
Augmenting the Web of Data using Referers

Hannes Mühleisen
Freie Universität Berlin

Networked Information Systems Group
Königin-Luise-Str. 24/26
14195 Berlin, Germany

muehleis@inf.fu-berlin.de

Anja Jentzsch
Freie Universität Berlin

Web-based Systems Group
Garystr. 21

14195 Berlin, Germany
mail@anjajentzsch.de

ABSTRACT
Linked Data relies on one central concept: Typed links con-
nect entities stored within data sets published by different
individuals. Manual input and mapping are common tech-
niques to create these links. We propose a novel method,
where HTTP Referer information is used to create new links
between Linked Data entities stored in different data sets.
We evaluate our method using 27.86 million real-world log
entries from web servers hosting Linked Data.

1. INTRODUCTION
On the ever growing Web of Data there is not only a rel-
evant overlap of data on the same real world concepts but
also a growing number of entities that are related to each
other. Since 2007, the number of data sets on the Web of
Data doubles every few months1. Data providers have to
constantly keep up with the growth of the Web of Data and
new linking possibilities. We contribute to this development
by providing a novel way for Linked Data publishers to find
new and suitable link targets.

The Web of Data forms a single global data space for the
very reason that its data sources are connected by links.
However, as the current state of the Linked Open Data
cloud shows, most data sources are not sufficiently inter-
linked, with over 50% of them only being interlinked with
only one or two other data sources2. Almost two thirds of
the data sources do not link back to all the data sources
they are linked from. This leads to a weakly interlinked and
often unidirectional graph of Linked Data which impedes
applications relying on link traversal. In addition, for the
integration of data duplicate detection and linkage record-
ing are crucial preliminaries. While some fully automatic
tools for link discovery do exist [6], most tools generate the
links semi-automatically based on user-defined link specifi-
cations [11, 12, 10].

In this paper, we propose a novel – fully automatic – ap-
proach for back link generation. Here, the “Referer” request
header defined by the HTTP protocol specification is used to
discover remote documents containing Linked Data entities
linking to local entities. Since RDF links between entities
are typed, the type of a back link depends on the type of

1http://lod-cloud.net
2http://lod-cloud.net/state

Copyright is held by the author/owner(s).
LDOW2011, March 29, 2011, Hyderabad, India.

the “forward” link. In order to generate correctly typed back
links, the remote document URLs are dereferenced, and the
retrieved document analyzed. Documents are searched for
the URL of local entities. Matches are then used to de-
termine or create the semantically correct link property to
be used for a back link. Using the local and remote entity
URLs along with the back link property, new back links can
be created and inserted into the data set. We present a
fully deterministic algorithm for this back link generation
approach.

The remainder of this paper is structured as follows: Sec-
tion 2 details our approach and algorithm for automatic back
link generation for Linked Data sets. Section 3 describes the
evaluation of our approach using 27.86 million log entries
from web servers hosting Linked Data. Section 4 gives a
short overview over related approaches for link generation,
and finally Section 5 concludes the findings of this paper and
gives pointers to areas of future work.

2. LINK GENERATION APPROACH
According to the Linked Data principles, links between en-
tities contained in different data sets and stored on different
servers are an integral part of Linked Data [3]. These links
into other data sets are often used to provide background
information, or lead to other related entities. Apart from
using central databases such as Sindice[13], many Linked
Data tools and applications are dependent on considerable
quantities of links. For example, the SQUIN SPARQL query
processor uses link traversal to resolve patterns within a
query [8].

