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“Vision is continuous creation of meaning from images.” — R. L. Gregory [15]

Abstract. Shape is the structure of a localised field constructed in relation to an
object, which e.g. consists of geometric entities in association with each sam-
ple of the object being scrutinized. To identify or characterise shape, we need to
“probe” the field [27,35]. In this paper I consider the visual perception of shape
via “information models” defined as simultaneously usable for both tasks of: (i)
Genesis, i.e. the creation of an internalised world construct, part of a “presenta-
tion” [28], and (ii) Analysis, i.e. stimuli processing to produce perceptual cues to
steer the generative engine as well as for verification of the generated percepts.
Keywords: Shape, Information models, Presentations, Medial representations,
Shape grammars, 2D patterns.

1 Introduction

Perception involves constant choice, ceaselessly deciding which meaning to impose
on the elements of sensory data.1 Why might this “strategy” have evolved? For any
given set of sensory data, there are generally multiple interpretations possible, but the
organism must be able to rapidly come to a perceptual conclusion if it is to avoid being
attacked, trapped, or put into a dangerous or uncertain situation. There may not even be
a single optimal interpretation of the stimulus, as seen in ambiguous patterns like the
celebrated Necker cube [13]. And yet the organism needs a perceptual system capable of
making decisions constantly, even if those decisions are simplistic approximations, and
sometimes outright wrong; thus the perceptual system must be continuously revising
and re-evaluating its interpretations, as illustrated in the bi-stable Necker cube. Necker’s
line drawing need not be a 3D object itself, but must therefore be a construct of our
mind, correlated with sensory evidence.

Although we continuously sample the visual environment, we do so in general with
small visual saccades, fixating mostly to update visual knowledge, to analyse slight
changes, possibly to compare features (of a painting, a face). But, during saccadic

1 I refer to “data” in its usual meaning in communication theory: the transfer of information
between an emitter and a receiver; e.g. the emitter may be (sources of) light bouncing off
objects in a scene or signals generated by the brain when dreaming, while the receiver is the
visual area (or “interface”) of the brain which encompasses (at least) the eyes, the optic nerves,
the LGN (lateral geniculate nucleus, the “relay” centre from the retinas to the visual cortex),
V1 (the primary visual cortex) and others areas of the nervous system directly involved in
“visual processing”. But, notice that data is only involved in part of what perception is about:
data stimulates the mind in its creative quest and helps it quickly produce an answer.



eye movements, the entire visual field (actually the entire perceptual field — includ-
ing sounds, haptics, heat sensing) remains stable [51, pp. 464-5]; we have a clear view:
there is no gap, hole, stitch, vibration, or noise in our (conscious) understanding of the
scene. This I argue (with others) is possible if perception is a creative process: rather
than just being built up from the sensory data, the perceptual experience involves an in-
ternal creation which is “colored” [21,16,28], constantly updated or verified using our
sensors (and their incoming data). Such an internal creation by the mind of a view of
the world is called a presentation [28].

The theory of shape perception I explore is to be based on such a theory of the mind.
“Shape” is not strictly and directly only a set of physical properties derived from objects
in the world but is foremost a proposal of the mind, a presentation, which is correlated
with the physical cues available to our senses.2 Hence shape cannot simply be derived
from affordances of object out in the world, but can rather only be understood via the
interface (here visual) that our mind controls [19].

2 Shape percepts: Analysis & Genesis via Information Models

Main Hypothesis: The mind requires as one of its key building blocks sets of infor-
mation models simultaneously usable for both tasks of: (i) Genesis, i.e. the creation
of an internalised presentation (of meaningful percepts), and (ii) Analysis, i.e. stim-
uli processing to produce perceptual cues to steer the generative engine as well
as to verify the generated percepts. That the same information model is needed for
both genesis and analysis is a consequence of the constant “conversation” that takes
place between the two tasks: it leads to efficiency for a biological system that needs
rapid decision making, right or wrong.

What is an Information Model (IM)? In essence it is what embodies meaning. Loosely
speaking, it is a description of an object, resulting in a visual percept (of a shape or set
of shapes in the discussion here) in terms of qualitative properties, quantitative features
(e.g. geometrical), relationships (e.g. topological), associated functions and contexts.3

In order to illustrate and put in practice this concept, I will start using a natural language
description of shape percepts and then propose a possible computational implementa-
tion. I will restrict myself in this contribution mainly to 2D percepts as “shapes,” but
what is exposed extends to 3D objects and their associated shape.

