0, αf=80

Pi

Pf

αi

αf

xi xf

yi

yf

αi=-40, αf=50

Pi

Pf

αi

αf

xi xf

yi

yf

αi=20, αf=-50

Pi

Pf

αi

αf

ν=20 ν=2 ν=1.3 ν=-0.5 ν=-2

Fig. 2. Examples for “Smooth Connection Functions” that connect the initial point
P i = (xi, yi) with the final point rf = (xf , yf). At P i and P f the curves are tangent
to the associated rays (dashed) which are specified by their inclination angles, αi and
αf , with respect to the vector pointing from P i to P f . Each plot corresponds to a
particular choice of (αi, αf) and shows the behavior of the solution for five different
values of ν as indicated in the legend (in degrees).

N
=

3

ν=1.3 ν=2 ν=20
N

=
4

N
=

1
0

Fig. 3. Examples for interpolation curve for three lists of points and different ν. The
evolution of each curve under the iterations of our optimization procedure is indicated
by color code. The initial curve is shown in black and the final, optimal curve in red.
Intermediate curves are thinner and shown with colors ranging from blue to red. The
top panel corresponds two three points, the middle panel to four points, and the bottom
panel to 10 points.

N
=

95

ν=2 ν=20

0 50 100
0.8

0.85

0.9

0.95

1

N
=

9
5

ν=2

Iteration
0 50 100

0

0.2

0.4

0.6

0.8

1
ν=20

Iteration

Fig. 4. Examples for interpolation curves for the join-the-dots example with 95 points
(see Fig. 1) for ν = 2 (top left panel) and ν = 20 (top right). The evolution of each
curve under the iterations of our optimization procedure is indicated by color code.
The initial curve is shown in black and the final, optimal curve in red. Intermediate
curves are thinner and shown with colors ranging from blue to red. The corresponding
action (in units of the action corresponding to the initial guess of the slopes) are shown
in the lower panel.

N
=

58

ν=2 ν=20

0 20 40 60
0.8

0.85

0.9

0.95

1

N
=5

8

ν=2

Iteration
0 20 40 60

0

0.2

0.4

0.6

0.8

1
ν=20

Iteration

Fig. 5. Same as Fig. 4, but using only 58 dots to define the shape.