Within the Resource Description Format (RDF) data model,
links are directed and have link semantics specified; each link
is required to be labeled by a machine-readable URI. Data
sets are independent in management and storage, and links
between entities are not a part of any meta-level central sys-
tem, but reside in the data set they were created in. Figure 1
shows this principle: Two entities, ds1:res1 and ds2:res2

are linked from ds2:res2 to ds1:res1 using the link type
ex:p1 (1). The back link from ds1:res1 to ds2:res2 is not
required to be present, its link type is also unknown a priori.
(2) shows the physical storage of the entities and the link,
Dataset 1 contains the entity ds1:res1, and Dataset 2 con-
tains both the entity ds2:res2 as well as the link. Should a
link-traversal based tool encounter ds1:res1, it would have
no way of reaching ds2:res2 without the help of central
databases.

http://lod-cloud.net
http://lod-cloud.net/state


ds1:res1 ds2:res2

ex:p1

?

Dataset 1 Dataset 2

ds1:res1 ds2:res2

ex:p1

(1)

(2)

Figure 1: Linked Data Links and Storage Locations

Links between different data sets cannot – so far – be created
automatically without complex entity recognition schemes
or data structure conventions. Thus, link creation is often
based on human interaction, which represents a tedious pro-
cess and is only practicable between two different data sets
at a time. An automatic or supporting process for link gen-
eration would be desirable, even if only a subset of possible
links can be discovered. In the “classic” WWW, links are
often created on the basis of a link exchange; web authors
communicate the intent of linking to each other’s sites, a
process that can be beneficial for both sites and their vis-
itors. The amount of links is kept low as not to distract
readers. For Linked Data entities however, a large amount
of links to other entities is not disruptive for its usage, as
these entities are mainly published for use by computer pro-
grams. Hence, as content is machine-readable, link exchange
can be performed automatically.

The Linked Data specification defines the Hypertext Trans-
fer Protocol (HTTP) as underlying data exchange protocol.
Linked Data entities are thus requested and served using
this protocol. The HTTP specification defines the Referer3

header field as part of HTTP requests [7]. This field can be
set by the user agent program to the URL of the site that
it was referred from.

“The Referer[sic] request-header field allows
the client to specify, for the server’s benefit, the
address (URI) of the resource from which the
Request-URI was obtained[. . . ] The Referer request-
header allows a server to generate lists of back
links to resources for interest, logging, opti-
mized caching, etc.” [7, sec. 14.36]

The value of the Referer header is commonly added to re-
quest log files by standard web servers, for example by the
Apache HTTP Server. For human-only web sites, the Ref-
erer values are currently mainly analyzed to track visitor
sources such as search engine queries. In the case of Linked
Data, the highlighted part of the Referer definition is more
relevant: If RDF crawlers and user agents would correctly
set this field, a program could generate back links to local

3This spelling is used in this paper to be consistent with the
HTTP specification

entities from the web server’s log files and increase the over-
all connectivity of the Linked Data cloud.

If Referer information are to be used to create links be-
tween RDF entities, the link property URI has to be de-
termined first, as RDF does not allow untyped links. For
very generic cases, the RDF Schema (RDFS) specification
defines the rdfs:seeAlso property, which “indicates a en-
tity that might provide additional information” [4]. How-
ever, the Linked Data specification allows the retrieval of
remote entities (“dereferencing”) in order to gain more in-
formation about that entity. The dereferenced remote RDF
document can then be processed into RDF statements, pos-
sibly yielding the link property that was used to refer to a
local entity. Reconsider the situation depicted in Figure 1,
if a Referer value of ds2:res2 is logged for an HTTP re-
quest to the server hosting ds1:res1 as part of Dataset 1,
an automatic process can retrieve the document describing
ds2:res2 to determine the property value of the link point-
ing to ds1:res1, in this case ex:p1.

One of the strengths of RDF is the possibility to describe
the vocabularies used to link entities in a machine-readable
and dereferenceable way as well. This description can be
encoded using either RDFS or the Web Ontology Language
(OWL) [1]. Using the owl:inverseOf property, a property
itself can define which property is to be used for back links.
For example, the link property hasChild could have the
inverse link property hasParent. Alternatively, vocabular-
ies can specify properties to be symmetric, for example the
property hasFriend could be defined to be symmetric (as-
suming a main-stream sociocultural environment). Should
a link property neither have an inverse link property, nor be
defined to be symmetric, the remote statement linking the
local and remote entity can be included into the local data
set. Since agents can follow properties regardless of their
direction, these links can be useful to them as well.