Definition 1. Shape is the structure (the organisation, arrangement of parts) of a lo-
calised field constructed “around” an object. This field consists e.g. of geometric enti-
ties — such as curvatures, singularities (of some appropriate mappings), gauge figures
(e.g. Dupin’s indicatrix) — which may exist in association with each sample of the ob-
ject being scrutinized, or are observed for regions, parts or the entirety of the object’s

2 This applies also to other perceptual categories, such as color percepts.
3 I am borrowing and adapting the concept of IM from conceptual modelling and software en-

gineering, where it is defined at its most general level as a set “of concepts, relationships,
constraints, rules, and operations to specify data semantics for a chosen domain of discourse;
it can provide sharable, stable, and organized structure of information requirements for the
domain context” [31].



trace. In order to identify or characterise shape, we need to (operationally) “probe”
the field (adapted from [27,35]).

I therefore cast this definition of shape in the framework of Information Models and
explore probes, or operators, which are useful for both genesis and analysis tasks.

2.1 An example of an Information Model for shape: Descriptions of 2D patterns

As an example of the visual perception of shape, let us consider simple 2D percepts like
a triangle, a corner, a rectangle or a square.

Corner: the region of an object made of boundary segments meeting at a sharp end
which is typically located at the intersection point of the pair of segments.

Rounded corner: a corner with a rounded (not so) sharp end.
Triangle: a 2D object, typically with an explicit closed outline, made of three (usually

sharp) corners. These corners are often linked by straight line segments.4
Quadrilateral: a 2D object, typically with an explicit closed outline, made of four

(usually sharp) corners. These corners are often linked by straight line segments.
Rectangle: a quadrilateral with right angles at each of its four corners.
Square: a rectangle with equal length boundary segments or with equally distanced

corners along the boundary.

Each of the above shape description combines boundary features with some interior
or regional properties: e.g., a corner is the sharp(er) interior end region delimited by a
meeting pair of lines tracing contour segments.5 A triangle is a closed envelope (a solid
shape in technical terms: i.e. we can fill it with a fluid which cannot (or with difficulty)
escape that interior region) delimited by three corners. A shape may be described in
terms of another: a square is a more symmetric rectangle; a rectangle is a straighten
parallelepiped, etc. When specifying a deformation to relate a more complex shape
to a simpler or more symmetric one, we can follow e.g. a dynamic principle of least
perceptual effort (or tension reduction when referring to Gestalt psychologists [2]). A
high level study of dynamic form (in terms of group theory) is to be found in Michael
Leyton’s generative shape theory [38].6

2.2 A potent computational substrate for an Information Model of shape:
Medial representations of 2D patterns

I explore now a potential computational substrate based on Harry Blum’s medial axis
framework [8] (Fig.1), which can support or even replace7 natural language descrip-
tions like the ones above for simple shapes. Part of my interest in this computational

4 I allow non-straight (or non-Euclidean) boundaries so that bending (or geodesic/Riemannian)
triangles are accounted for. I also allow for open topologies, to account for potential illusory
contours, such as provided by the Kanisza examples (Fig. 2).

5 A different (operational) description is likely to lead to a different implementation of the IM.
6 Leyton’s work gives a view on shape via operators equipped with control structures and feed-

back mechanisms.
7 An IM for shape can support natural language descriptions, but this need not be a necessary

requirement, especially if a theory of shape perception is to be generalised to other species
than humans.



framework in the present context is that it relates contour features with object regions
and is both used for analysis [25] and genesis [6,5] of forms. It also appears powerful
enough to study at least some of the known (shape-related) perceptual illusions such
as the Kanizsa-like ones (Fig.2) [25]. The medial axis can be defined in a number of
ways, such as (i) the loci where wavefronts initiated at boundaries collapse or meet in
a simulated field (or “grassfire”) propagation, (ii) the ridges of a distance field map —
where the distance is computed away from the object’s boundary and plotted as a height
map, or (iii) the loci of center of maximal balls osculating two or more contour points,
[8] (Fig.1).

(a) (b) (c) (d)

Fig. 1: Adapted from [49, Fig.3]: The Medial Axis of Blum: (a) as the loci of centres
of maximal contact disks; (b) for two sample points as the locus of meeting Euclidean
wavefronts, where the (central) cross indicates the initial shock when the fronts first
meet, and the arrows indicate the direction of growth or flow of the medial axis seg-
ments; (c) derived from a distance map computed for a humanoid outline, as the ridge
lines of the corresponding height field, (d).