Figure 2 gives examples for both cases. For both pictures,
the dashed elements are new to the local data set. If the
inverse property is unknown, the remote statement is in-
cluded (1). If the inverse property is known – for example by
dereferencing the property URL – the correct link property
ex:p2 known to be the owl:inverseOf ex:p1 along with the
entity URL of the remote resource ds2:res2 is included (2).

ds1:res1 ds2:res2

ex:p1

ds1:res1 ds2:res2

ex:p1(1)

(2)

ex:p2

owl:inverseOf

Figure 2: New Back Link Properties

From these prerequisites, the automatic generation or rec-
ommendation of back links in the Linked Data context is
possible. The following algorithm can be executed fully au-
tomatically, and – given Referers are supplied by the user



agents – will generate new and meaningful links between
Linked Data entities in different data sets. In the follow-
ing, RDF statements are encoded as triples in the triple no-
tation (subject, predicate, object). Algorithm 1 details the
process of link (and statement) generation: After the doc-
ument pointed to by the Referer URL has been retrieved,
two cases are differentiated: If the response contains RDF
statements, they are checked whether the local entity URL
occurs as subject or as object. If the local entity occurs as
an object, the remote statement is returned. If the local
entity occurs as an object in one of the statements, three
cases are possible: First, the link property may be symmet-
ric, in this case it is used to create the connecting state-
ment (Line 11). Second, if the inverse property is known,
that property is used to create the new statement (Line 14).
Third, if neither of both is the case, the remote statement
is also returned. For non-RDF-documents, a string search
for the URI of the local entity within the remote document
is performed, if a match is found, a rdfs:seeAlso link is
created as well (Line 22), since this link property explicitly
allows linking to non-RDF resources [4].

Algorithm 1 Link Generation from Referers

Require: Requested local entity URL u, Referer URL r
1: rdoc ← retrieve(r)
2: if isRDF (rdoc) then
3: statementSet← parseRdf(rdoc)
4: for all statementSet as s do
5: if subject(s) == u then
6: return s
7: end if
8: if object(s) == u then
9: p← predicate(s)

10: if isSymmetric(p) then
11: return (subject(s), p, u)
12: end if
13: if hasInverseProperty(p) then
14: return (subject(s), inverse(p), u)
15: end if
16: n← createNewLocalUrl()
17: return s
18: end if
19: end for
20: else
21: if contains(rdoc, u) then
22: return (u, rdfs:seeAlso, r)
23: end if
24: end if

The statements generated by this algorithm can now be used
in a variety of ways. We propose two methods: First, the
statements could be handed over for review by another soft-
ware component or the person responsible for the local data
set. Second, an automatic inclusion into the data set is also
feasible. In this case, we recommend storing the statements
in a separate Named Graph, along with a machine-readable
provenance annotation, for example using the Provenance
Vocabulary [9].

3. EVALUATION
To answer our research question and validate our algorithm,
real log files from web servers hosting Linked Data sets were
analyzed. Two sets of log files were made available for the

USEWOD 2011 Data Challenge [2]. The first set of files
was created on the web server of the DBpedia project, the
second set on the web server hosting the Semantic Web Dog
Food project. Both servers used the Apache “combined”
log format4, which is the default setting. Each log entry
is represented by one line in the log file. Each log entry
is similar to the following sample entry in the “combined”
format (line breaks added, not an actual log entry):

160.45.170.10 [07/Jan/2010:09:52:45 -0800]

"GET /resource/South_Bend,_Indiana HTTP/1.1"

303 40

"http://en.openei.org/wiki/South_Bend,_Indiana"

"Mozilla/4.0"

The format is structured into fields for client IP address,
date and time, HTTP request method and URL, status code,
bytes transmitted for the response, “Referer” request header
field, and user agent (browser). In order to generate new
links, two things have to be determined: First, the URL of
the local resource that was requested, and second the URL
of the remote resource the user agent visited before. This
data can be taken from the described log file format.

In total, about 27.86 million log entries were parsed, fil-
tered, and checked for “interesting” Referer entries. Filter-
ing included the removal of log entries without the optional
Referer field, local redirects, and log entries with Referer
entries pointing to result pages of search engines such as
Google, Yahoo, etc.. For all remaining entries, the Referer
URL was resolved, and the resulting HTML or RDF docu-
ment searched for the URL of the local resource identifying
a local entity. Requests expressed their preference for RDF
document responses using the Accept HTTP header. Thus,
this operation was defined to have four possible outcomes:

• Not found – The local resource was not found in the
remote document, neither in plain text nor RDF

• Text match – the local resource was found occurring
in a plain text or HTML response

• RDF subject match – the local resource was found in
a remote RDF statement as the subject entry

• RDF object match – the local resource was found in a
remote RDF statement as the object entry. In the last
case, the properties used to link to the local resource
were also recorded

For RDF matches (not considering possible links to HTML
documents), new statements linking the local and remote
resources were generated according to our algorithm. Then,
an additional request was performed on the local data set
to see whether the local data set already contains this state-
ment. If this was not the case, the new statement could have
been added to the data set.

The frequencies of the possible outcomes mentioned above
as well as the properties used for object matches can give

4http://httpd.apache.org/docs/current/logs.html#
combined

http://httpd.apache.org/docs/current/logs.html#combined
http://httpd.apache.org/docs/current/logs.html#combined


an indication whether the additional links created using our
approach merit the additional effort of analyzing log files for
Referer entries.

Table 1 contains the detailed results of our evaluation. For
each data set, the raw amount of log entries, the amount
of log entries with Referers, the amount of Referer URLs
ultimately dereferenced, and the amount of unique derefer-
encing results are given in the first block. The second block
details the frequencies for the different result types as de-
scribed above. The third block gives the amounts of new
statements that could be generated from our results, and
the amount of generated statements according to our algo-
rithm that were not yet contained in the respective data set.
The quality of the generated statements was evaluated using
manual inspection, and no obviously bogus statements were
found. It has to be noted that we limited the generation
of new statements to RDF matches, since they enable more
meaningful back links. Since this analysis included “live”
data5, results may vary for repeated analyses of the same
log file set.

DBpedia SWDF
Log entries 19,770,157 8,092,552
Referer set 1,328,595 533,188
Dereferenced 4,217 20,451
Unique Results 3,255 6,146

Result type
Not found 2,229 4,821
Text match 431 1,168
Subject match 395 47
Object match 200 110

Statements
Total 595 157
New 507 136

Table 1: Evaluation Results

The most frequent properties used in object matches are
given in Table 2 for the two data sets. Entries with less than
ten occurrences are are not included. Both the dereferencing
results as well as the statements generated for the respective
data sets are available online6 in order to to support further
analysis.

Property URI Freq.
DBpedia
http://www.w3.org/2002/07/owl#sameAs 95
http://dbpedia.org/ontology/wikiPageRedirects 77
http://rdfs.org/sioc/ns#links to 21
http://www.rkbexplorer.com[..]#duplicate 3

SWDF
http://www.w3.org/2002/07/owl#sameAs 42
http://xmlns.com/foaf/0.1/knows 35
http://www.w3.org[..]rdf-schema#seeAlso 16

Table 2: Link Property Usage

5Accessible on 2011/03/10
6http://page.mi.fu-berlin.de/muehleis/ldow2011/

Two main conclusions can be drawn from our evaluation:
First, the generation of new links between Linked Data en-
tities is indeed possible using log files, which contain Ref-
erer values. Second, the comparably small amount of state-
ments generated shows the failure of Linked Data clients and
crawlers to properly set the Referer header.