While the original ideas of Blum emerged in the 1960’s, a more recent development
for this computational framework takes the form of shock graphs (in 2D) and medial
scaffolds (in 3D) [25,36,44] for which it is shown that the medial axis is somewhat
redundant as a diagrammatic model of distance-based symmetries, such that the critical
points of the radius (or distance) “flow” along its trace are sufficient to obtain a compact
and complete view of Blum’s symmetries.8 I will not discuss here all the properties of

8 Other definitions have been proposed since Blum’s early ideas, including most notably: (i) The
Process Inferring Symmetry Axis (PISA) of Michael Leyton [38]: an extension of the medial
axis putting the emphasis on growth and a process-based view of shape — shape is understood
as the history of the deformations likely to explain it; (ii) the M-rep of Stephen Pizer et al.
[44]: the medial axis is approximated via primitive sub-shapes (functioning as parts) which
can explain the segmented data — typically the samples of outlines obtained from an image
processing step — and for which the medial representation is explicitly known; such M-reps
are meant to explicitly re-create an approximation of the original object as the concatenation
of the fitted primitives; (iii) the annulus-based medial fields of Kelly and Levine [24], Kovacs
et al. [29], van Tonder et al. [48]: symmetries are captured for a disk with a thick boundary
— any outline samples falling in the annulus region count towards a symmetry — making the



such medial models (refer for example to Blum’s main thesis [8], my previous study on
shape [35] or to the monograph edited by Siddiqi and Pizer [44]); again, one important
reason why such medial representations are suitable to build IMs is that they can be
simultaneously used for both purposes of analysis and genesis. Let us then consider a
possible mapping between a shock graph and a natural language descriptions for our
above examples of corner, triangle and quadrilaterals.

(a) (b) (c) (d)

(e) (f)

Fig. 2: Top line: adapted from [25]: (a) the Kanizsa triangle [22]: note that the lightness of the
“triangle” perceptually exceeds that of the paper or screen forming a background, which illus-
trates one type of our mind’s constructive processing: this additional brightness is only available
in the observer’s presentation, not in the physical world. (b) The shock graph arising from the
edge map directly recovered from the Kanizsa stimuli, where arrows indicate flow; this edge
map can be transformed (edge elements removed, gaps bridged, and so on) such that any trans-
formation sequence of the edge map is implemented by a corresponding sequence of symmetry
transforms on the shock graph. The sequence used here recovers the illusory triangle at one
depth, (c), and completes the “pacmen” as disks at another, (d). NB: The selection of the proper
transform sequences — i.e. how to navigate in the shape space of deformations (here: symmetry
transformations) — remains a difficult task in this bottom-up framework. Other sequences, with
similar deformation costs, lead to very different unintuitive results. Bottom line: Examples of
shock graph computations (e) for a 2D corner extracted from a Kanizsa-like illusory percept, and
(f) for a (usual, equilateral) triangle as a reference. Notice that the white dots along the shock
graph indicate the extrema of the flow along its trace (min, max and saddles). Notice also that a
similar additional brightness effect as observed in (a) is available to the observer’s presentation
on the left in (e), however, with no well defined boundary away from the corner (or pacman),
illustrating that illusory contour presentations do not require solid shape percepts, merely open
ones.

representation non-unique, but more robust to perturbations in the data; (iv) the full symmetry
set: captures a richer set of symmetries for a given outline by letting wavefronts propagate and
cross each other multiple times [12,44].



Corner: a corner is indicated by a shock graph branch which emerges from a high
curvature point on the boundary; that branch puts in symmetry relation two bound-
ing contour segments; the local region for which the distance field is computed in
relation to the shock graph captures the size, width, elongation and propensity to
“compress out fluid” (or distance flow field) away from the corner region to other
(shape) regions; the higher the curvature the closer the shock branch end gets to the
contour and touches it for a break of curvature at a sharp end. Blum’s medial axis
can be naturally applied to partial boundary segments, or contour with holes, which
makes it an interesting candidate to study Kanisza triangle like illusions and other
patterns with occlusions, noise, gaps (Figures 2 and 3).