4. RELATED WORK
Link discovery between data entities across data sets re-
quires linkage recording and duplicate detection techniques.
While there is a large amount of related work on these top-
ics in the database community [15, 5] as well as on ontology
matching in the knowledge representation community [6],
the approaches for Linked Data are still limited at the mo-
ment.

The Silk Link Discovery Framework [11] is an identity reso-
lution framework which generates RDF links between data
items based on user-provided link specifications which are
expressed using the Silk Link Specification Language. Silk
is available in different variants, one on them being Silk
Server. Silk Server can be used as an identity resolution
component within applications that consume Linked Data
from the Web. It provides an HTTP API for matching in-
stances from an incoming stream of RDF data.

LIMES [12] is a link discovery framework for the Web of
Data. It is available as a web interface as well as standalone
tool. It offers string metrics.

LinQuer [10] is a tool for semantic link discovery over rela-
tional data, based on string and semantic matching tech-
niques and their combinations. The LinQuer framework
rewrites linkage requirement queries into standard SQL que-
ries that can be run over relational data sources. LinQuer is
meant to be used together with relational databases to RDF
wrappers such as D2R Server or Virtuoso RDF Views.

Raimond et al. [14] propose a link discovery algorithm that
takes into account both the similarities of data entities on
the Web of Data and of their neighbor entities. The algo-
rithm is implemented within the GNAT tool.

The RKBExplorer sameAs service7 provides a unified view
over different Linked Data sets by managing owl:sameAs
links to identify duplicate URIs. The links have to be pro-
vided to the system from external sources, which also applies
to the related BackLink service.

Most of the current approaches generate links semi-automa-
tically based on user-defined link specifications. This re-
quires data providers to keep up with new linking possibili-
ties and schemata. Furthermore, except for Silk Server and
RKBExplorer’s sameAs service, data sets to be linked have
to be specified manually. This doesn’t scale for the growing
number of data sets on the Web of Data.

7http://www.rkbexplorer.com/sameAs/

http://page.mi.fu-berlin.de/muehleis/ldow2011/
http://www.rkbexplorer.com/sameAs/


5. CONCLUSION
Acting on the fourth Linked Data principle, namely the need
for cross-dataset links between Linked Data entities, we have
identified the Referer request header field defined by the
HTTP specification as a possible source for automatic cre-
ation of those links. However, the presence of an Referer
URL does not prove the presence of an existing link to a lo-
cal entity. Thus, our approach is based on applying the third
Linked Data principle – the possibility of de-referencing ar-
bitrary URLs – on the Referer URL. When retrieving the
document identified by the Referer, we were able to ascer-
tain the presence of a link between a remote entity to a local
entity along with the link type used. We were then also able
to determine the semantically correct back link property and
create a new locally stored back link leading from a local en-
tity to a remote entity.

We have evaluated our fully automatic approach using log
entries from web servers hosting the DBpedia and Semantic
Web Dog Food data sets. In total, 27.86 million log entries
were analyzed, and 24,668 Referer URLs were dereferenced,
yielding 9,401 distinct results. From these results, we were
able to generate 643 new typed links. Our results show the
feasibility and practicability of automatic back link gener-
ation for Linked Data entities using Referer information in
general and web server log files in particular.

From our results, the failure of many Linked Data clients
and spider programs to add the Referer header field to their
requests was identified to be the main factor limiting the
amount of statements generated by our algorithm. We there-
fore would like to urge developers of Linked Data tools to set
the Referer request header to the resource where the URL of
the document currently retrieved was found whenever pos-
sible.