Triangle: a triangle is indicated by a shock graph with three branches each emerging
from one of the three triangle corners; each branch relates to the two sides of each
corner; the shared relationship between each boundary segment by pair and as a
linked triplet is explicit; the triangle border (and interior region) is always available
from the graph by sweeping primitive functions along each branch (in the form of
disks of smoothly varying prescribed/encoded radii). Note that for retrieval pur-
poses from a shape-encoded memory, the mapping of the shock graph structure for
a triangle is readily available in the Kanisza triangle stimuli.9 Also, different radius
functions permit to capture bends and bulges (e.g. for the deformed Kanisza stimuli
of Fig.3, b&d).

Quadrilaterals: these can be studied similarly to the triangle case. The geometry of
the shock graph distinguishes most of the variants (general quadrilateral, paral-
lelepiped, rectangle) while special topological events, such as the higher symmetry
of a square or of a diamond, are made explicit in the (simplified) branching struc-
ture. A similar discussion on illusory percepts like the Kanisza triangle applies to
quadrilateral configurations.10

IMs with implementations carried out by shock graphs for 2D patterns (or medial
scaffolds for 3D ones [36,9]), can potentially capture large classes of 2D (and 3D)
visual shape percepts. We may restrict our shape space to the study of objects that are
reasonably regular: not necessarily with smooth boundaries everywhere — the common
form of mathematical regularity — such as outlines with discontinuities (in curvature
or with gaps), but also not arbitrarily complex, as can be generated by fractal and some
stochastic processes.11 This restriction allows us to address the issue of simplicity. For
regular objects we expect medial representations such as shock graphs and scaffolds
to be relatively simple, consisting only of sparse directed graph structures constructed
from nodes at singularities of the medial flow and their connectivity. The genesis or the
analysis can be performed at varying scales, and for various subparts. The genesis can
be performed in various ways, and in particular by inverting the process used for the

9 This is typically performed in computing via graph matching techniques developed to deal
with partial cues, e.g. using edit matching [43].

10 A detailed study of 2D illusory patterns with medial representations is beyond the scope of
this contribution.

11 Medial representations can be used to study and generate fractals and some stochastic pro-
cesses; thus our restriction may not be critical or even necessary if we want to generalise the
proposed approach.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Top line: after Lehar [32, figure 1]: (a) and (c): the stimuli of Kellman & Shipley [23]
used to study illusory contours as a function of (a) a bending misalignment, and (c) a shearing
misalignment; (b) and (d): corresponding equivalent Kanizsa figures. Bottom line: corresponding
shock graphs; in (e,f) a bending misalignment is made explicit from shock graph geometry and
associated radius function flows, while in (g,h) a shearing misalignment is noticeable from the
shock graph in its topological splits (new branch segments introduced in the central area).



analysis. For example, from a shock graph trace, a sweeping function can be used by
varying the radii of discs, or a reverse distance transform can be computed.

Higher order symmetries, in particular those in correspondence with medial flow
singularities, organise the shape space in regions providing “attractors” around which
deformed versions can be explicitly related [25].12 For example, the square organises
rectangles and other quadrilaterals, under various projections, “around it;” and similarly
does the circle for ellipses, ovals and other slightly deformed disks. This extends to
3D with cubes or spheres. This analysis naturally encompasses the tubular shapes of
Gaspard Monge (classical geometry), the geometric primitives (geons) of Biederman
et al. [3], and more flexible “generalised cylinders” (sweep functionals) favored by
Binford, Marr and others [41].

(a)

(b) (c) (d) (e)

(f)

Fig. 4: Example of a pattern analysis via an attractor-based shock-graph recovery. (a)
Part of a collar (lace fabric; from the Constance Howard textile collection at Goldsmiths,
University of London). (b) Selected/extracted patch containing a pattern of interest.
(c) Figure-ground segmentation by thresholding of the image patch. (d) Recovery of
the main shock graph structure (analysis). (e) Corresponding highly symmetric graph
target: an attractor in the shape space. This attractor has the potential to capture either a
natural language description or symbolic enunciation of the geometrical and topological
nature of the class of objects weaved into the textile. (f) It can then be used to find other
images in this or other collections where the same or similar pattern(s) exist.

12 This goes against the traditional view favored in applied mathematics and physics: high-order
symmetries are ruled out as non-significant (i.e. not occurring in nature) since a slight per-
turbation of the data or the stimuli breaks these away. The psychological realm of perception
needs not follow the same constraints if it can fully control its generated shapes.

http://www.gold.ac.uk/constance-howard/


Families of patterns can thus be captured by their representative attractor — defin-
ing a region of the shape space which can be associated to a class of shapes; e.g. all the
circumscribed star-shape patterns found in the piece of lace in Fig.4 are captured in one
class by the attractor in Fig.4.(e).

Beyond strictly the domain of “simple” pattern description, we can seek IMs able to
deal with more complex visual contexts. One such important computational substrate
can be found in early and more recent work on shape and image grammars.

2.3 Information Models & Shape Grammars in Biology, Architecture & Vision

Generative grammars expressible in a computational framework have a significant re-
cent history (post-WWII), starting with Chomsky’s theory of language [10] which in-
troduces the notion of transformational generative grammar based on powerful rewrite
rules providing explicit and formal descriptions. This approach later transited from lin-
guistic to tackling shape problems. To my knowledge, this was first accomplished by
Lindenmayer et al. [39,42], in particular to tackle in biology the modeling of plant
structure as well as their growth patterns. Later other shape grammars were proposed in
architecture (Stiny et al. [45]) and in vision and related applications (Leyton [37,38]).
Perhaps the most successful recent practical application of grammars is to be found in
Computer Aided Design [11,20]. In general, such (shape) grammars are presented either
in a generative context or in an analytical one, but they can be designed to simultane-
ously serve both purposes, making these interesting candidates as IMs that can directly
link a semantic description of a perceptual object with a computational implementation.

The first significant use of generative processes in computational architecture re-
search, referred to as “process grammars”, was introduced in the work of George Stiny
et al. [45].13 Such grammars consist of a database of rules and a generative engine and
represent a form of expert system where the generative engine checks the existing cre-
ated geometry for conditions that match the left-hand side of the rules. Defining an ap-
propriate set of rules is usually very challenging, is building type and architectural style
dependent, and that set of rules can rapidly grow. In more recent work, the resulting
shapes are constrained by introducing parametric controls to the right-hand side of the
fired rules, as illustrated in the work of Mueller, Wonka et al. [40]. Theirs is an extension
of Stiny’s shape grammars and includes split rules, some “merging” capacity (creating
joints/snapping constraints, evaluating intersections), some control mechanisms (of the
grammar), scaling, tiling and basic Euclidean transformations, context sensitive shape
rules, and stochastic (placement) rules. It also relies on existing computational geome-
try algorithms, such as straight skeletons to derive plausible roofs,14 and specialised (but
well-known) geography-based and computer vision (photogrammetry) mechanisms to
extract relevant outlines and (photo)textures from imagery: (i) for footplates and street
layouts from aerial imagery, (ii) from facades to retrieve regular layouts and textures
(of windows, doors, decorations, gutters) [46].

13 The tradition of defining and using rule-based systems in architectural design is ancient; two
of its most well-known champions being Vitrivius (Rome, 1st century BC) and Palladio (Re-
naissance, 15th century) who produced treatises on the subject.

14 Straight skeletons are yet another form of medial representation.



(a) (b)

(c) (d)

Fig. 5: Example of the use of a Building Information Model (BIM) part of a system
being developed by the Mutators Research Group at the University of London. In (a)
and (b) are shown two views of a Georgian style building designed using an ontology
including definitions of footplates, walls, floor levels, rooftops, windows, doors, decora-
tive objects, material properties, etc. In (c) and (d) are shown two examples of generated
buildings obtained by a “genetic mixing” derived from the ontology-based descriptions
of multiple existing styled buildings seen as their “parents”: in (c) for a pair of parents
and in (d) for a quadruplet of parent buildings. This work is a continuation of previ-
ous projects initiated by Latham and Todd in the early 1990’s [47] and pursued at the
University of London in the last few years [30].



In the last decade, the architectural and engineering professions have started to
move from an electronic drafting process towards a parametric modelling of objects.
Building Information Models (or BIM) as they are referred to in the architectural and
built environment fields permit the parametric modeling of all objects (walls, doors,
windows, floorplans, etc.) and their interactions, combining shape generation of build-
ings and their component, together with a knowledge base in the form of an archi-
tectural ontology [1,17]. This is made possible by defining functional structural rela-
tionships between shape elements and managing these in a database or memory struc-
ture. Most implementations of the BIM philosophy follow the IFC (Industry Foundation
Classes) which insures greater interoperability between disciplines and software pack-
ages. The IFC model represents architectural shapes (e.g., doors, walls, tiles, etc.) as
well as more abstract concepts such as spaces (e.g., floorplans), construction costs, ac-
tivities/functions, schedules/dynamics and so on. All entities can have associated prop-
erties, such as materials, name, geometry, textures, relationships, lifetime, and so on
(Fig. 5).