5.1 Further Work
Since our approach can be used to directly add statements
based on information loaded from remote sources, the state-
ments generated are easily susceptible to malicious requests
and malicious remote statements. For example, if an at-
tacker would publish RDF data linking a popular DBpe-
dia entity (e.g. dbpedia:Berlin) to his advertisement page,
and then creating a request to this entity with his document
as Referer, the algorithm would automatically create a link
from the popular resource to the advertisement page. To
overcome this problem, one could evaluate provenance in-
formation in order to establish and enforce a required trust
level, before new links are created [9].

We would also like to create a generic tool for Linked Data
server administrators, which they can use to automatically
process their log entries for interesting Referers, generate
new back links, and automatically publish these links again
in their local data set. Alternatively, the tool could also dis-
play the new statements to an administrator for approval.

Acknowledgments
This work has been partially supported by the “DigiPolis”
project funded by the German Federal Ministry of Education
and Research (BMBF), support code 03WKP07B. The au-
thors would like to thank the reviewers and their colleagues
R. Oldakowski and M. Luczak-Rösch for their insights.

6. REFERENCES
[1] Sean Bechhofer, Frank van Harmelen, Jim Hendler,

et al. Owl web ontology language reference, 2004.

[2] B. Berendt, L. Hollink, V. Hollink, M. Luczak-Rösch,
K. H. Möller, and D. Vallet. USEWOD2011 — 1st
international workshop on usage analysis and the web
of data. In 20th International World Wide Web
Conference (WWW2011), Hyderabad, India, 2011.

[3] Tim Berners-Lee. Linked data, 2006.
http://www.w3.org/DesignIssues/LinkedData.html
accessed 2010-08-12.

[4] Dan Brickley, R.V. Guha, and Brian McBride. Rdf
vocabulary description language, 02 2004.

[5] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and
Vassilios S. Verykios. Duplicate record detection: A
survey. IEEE Trans. on Knowl. and Data Eng.,
19(1):1–16, 2007.

[6] Jérôme Euzenat, Alfio Ferrara, Christian Meilicke,
et al. Results of the ontology alignment evaluation
initiative 2010. In Proc. 5th ISWC workshop on
ontology matching (OM), Shanghai (CN), pages
85–117, 2010.

[7] Fielding, Gettys, Mogul, Frystyk, Masinter, Leach,
and Berners-Lee. Hypertext transfer protocol –
http/1.1, 1999.

[8] Olaf Hartig and Andreas Langegger. A database
perspective on consuming linked data on the web.
Datenbank-Spektrum, Semantic Web Special Issue, 10
/ 2010, 2010.

[9] Olaf Hartig and Jun Zhao. Publishing and consuming
provenance metadata on the web of linked data. In
Deborah L. McGuinness, James Michaelis, and Luc
Moreau, editors, IPAW, volume 6378 of Lecture Notes
in Computer Science, pages 78–90. Springer, 2010.

[10] Oktie Hassanzadeh, Reynold Xin, Renée J. Miller,
Anastasios Kementsietsidis, et al. Linkage query
writer. PVLDB, 2(2):1590–1593, 2009.

[11] Robert Isele, Anja Jentzsch, and Christian Bizer. Silk
Server - Adding missing Links while consuming Linked
Data. In 1st International Workshop on Consuming
Linked Data (COLD 2010), Shanghai, 2010.

[12] Axel-Cyrille Ngonga Ngomo and Sören Auer. Limes -
a time-efficient approach for large-scale link discovery
on the web of data, 2011.

[13] Eyal Oren, Renaud Delbru, Michele Catasta, Richard
Cyganiak, et al. Sindice.com: a document-oriented
lookup index for open linked data. Int. J. of Metadata
and Semantics and Ontologies, 3:37–52, November 10
2008.

[14] Yves Raimond, Christopher Sutton, and Mark
Sandler. Automatic interlinking of music datasets on
the semantic web, 2008.

[15] William E. Winkler. Overview of record linkage and
current research directions. Technical report, Bureau
of the Census, 2006.


	Introduction
	Link Generation Approach
	Evaluation
	Related Work
	Conclusion
	Further Work

	References