In recent years Zhu and Mumford [52] have revisited the use of grammars in vision
to address the problem of dealing with large amounts of possible object categories —
for example, according to work by Biederman, at least 3,000 shape categories can be
derived from the English dictionary, where each category can cover large amounts of
variants [3,4]. Such grammars represent the hierarchical nature of scenes into objects,
parts, primitives, their relationships and relative scales. They also address issues of spa-
tial and functional contexts. Zhu and Mumford’s grammar is implemented as And-Or
graphs where an Or-node corresponds to alternative sub-structures, while an And-node
corresponds to parts. This model is used both for the analysis of images and genesis
of novel configurations (for example of an object like a chair, a clock or a car and its
parts).

3 Discussion

Grammars in vision have four important objectives [52]: (a) to offer a common frame-
work for visual knowledge representation and object categorisation, (b) to offer scalable
and recursive top-down/bottom-up computations, (c) to function from small sample
learning and be able to generate novel configurations, (d) to offer a mapping between
the visual vocabulary at multiple levels and symbols and stimuli, therefore solving the
semantic gap. With respect to natural language, there are three main additional issues:
(i) the loss of a 1D (time) ordering, (ii) the presence of image scaling and (iii) the
presence of a wider range of irregular patterns (than found in speech signals).

Medial shape operators and shock graphs in particular are one of the main streams
of research which can support image grammars [52]. When in the form of shock graphs
(2D) or medial scaffolds (3D), a medial shape operator can explicitly be represented
via a neural circuitry (brain machinery) [25]. It can also be represented implicitly via
global brain (wave) functions, as proposed by Blum [7], and recently revisited by Lehar
[33,34]. Global brain wave functions exploit the field-like structure which supports me-
dial axis computations, i.e., the directed distance field — resulting from either an anal-
ysis like in the grassfire propagation, or a genesis in a reverse grassfire growth or via



the fitting of primitives such as empty contact disks [50,44, Ch.3 by James Damon]. Al-
ternative field-like structures have been proposed which trade sharpness of details with
robustness to noise and small deformations, for example via the medial shape operators
of Kovacs [29] or van Tonder [48] et al.

I proposed in this short contribution that Information Models (IMs), for example
conceived with reference to a linguistic explanatory context and implemented via shape
grammars or medial shape operators, could support both perceptual tasks of genesis
— of meaningful synthetic structures capable of representing perceptual shapes — and
analysis — of stimuli, producing cues to steer the generative process — seen together as
a key building block of the (visual) interface of a mind. Other IMs, for example based
on symbolic structures other than derived from natural language descriptions, and of
various implementations, should be explored to further test this hypothesis.

Shape percepts are fundamentally based on (learned) meanings the mind constantly
projects “out” at the interface that is our visual apparatus, in an act of microgenesis of
successive presentations [28]. Without learned meanings (of concepts such as a chair,
a bottle, a face, a triangle) there is no shape to perceive and we may remain blind to
the nature of objects we are exposed to. When a new scene possibly with unexpected
objects in it stimulates our sensors, we can either immediately associate with it some
known (shape) meanings or we may create a new set of meanings to become part of
our memory banks. An interesting demonstration of this effect can be illustrated for
example with the remarkable emergent dalmatian dog percept of R. Gregory and R. C.
James [14], in which the dog shape is hardly perceived by first viewers but once it has
been cognised it will pop-up even if shown again only years later.

In summary, I started by defining “shape” as a process-based description of an ob-
ject, which makes explicit useful (to a mind) properties and characteristics of such an
object, e.g. of a triangle, cube, chair. The Information Model (IM definition) for a shape
was proposed as a mechanism to both generate and analyse such a shape percept and
situate it at the (visual) interface where a mind can become conscious of it. I also used
in my examples some illusory shape percepts — from the Kanizsa family — as these
must be explained if a shape theory of human visual perception is to be further studied.
Note also that illusory percepts give explicit clues on the potential IMs to put in place
[13,18,16]. Much remains to look at, including studying similar 3D shape percepts and
extending the family of IMs to cover more applications, e.g. in the context of shape
grammars.
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